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Background: Lactate, produced through glycolytic metabolism in the tumor

microenvironment (TME), is implicated in tumorigenesis and progression in

diverse cancers. However, the impact of lactate on the remodeling of the TME

in diffuse large B-cell lymphoma (DLBCL) and its implications for therapy options

remain unclear.

Method: A lactate-related (LAR) scoring model was constructed in DLBCL

patients using bioinformatic methods. CIBERSORT, XCELL, and ssGSEA

algorithms were used to determine the correlation between LAR score and

immune cell infiltration. Tumor Immune Dysfunction and Exclusion (TIDE),

rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-

CHOP) cohorts, and Genomics of Drug Sensitivity in Cancer (GDSC) were

utilized to predict the therapeutic response of DLBCL patients. The impact of

the hub gene STAT4 on tumor biological behavior and DNA methylation was

experimentally validated or accessed by the TSIDE database.

Results: The LAR scoring model was developed based on 20 prognosis-related

lactate genes, which enabled the division of DLBCL patients into high- and low-

risk groups based on the median LAR score. Patients with high-risk DLBCL

exhibited significantly worse survival outcomes in both the training cohorts

(GSE181063) and the validation cohorts (GSE10846, GSE32918, and

GSE69053), as indicated by statistically significant differences (all P<0.05) and

area under the curve (AUC) values exceeding 0.6. Immune analyses revealed that

low-risk DLBCL patients had higher levels of immune cell infiltration and

antitumor immune activation compared to high-risk DLBCL patients.

Furthermore, DLBCL patients with high LAR scores were associated with a

lower TIDE value and poor therapeutic efficacy of the R-CHOP regimen.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1230017/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1230017/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1230017/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1230017/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1230017/full
https://orcid.org/0000-0003-0862-4224
https://orcid.org/0000-0001-5143-1239
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1230017&domain=pdf&date_stamp=2023-09-18
mailto:liye_zhong@hotmail.com
mailto:18435147477@163.com
https://doi.org/10.3389/fimmu.2023.1230017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1230017
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2023.1230017

Frontiers in Immunology
GDSC analysis identified 18 drugs that exhibited significant response sensitivity

in low-risk DLBCL patients. Moreover, in vitro experiments demonstrated that

overexpression of the lactate key gene STAT4 could suppress proliferation and

migration, induce cell cycle arrest, and promote cell apoptosis in DLBCL cells.

Transcriptional expression and methylation of the STAT4 gene were found to

be associated with immunomodulators and chemokines.

Conclusion: The lactate-based gene signature effectively predicts the

prognosis and regulates TME in DLBCL. Our study underscores the role of

lactate gene, STAT4, as an important tumor suppressor in DLBCL. Modulating

STAT4 could be a promising strategy for DLBCL in clinical practice.
KEYWORDS

lactate, tumor microenvironment, prognosis, DNA methylation, diffuse large B-cell
lymphoma (DLBCL)
Introduction

Diffuse large B-cell lymphoma (DLBCL) is a common lethal

tumor, accounting for 40% of B-cell malignancies (1). Up to one-

third of patients diagnosed with DLBCL experience relapse or

incomplete remission following first-line treatment, with a low

success rate observed in those undergoing salvage treatment

regimens for relapsed DLBCL (2, 3). Notably, patients with

identical histological type or cell of origin (COO) classification

may exhibit markedly divergent clinical outcomes (4, 5), suggesting

inadequacy of the current classification system in capturing the

biological heterogeneity of DLBCL. Therefore, the clinical

development of predictive gene expression profiling (GEP)

markers that can complement COO is urgently needed.

Lactate is produced primarily in aerobic glycolysis, and many are

released into the extracellular space, thus entering the tumor

microenvironment (6). Several studies showed that the acidic

environment formed by a high lactate concentration account for

tumor cell metastasis, angiogenesis, and treatment resistance (7, 8). For

example, activation of lactate-related gene HK2, a keymetabolic driver of

DLBCL (9), significantly increases cellular lactate production and

promotes tumor cell invasion, metastasis, and drug resistance (10).

IL18 (11), another molecule significantly associated with lactate levels,

was significantly associated with immunosuppression and poor

prognosis in DLBCL patients (12). However, these lactate-related genes

have not been successfully integrated into the prognostic scoring systems

to better reveal the impact of lactate in the tumor microenvironment on

the pathogenesis and clinical outcome of DLBCL.

In this study, we first proposed a lactate-related score (LARscore)

prognostic scheme in DLBCL patients, which was used to predict

prognosis, molecular subtype distribution, immune infiltration level,

rituximab, cyclophosphamide, adriamycin, vincristine, and

prednisone (R-CHOP) response, and sensitivity to some

chemotherapy drugs. Then, we investigated the effects of lactate key

gene STAT4 on the malignant biological behavior of DLBCL cells.

Finally, the relationship between key gene STAT4 transcript
02
expression, DNA methylation, and immunomodulators was assessed

by the TISDB online database. The graphical abstract was shown in

Scheme 1. The comprehensive characterization of these lactate genes

within the tumor microenvironment provides insights into tumor

immune infiltration and may have significant implications for

improving personalized cancer treatment by targeting lactate genes.
Methods

Data collection

The transcriptome datasets GSE181063, GSE10846, GSE32918,

GSE69053, GSE32018, and GSE56315, were downloaded from the

Gene Expression Omnibus (GEO) database using the “getGE” function

of R package “GEOquer”. Among them, GSE32018 and GSE56315

cohorts were used for control analysis between tumor and normal

samples, and the R package”sv” function combat was used to remove

the batch effect. GSE181063 was used as the training set to construct

the LARscore system, and GSE10846, GSE32918, and GSE69053

datasets were used as the validation sets. The DLBCL transcriptome

data, mutation data, copy number variation, and clinical information

data were collected from the The Cancer Genome Atlas (TCGA)-

DLBCL dataset for Single Nucleotide Variation (SNV) and Copy

Number Variation (CNV) correlation analysis. At the same time, we

analyzed the drug response based on GDSC database. We collected

lactate-related genes from the literature in Table S1 and interleaved the

above gene sets to obtain a gene set containing 208 genes. We defined

this gene set as the lactate-related gene set.
Identification and enrichment analyses of
differentially expressed genes

The R package “limma” was utilized to detect differentially

expressed genes (DEGs) between DLBCL and its reference samples,
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with a screening threshold established as adj-P value< 0.01, |log2

Fold Change| > 1.5. Subsequently, the DEGs were subjected to Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis through the “clusterProfile” package

of R, with statistical significance determined at P< 0.05.
Mutation and copy number variant analysis

To detect the variation of lactate gene in DLBCL, we performed a

SNV analysis using the “maftools” package of R and CNV analysis

using “Gistic2” package of R. Survival analysis was performed using the

“survival” package of R, and Kaplan-Meier (KM) curves were plotted

by the “ggsurvplot” package of R to access the survival difference.
Establishment of the prognostic model

To construct the prognostic model, Cox regression analysis was

conducted on the lactate genes of the DLBCL samples using the ‘coxph’
Frontiers in Immunology 03
function of the ‘survival’ package. Univariate regression analysis was

used to identify genes that significantly affect the prognosis, while

multivariate Cox analysis was used to determine the genes

independently related to the prognosis. Least Absolute Shrinkage and

Selection Operator (LASSO) regression analysis was performed using

the “cv. gimne” function of “lar” package for genes with P<0.01 in two

Cox analyses. The LASSO regression algorithm was used to screen

genes whose coefficients were unequal to 0, and an optimal prognostic

scoring model for lactate was constructed. LARscore was defined by

summing the product of lasso coefficient and gene expression.

LARscore =o
n

i=1
expression   of   gene   i  � lasoo   coefficient   of   gene   i

The DLBCL groups were classified based on the median risk

score. A high LARscore group was defined as having a LARscore

higher than this value, while a low LARscore group was

characterized by a LARscore lower than this value. The R package

“timeROC” was used for ROC analysis, and the “survival” package

was used to visualize the results of prognostic genes and clinical

feature factors.
SCHEME 1

Lactate regulation pattern in diffuse large B-cell lymphoma.
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Decision curve analysis (DCA)

DCA is a statistical method used to assess the clinical utility of

diagnostic or predictive models. It helps in determining the net

benefit of using a particular model across different thresholds of

decision-making. In DCA, the “None” and “ALL” reference lines

are used as benchmarks for comparison. Under the same

probability, the clinical usefulness was better when the net benefit

was higher.
Analysis of immune infiltration

Cibersort, ssGSEA, and xCell algorithms were used to quantify the

proportion of immune cells in the TME. Table S2 presents the gene sets

used by ssGSEA. The Tumor Immune Dysfunction and Exclusion

(TIDE) score was computed utilizing the TIDE software to forecast the

clinical efficacy of immune checkpoint inhibitor (ICI) therapy. The

immune score was calculated using the R package “estimate”.
Response to R-CHOP treatment and
drug sensitivity analysis

We selected two cohorts treated with R-CHOP (GSE181063 and

GSE10846) to predict the response to R-CHOP treatment. Due to

the lack of information on efficacy, we used the overall status to

evaluate efficacy. Patients who received treatment and survived were

considered to be in the R-CHOP-response group, and patients who

died were supposed to be in the R-CHOP-nonresponse group. To

gain a deeper comprehension of the influence of LARscore on drug

response, an investigation was conducted on the correlation

between LARscore and drug response of tumor cell lines in the

Genomics of Drug Sensitivity in Cancer (GDSC) database, utilizing

Spearman correlation analysis. Furthermore, an analysis was

performed on the signaling pathways of genes targeted by

these drugs.
Cell culture

The normal B cell line GM12878 and three DLBCL cell lines

(SU-DHL-2, OCI-LY19, DB) were cultured in high glucose RPMI-

1640 (Gibco, USA) containing 10% fetal bovine serum (Gibco,

USA). Incubator conditions were set at 37°C and 5% CO2.
Total RNA extraction and quantitative
reverse transcription polymerase
chain reaction

In accordance with the Declaration of Helsinki, peripheral blood

samples were obtained from patients with newly diagnosed DLBCL at

Guangdong Provincial People’s Hospital, with informed patient

consent and medical information collection. The Ethics Committee
Frontiers in Immunology 04
of the hospital approved this study. Total RNA was extracted using the

E. Z. N. A. Total RNA Isolation Kit (Omega, GA, United States). The

PrimeScriptTM RT-PCR kit (TaKaRa, Otsu, Japan) was utilized for the

generation of cDNAs from reverse transcription. The qRT-PCR was

conducted using SYBR Premix Ex Taq (TaKaRa, Otsu, Japan) in

accordance with the manufacturer instructions of Biorad CFX Connect

(Bio-Rad Laboratories, CA, United States). ABL was used as an internal

control gene. The primers of IL-18, GPI, and STAT4 are as follows: IL-

18 forward (5’-CAAGGAAATCGGCCTCTATTTG-3’), reverse (5’-

CCTCTAGGCTGGCTATCTTTATACATACT-3’); GPI forward (5’-

GCGCCGCCTCTTCGAT-3 ’), reverse (5’-TGCCCATGGT

TGGTGTTG-3’); STAT4 forward (5’-GCAGCAAATCGCCTGCAT-

3’), reverse (5’-CTGCCAATAGTGTAAAGCAGTTCTG-3’).
Protein extraction and western blot

The cell lines’ proteins were lysed using RIPA cell lysis buffer

supplemented with protease inhibitors and phosphatase inhibitors,

and the quantification of total protein was performed using the

BCA method. Subsequently, the protein samples were subjected to

electrophoresis on 10% SDS-PAGE gels, transferred onto PVDF

membranes, and blocked with 5% skim milk. The membranes were

then incubated with primary antibodies overnight at 4°C, followed

by three washes and incubation with the corresponding secondary

antibody for 1 hour. Finally, the membranes were exposed using the

instrument after the addition of a chemical chromogenic solution.
Cell transfection

Construct the overexpression vector, and two cell lines (SU-

DHL-2 and OCI-LY19) with differential expression of the target

gene were selected for transient transfection, and the transfection

efficiency was detected by qRT-PCR and western blot.
Flow cytometry analysis

After staining with the AnnexinV-FITC/PI apoptosis detection

kit and the cell cycle staining kit following the manufacturer’s

instructions, the cells were analyzed for apoptosis and cell cycle

distribution using flow cytometry. Specifically, AnnexinV-FITC and

PI staining were used to distinguish between early and late

apoptotic cells, and the cell cycle staining kit enabled the

identification of cells in G0/G1, S, and G2/M phases.
Detection of lactate levels

To measure lactate levels, the lactate concentration in the

supernatant of lymphoma cells, empty vector lymphoma cells,

and lymphoma cells overexpressing the STAT4 gene was

determined using a lactate assay kit. The experiment was

performed in triplicate under the same cell density conditions.
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DNA methylation

Relations between immunomodulators, MYC molecules,

chemokines (or receptors) and expression, and DNA methylation

of STAT4 were assessed by the TISDB online database (http://

cis.hku.hk/TISIDB). In this tab, users can examine which

immunomodulators and chemokines (or receptors) might be

regulated by STAT4 and STAT4 methylation.
Statistical test

We used R software (version 4.1.0) and SPSS software

(version 25.0) for statistical analysis. Difference analyses were

performed using the Wilcoxon test. Significance levels varied

across analyses. Correlation analysis was performed using

Spearman correlation. The correlation test was performed

using the R language cor. test function. All in vitro

experiments were repeated three times. P<0.05 in correlation

statistics was considered significant.
Results

Biological characteristics of lactate-related
genes in DLBCL

There were 208 lactate-related genes identified in GSE32018

and GSE56315, but 96 genes showed significant differences in

expression between DLBCL and normal tissues (Figures 1A, C;
Frontiers in Immunology 05
Table S3). Among them, 34 genes were highly expressed in

normal samples, and 62 genes were highly expressed in DLBCL

samples. Principal Component Analysis (PCA) based on 208

lactate genes found that lactate-related genes could well

distinguish tumor samples from normal samples (Figure 1B).

Consequently, functional enrichment analysis of 96 lactate-

related DEGs showed that the lactate-related subnetwork

mainly involved in the glycolytic process, HIF-1 signaling

pathway, which are closely related to the production of lactate

and the tumor development (Figures 1D, E).
Genomic variations of lactate-related
genes and their impact on prognosis

Based on the TCGA-DLBCL dataset, we performed the

correlation analysis of SNV and CNV. Mutations of lactate-

related genes were detected in 23 samples. 30 lactate-related

genes were mutated (Figure 2A). Among the mutated lactate-

related genes, significant differences in prognosis were observed

between the mutant and wild-type genes in three genes

inc lud ing HIF3A, PSMB5, and STAT3 (F igure 2B) .

Furthermore, we analyzed the prognostic difference between

lactate-related gene mutation samples and wild-type samples in

all samples. The results indicated that while the samples with

lactate-related gene mutations had a relatively poorer prognosis

than the wild-type samples, the difference was found to be

statistically insignificant (Figure S1). Second, we used GISTIC2

method to analyze the CNV of TCGA-DLBCL samples.

According to statistics, CNV events occurred in 196 lactate
B C

D E

A

FIGURE 1

Differences in lactate-related gene expression in normal and tumor samples and its enrichment analysis. (A) Differentially expressed lactate-related
genes between normal and DLBCL. Red represents genes highly expressed in tumors, and blue represents genes highly expressed in normal tissues.
Gray represents no difference in expression. Lactate-related genes are annotated as tags. (B) PCA analysis showed that the expression of lactate-
related genes represents distinct lactate phenotypes. Yellow represents tumor samples, and blue represents normal samples. (C) Gene expression
profile of lactate-related DEGs between normal and tumor samples. (D) Bar charts showing enriched GO function, including Biological Process (BP),
Molecular Function (MF), and Cellular Component (CC). (E) Chordal graph showing enriched KEGG pathway.
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genes among 208 lactate-related genes, and the gain proportion

was greater than the loss (Figure 2C). Figure 2D shows the top

50 lactate genes with CNV events. Among them, 30 mutated

genes also had CNV, and the gain proportion was greater than

the loss in mutated genes (Figure 2E). Furthermore, among the

30 lactate-related mutated genes, except PGAM2, the CNV of

most genes showed a positive correlation with the expression

level (Figure 2F), suggesting that genetic variation is an

essential factor affecting the expression of lactate molecules.
Frontiers in Immunology 06
Identification of lactate-related gene
prognostic model

By employing univariate Cox regression analysis on the

GSE181063 dataset, we investigated the association between

208 lactate-related genes and the overall survival. Our findings

revealed that 49 genes showed a significant correlation with the

survival, where 25 genes had a P-value<0.01 in the univariate

Cox regression analysis (Figure 3A; Table S4). Subsequently, we
B C

D E

F

A

FIGURE 2

Lactate-related gene mutation, CNV, and prognostic analysis. (A) Waterfall plot showing mutations of lactate-related genes. (B) Three lactate genes
exhibited significant differences in prognosis between the mutant and wild-type groups. (C) CNV statistics of all lactate-related genes. (D) Presentation of
top 50 genes with CNV by waterfall plot. (E) Statistics of types of CNV in lactate-related genes with mutations. (F) Correlation analysis between the
expression of lactate-related genes and different CNV subtypes. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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plotted the survival curves for six genes that had HR>1 (HR

rank top 6) between the high and low expression groups

(Figure 3B), and four genes with HR<1 (HR rank bottom 4),

respectively (Figure 3C). Furthermore, we developed a lactate-

related gene prognostic model using the GSE181063 dataset as a

training set. After performing multivariate regression analysis

on the 49 genes, we observed that all 49 genes had a P-

value<0.05, out of which 26 genes had a P-value<0.01. To

minimize the number of genes for downstream analysis, we

employed a criterion of P<0.01, and obtained the intersection of

24 significant genes identified in both univariate and

multivariate Cox regression analyses. The 24 prognostic genes

were further narrowed down using the LASSO algorithm, which

reported 20 risk genes (Figure 3D), including CD3E, CD4,

STAT4, GPI , IL18 , NUP35, HK2, PSMC4, RIMKLB,

PPP2R5D, CXCL1, PSMB9, LIMD1, OAT, PSMD6, HK1,

IL12RB1, PSME1, STAT5A, PRKACB, and PIK3CA (Table

S5). Based on the lasso coefficients (Figure 3E), we calculated

the LAR score and constructed a novel prognostic scoring

model. The LAR score was presented as follows:
Frontiers in Immunology 07
LAR score  =  (0:189761897� CD3E)  +  (0:055267499� CD4)  +

 (0:029631704� STAT4)  +  (0:366223851� GPI)  +  

(0:096863197� IL18)  +  (0:139596747� NUP3 5)  +  

(0:027248505�HK2)  + (0:129855681� PSMC4) +

(0:098117054� RIMKLB)  +  (0:130784925� PPP2R5D)

  +  (0:131483148� CXCL1)  +  (0:106748892� PSMB9)

  +  (0:149933349� LIMD1) +  (0:084742819�OAT)

  +  (0:230937617� PSMD6)  + (0:138908288�HK1)  +  

(0:013079607� IL12RB1)  +  (0:07630056� PSME1)

  +  (0:024127912� STAT5A)  +  (0:037228828� PRKACB)

  +  (0:130347012� PIK3CA)
The lactate-related risk score model
exhibits a high predictive capacity and
robustness in stratifying cancer prognosis

Based on the median LAR score, DLBCL samples were categorized

into two groups, namely the high LAR score group and the low LAR

score group. In the GSE181063 dataset, patients belonging to the low
B

C

D E

A

FIGURE 3

Construction of a prognostic scoring system based on lactate-related genes. (A) Forest plot showing the results of univariate Cox regression analysis
of lactate-related genes. (B) KM curves and expression of six genes with HR >1. (C) KM curves and expression of four genes with HR<1. (D) The
coefficients and lambda parameters obtained through lasso regression analysis was presented using the LASSO Cox regression model. (E) The
coefficients of the lasso significant genes used in the calculation of the lactate-related prognostic score. ****P<0.0001.
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LAR score group exhibited significantly better survival outcomes

compared to those in the high LAR score group (P<0.001)

(Figure 4A). The ROC curve analysis revealed that the AUC values

for 1, 3, and 5 years were 0.718, 0.724, and 0.709, respectively

(Figure 4B). With the increase in LAR score, the survival time of the

patients decreased, and the number of deaths increased significantly

(Figure 4C). The expression of 20 LAR genes was also significantly

different between the high- and low-LAR score group (Figure 4D). To

assess the robustness of the lactate-related scoring model in cancer

prognosis stratification, we compared the prognostic differences

between the LAR score groups using multiple external datasets,

including GSE10846, GSE32918, and GSE69053. We found that the

LAR model had significant prognostic stratification efficiency on all

three datasets. Specifically, both the high and low LAR score groups
Frontiers in Immunology 08
showed significant prognostic differences in the three datasets (all

P<0.001) (Figures 4E, I, N). The AUC values of three datasets at 1, 3,

and 5 years were all higher than 0.6 (Figures 4F, J, M). The survival

time of patients significantly decreased and the number of deaths

increased with the increase in risk score in all three datasets

(Figures 4G, K, O). The expression levels of the 20 genes included in

the model were found to differ significantly between the LAR risk high

and LAR risk low groups across all three datasets (Figures 4H, L, P).

Moreover, we employed DCA curve to assess the comparative

performance of our risk prediction model in relation to published

model (as shown in Figure S2). Upon comparing our model with

four other previously published models (13–16), we evaluated the

total survival rates over distinct time horizons—1 year, 2 years, 3

years, and 5 years. Notably, our risk model consistently exhibited
B

C D

E F

G H

I J

K L

MN

O P

A

FIGURE 4

Lactate-related prognostic scoring system showing a high predictive performance in DLBCL prognosis. (A, E, I, N) KM curves showing that high LAR
scoring group had a worse survival compared with low LAR group in GSE181063, GSE10846, GSE32918, and GSE69053 datasets. (B, F, J, M) ROC
curves of 1, 3, and 5 years in GSE181063, GSE10846, GSE32918, and GSE69053 datasets. (C, G, K, O) Distribution of LAR score and its correlation
with sample survival status were evaluated in GSE181063, GSE10846, GSE32918, and GSE69053 datasets. (D, H, L, P) Expression profile of 20 risk
genes between high and low-LAR score groups in GSE181063, GSE10846, GSE32918, and GSE69053 datasets.
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higher vertical axis values across a wide spectrum of decision

thresholds, suggesting its potential to yield improved clinical

decision-making outcomes in DLBCL.
Clinical significance of the LAR score

To examine the clinical significance of the LAR score, we

conducted a comparative analysis of the variations in LAR score,

categorized by distinct clinical characteristics, in GSE181063 and

GSE10846 datasets. Our findings indicate that patients with

advanced stage, high-risk International Prognostic Index Score

(categorizing DLBCL patients as low, intermediate, or high-risk), and

higher ECOG score (ranging from 0 to 5 indicating varying levels of

functional impairment) exhibit a higher LAR score (Figures 5A, B). In

both datasets, the LAR score has significant prognostic predictive

efficiency and is an independent prognostic factor in both univariate

and multivariate Cox analyses (Figures 5C, D; Tables S6-S7). Based on

the LAR score and multiple clinical characteristics, we constructed a

nomogram for the GSE10846 cohort (Figure 5E) and GSE181063

(Figure 5H) to guide clinical practice. In the two nomograms, the AUC

values of LAR score were higher than those of grade and stage,

indicating that LAR score had better prediction efficiency than the

traditional Ann Arbor staging (Figures 5F, I). Figures 5G–J present the

calibration curves of LAR score model at 1, 3, 5, and 10 years, and the
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result indicate that the nomogram is a worthwhile mode for predicting

DLBCL patient prognosis in both the short and long term.
Immune mechanisms and pathway
correlations in the lactate prognostic
scoring system of DLBCL

In order to understand the potential mechanisms affecting the

lactate prognostic scoring system in DLBCL, immune cell

infiltration in the GSE181063 and GSE10846 cohorts was

analyzed using CIBERSORT (Figure 6A), ssGSEA (Figure 6B) and

XCELL (Figure 6C) algorithms. The differences in most immune

cells between the two groups were significant, suggesting that the

lactate score was closely related to tumor immune infiltration. In the

three different algorithms, we can see that the cells associated with

antitumor immunity, including CD8+T cells, activated dendritic

cells, naive CD4+T cells, and activated NK cells, were significantly

enriched in the low LAR score group. Next, based on the 50 cancer

hallmark pathways, we calculated the enrichment scores of ssGSEA

for the cohorts GSE181063 and GSE10846 and performed the

spearman correlation test. Our results showed that the LAR score

had a significant positive correlation with the enrichment scores of

multiple pathways, such as MYC and MTORC (Figure 6D),

suggesting that multiple molecular mechanisms affect the lactate
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FIGURE 5

Correlation analysis between LARscore and clinical features. (A) Differences in the LAR score between various clinicopathological features in the
GSE181063 dataset. IPI: International Prognostic Index. (B) Differences in the LAR score between various clinicopathological features in the
GSE10846 dataset. (C) Univariate and multivariate Cox analysis of LAR score and clinical features in the GSE181063 cohort. (D) Univariate and
multivariate Cox analysis of LAR score and clinical features in the GSE10846 cohort. (E) The nomogram developed based on the GSE10846 dataset.
(F) ROC curve of the clinical factors in the GSE10846 dataset. (G) Calibration of the model from 1 to 10 years in the GSE10846 dataset. (H) The
nomogram developed based on the GSE181063 dataset. (I) ROC curve of the clinical factors in the GSE181063 dataset. (J) Calibration of the 1–10
years model in the GSE181063 dataset. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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scoring system. Finally, we calculated the sample immune score

using an estimate tool and evaluated the relationship between the

LAR score and the immune score using spearman correlation. We

found a significant negative correlation between the LAR score and

immunity score in both datasets (Figure 6E). The immune score for

the high LAR score was significantly lower than that for the low

LAR score, which further suggested that the immune level of

DLBCL decreased significantly with an increased LAR score.
Lactate risk score predicts R-CHOP
treatment efficacy and chemosensitivity

To investigate whether there is a difference in the TIDE values

between groups at high- and low-risk, four datasets (GSE181063,
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GSE10846, GSE32918, and GSE69053) were analyzed by the TIDE

algorithm. As shown in Figures S3A–D, no significant differences

were observed in TIDE scores between the high- and low-risk

groups across the four cohorts. However, a negative correlation was

found between the LAR score and TIDE in three cohorts (excluding

GSE32918) (Figure S3E), underscoring the intricate interplay

between molecular characteristics, immune responses, and

treatment outcomes in these contexts. Two cohorts that received

R-CHOP treatment (GSE181063 and GSE10846) were selected to

assess the therapeutic efficacy between the high- and low-LAR score

groups. The results demonstrated that patients with a low LAR

score exhibited a better therapeutic response in both cohorts

(Figures 7A, D). Notably, significant differences in LAR scores

were observed between the R-CHOP-effective and R-CHOP-

ineffective groups, with higher LAR scores observed in the latter
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FIGURE 6

Immune infiltration levels and cancer-related pathway analysis in DLBCL. (A) Immune cell infiltration analysis using CIBERSORT for the GSE181063
and GSE10846 cohorts. (B) Immune cell infiltration analysis using ssGSEA for the GSE181063 and GSE10846 cohorts. (C) Immune cell infiltration
analysis using Xcell for the GSE181063 and GSE10846 cohorts. (D) Enrichment analysis of the 50 cancer hallmark pathways using ssGSEA in the
GSE181063 and GSE10846 cohorts. (E) Correlation analysis between LAR score and immune score in the GSE181063 and GSE10846 datasets.
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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group (Figures 7B, E). The AUC of ROC curves for LAR score and

efficacy were all greater than 0.6 (Figures 7C, F). Furthermore, the

association between the LAR score and chemotherapeutic drug

response was explored by analyzing the correlation between the

LAR score and drug sensitivity in tumor cell lines using the GDSC

database. The results identified 22 significant correlations between

the LAR score and drug sensitivity. Among them, four drug pairs

showed a positive correlation with the LAR score (Entospletinib,

IAO 5620, Staurosporine, and Dasatinib), while 18 drug pairs

showed an inverse corre la t ion with the LAR score

(Doramapimod, GSK269962A, Linsitinib, Vorinostat, BMS-

345541, Daporinad, PCl-34051, Sorafenib, AGl-6780, ML323,

TAF1 5496, AZD5991, NVP-ADW742, Entinostat, Sabutoclax,

Sepantronium bromide, lGF1R, and 3801Mirin) (Figure 7G).

Moreover, the signaling pathways targeted by these drugs were

analyzed, revealing that drugs associated with high LAR scores

mainly targeted the SRC and RTK signaling pathways, while drugs

associated with low LAR scores mainly targeted IGF1R, apoptosis,

and lla signaling pathways (Figure 7H). These findings collectively

suggest that the LAR score is a potential biomarker for determining

optimal therapeutic strategies by correlating with drug sensitivity.
The overexpression of the lactate key gene
STAT4 inhibited the proliferation and
migration of DLBCL cells

Following the multivariate analysis, the three genes (IL-18,

STAT4, GPIP) exhibiting high P values were chosen for

additional experimental validation. The mRNA expression of

these genes was then assessed in peripheral blood samples

obtained from 41 DLBCL patients and 21 healthy individuals.

Comprehensive patient information is provided in Table S8. The

results revealed a significant down-regulation of IL18 and GPI,

accompanied by an up-regulation of STAT4, in peripheral blood

samples of DLBCL patients compared to normal samples

(Figure 8A). In DLBCL cell lines, the mRNA expression levels of

IL18, and GPI varied among different cell lines (Figure 8B).

However, STAT4 consistently exhibited downregulation at both

the mRNA and protein levels in DLBCL cell lines, particularly in

SU-DHL-2 and OCI-LY19 (Figures 8B, C). To investigate the role of

STAT4 in DLBCL, we constructed overexpression plasmids to up-

regulate STAT4 expression in SU-DHL-2 and OCI-LY19 cells. PCR

and western blot analysis confirmed the significant up-regulation of

STAT4 expression in the overexpression group (OE-STAT4)

compared to the negative control group (Control) and the blank

control group (OE-NC) in both cell lines (Figures 8D, E).

Furthermore, we examined the impact of STAT4 overexpression

on cell proliferation and migration by assessing the expression of

marker proteins PCNA, E-cadherin, and N-cadherin (Figure 8F).

Western blot analysis revealed that overexpression of STAT4

significantly reduced the expression of the cell proliferation

protein PCNA, increased the expression of the cell adhesion

protein E-cadherin, and decreased the expression of the cell

migration protein N-cadherin.
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The overexpression of the lactate key
gene STAT4 promoted the apoptosis
of DLBCL cells

Additionally, the impact of STAT4 on the cell cycle and

apoptosis was assessed through flow cytometry. The results

indicated that the upregulation of STAT4 led to a reduction in

the percentage of cells in the S phase in OCI-LY19 cells (Figure 9A)

rather than SU-DHL-2C cells. This discrepancy may be attributed

to variations in cell cycle regulation and gene expression patterns in

different cancer cell lines. Conversely, there was an increase in the

proportion of cells in the G0/G1 phase in both OCI-LY19 and SU-

DHL-2C cells (Figure 9B). Besides, compared to the other two

control groups, STAT4 overexpression promoted more cell

apoptosis in both OCI-LY19 cell and SU-DHL-2C cell

(Figures 9C, D). Finally, the effect of STAT4 expression on lactate

content in DLBCL cells was analyzed. The results showed that

STAT4 overexpression significantly decreased lactate levels in both

OCI-LY19 cell and SU-DHL-2C cells (Figures 9E, F), suggesting

that STAT4 may play a key role in the relationship between lactate

levels in the tumor microenvironment and the development

of DLBCL.
Correlation between STAT4 transcription
expression, DNA methylation, and
immunomodulators

To obtain additional knowledge regarding the association

among STAT4 transcription expression, DNA methylation, and

immune markers, we utilized the TISDB online database to assess it.

The results revealed that STAT4 transcript expression exhibited a

positive correlation with immunomodulators, including C10orf54,

CD27, CD28, CD40, CD40LG, CD48, CD70, CD80, CD86,

CXCL12, CXCR4, ENTPD1, ICOS, IL2RA, KLRC1, KLRK1, LTA,

TMIGD2, TNFRSF13B, TNFRSF17, TNFRSF18, TNFRSF25,

TNFRSF4, TNFRSF8, TNFRSF9, and TNFSF13B (Figure 10A).

Conversely, STAT4 DNA methylation displayed a negative

correlation with these immunomodulators. Similarly, STAT4

transcript expression demonstrated a positive correlation with

most MHC-related molecules, while STAT4 DNA methylation

showed a negative correlation with these molecules (Figure 10B).

As for the chemokines and receptors, the expression of STAT4

transcripts was positively correlated with CCL2, CCL3, CCL4,

CCL5, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19,

CCL21, CCL22, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13,

CXCL16, XCL1, XCL2, CCR1, CCR2, CCR4, CCR5, CCR6, CCR7,

CXCR3, CXCR4, CXCR5, and CXCR6, whereas STAT4 DNA

methylation exhibited a significantly negative correlation with

most chemokines and receptors (Figures 10C, D). There is a

strong association between immune-related molecules and STAT4

transcription expression in these findings, and STAT4 DNA

methylation consistently exhibit opposing trends, suggesting that

STAT4 methylation impacts its expression and influences the

immune level and degree of cell chemotaxis it regulates.
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Discussion

In this study, we embarked on a comprehensive analysis of

histology-specific lactate-related gene expression data from DLBCL

samples, and develop a novel prognostic gene signature. Compare

with other four published models (13–16), the clinical usefulness of

our novel prognostic model was better. Our findings revealed a

significant correlation between the prognostic lactate score and

various key factors including patient outcomes, immune infiltration
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levels, and activation of cancer-related pathways in DLBCL.

Notably, the prognostic lactate score demonstrated a strong

association with the response to R-CHOP treatment and

chemotherapeutic drug sensitivity in DLBCL patients, indicating

the potential of LAR score as a promising biomarker for guiding

treatment in DLBCL.

There are several important findings in this study. First, our

study showed that higher lactate scores in DLBCL samples,

reflecting increased immunosuppression, corresponded to worse
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FIGURE 7

Predicting R-CHOP treatment efficacy and chemotherapy sensitivity using the lactate prognostic score system. (A) Distribution of samples with
differential drug response between high and low-risk groups in the GSE181063 dataset. (B) Variation in LAR scores among samples with differential
drug response in the GSE181063 dataset. (C) Area under the receiver operating characteristic (AUROC) curve for drug response. (D) Distribution of
samples with differential drug response between high and low-risk groups in the GSE10846 dataset. (E) Variation in LAR scores among samples with
differential drug response in the GSE10846 dataset. (F) AUROC curve for drug response. (G) Significant correlation between drug IC50 and LAR
score. (H) Drug-associated pathways.
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prognosis. Our immune infiltration analysis unveiled insights: low

lactate score samples had elevated CD8+ T cells and NK cells. High

lactate score subtypes showed the opposite immune cell pattern,

hinting at lactate’s potential immunosuppressive role in the tumor

microenvironment. This concurs with studies linking lactate to

promoting myeloid-derived suppressor cells, curbing anti-tumor

immunity (17). Notably, lactate-driven microenvironment

acidification hampers T cell activity and cytokine production,

exacerbating immune response limitations (18). Our findings,

coupled with existing literature, collectively support a link

between high lactate accumulation and an immunosuppressive

cancer microenvironment.

Second, our findings indicate a positive correlation between the

lactate score and the MYC signaling pathway, which holds

significant implications for tumor immune evasion and immune

checkpoint regulation. This pathway can stimulate the expression of

immune checkpoint genes, such as CD47 and PDL1, which facilitate

tumor immune evasion (19). As the efficacy of ICIs are contingent

on the presence of CD8+T cells within tumors (20), the

combination of ICIs with therapies that augment the number of

CD8+T cells is optimal. Thus, by mitigating lactate-driven

immunosuppression while concurrently leveraging ICIs to bolster

the immune response, we propose that the combination of lactate

inhibitors with ICIs holds immense potential.

In addition, our investigation established the lactate score as a

reliable predictor of response to first-line treatment with R-CHOP

regimen in DLBCL patients. Previous studies have highlighted the

challenges of achieving a cure in 40% to 50% of DLBCL patients
Frontiers in Immunology 13
following R-CHOP treatment (21). However, our study revealed

that patients in the low lactate score group exhibited response rates

of up to 82% when treated with R-CHOP regimen. This finding

provides valuable insights for treatment selection in DLBCL

patients. Additionally, we identified four pairs of drugs, including

Entospletinib, IAO 5620, Staurosporine, and Dasatinib, whose drug

sensitivity positively correlated with the lactate-related gene

signature, indicating increased resistance in the high-risk group.

Notably, drugs targeting the SRC and RTK signaling pathways that

associated with the increase of lactate content (10, 22), exhibited

increased sensitivity in the high-risk group. Drugs targeting the

IGF1R and apoptosis pathways that associated with the reduction of

lactate content and antitumor effect (23, 24) were negatively

correlated with the lactate score, suggesting a potential link

between lactate-related molecules and chemoresistance

mechanisms in DLBCL. These findings shed light on the role of

lactate metabolism in influencing the effectiveness of chemotherapy

and provide insights into novel strategies for overcoming

chemoresistance in DLBCL.

Finally, our findings highlight the potential of targeting lactate-

related genes, particularly STAT4, as a promising therapeutic

strategy in DLBCL. Previous study demonstrated that STAT4

plays an important role in antitumor immunity (25). Through

STAT4-mediated signal transduction, IL-12 could produce an

autocrine and paracrine antigen that relies on interferon-gamma

(IFN-g) to enhance antitumor immunity (26). This molecular

mechanism can promote the immune system of the body to fight

tumors, while its anticancer effect in DLBCL cell has not been
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FIGURE 8

Overexpression of STAT4 suppresses DLBCL cell proliferation, migration, and promotes apoptosis. (A) mRNA expression levels of IL18, STAT4, and GPI in
peripheral blood of DLBCL patients and healthy controls determined by PCR. (B) mRNA expression levels of IL18, STAT4, and GPI in normal B cell lines
and DLBCL cell lines detected by PCR. (C) Protein expression levels of IL18, STAT4, and GPI in normal B cell lines and DLBCL cell lines detected by
Western blot. (D) Increased mRNA expression of STAT4 in OCI-LY19 and SU-DHL-2 cells after STAT4 overexpression (OE) compared to control cell
lines. (E) Elevated protein expression of STAT4 in OCI-LY19 and SU-DHL-2 cells after STAT4 overexpression. (F) STAT4 overexpression reduces PCNA
(proliferation protein) and N-cadherin (cell migration protein) expression, while increasing E-cadherin (cell adhesion protein) expression in DLBCL cells.
*Significant differences were indicated as follows: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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FIGURE 9

STAT4 overexpression induces cell cycle arrest and enhances cell apoptosis. (A) Flow cytometry analysis showing a significant increase in the
proportion of cells in the G1 phase and decrease in the proportion of cells in the S and G2/M phase following STAT4 overexpression in OCI-LY19
cells. (B) Flow cytometry analysis showing a significant increase in the proportion of cells in the G1 phase and decrease in the proportion of cells in
the G2/M phase following STAT4 overexpression in SU-DHL-2C cells. (C) STAT4 overexpression significantly promotes apoptosis in OCI-LY19 cells.
(D) STAT4 overexpression significantly promotes apoptosis in SU-DHL-2C cells. (E) Lactate content in OCI-LY19 cells significantly decreases after
STAT4 overexpression. (F) Lactate content in SU-DHL-2C cells significantly decreases after STAT4 overexpression. *Significant differences were
indicated as follows: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, not significant.
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FIGURE 10

Relations between immunomodulators and expression or methylation of STAT4. (A) Spearman correlations between immunomodulators and
expression (above), methylation(below) of STAT4. (B) Spearman correlations between MHC molecule and expression (above), methylation(below) of
STAT4. (C) Spearman correlations between Chemokine and expression (above), methylation(below) of STAT4. (D) Spearman correlations between
Receptor and expression (above), methylation(below) of STAT4.
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reported. In this study, we first observed elevated mRNA and

protein expression of STAT4 in DLBCL cell lines. Subsequently,

we showed that STAT4 overexpression could significantly inhibit

proliferation and migration, promote apoptosis, and reduce the

lactate content of DLBCL cells, suggesting that targeting STAT4

may effectively reduce lactate in the tumor microenvironment and

exert an antitumor therapeutic effect. It should be noted that the

expression of STAT4 mRNA was reduced in peripheral blood

samples of DLBCL patients, this discrepancy may be attributed to

the regulatory influence exerted by peripheral blood’s diverse cell

types on STAT4 expression. Furthermore, the correlation between

STAT4 transcript expression and DNA methylation with a

multitude of immunomodulators, as well as numerous

chemokines and receptors listed in TISIDB, offers valuable insight

into the intricate immune landscape of DLBCL. Although our study

has provided valuable insights into the association between

transcriptional expression and methylation patterns, further

research is required to elucidate the underlying mechanisms

driving this correlation.

We recognize some limitations of our research. Although we have

largely corrected for batch effects, the heterogeneity of tumor samples

biased the expression of lactic-related genes to some extent. We are in

the process of collecting samples from a multicenter clinical cohort for

further analysis and validation. Additionally, although we have

performed some cell validation experiments, further in vitro and in

vivo experiments are needed to determine the molecular mechanism of

lactate molecules in antitumor immunity.
Conclusion

Lactate-related gene signature enables evaluation of DLBCL

clinical significance, immune infiltration, and therapeutic benefit.

The involvement of key lactate gene STAT4 in DLBCL cells leads to

the inhibition of proliferation and migration, induction of cell cycle

arrest, and promotion of cell apoptosis. Modulating STAT4 could

be a promising strategy for DLBCL in clinical practice.
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SUPPLEMENTARY FIGURE 1

Prognostic differences between wild-type and mutant types of lactate gene.

SUPPLEMENTARY FIGURE 2

The DCA curve for the overall survival rate at 1 year, 2 years, 3 years, and 5

years for the risk model 1 and other risk model. Model 1: LAR score model;
Model 2: metabolism-related risk model; Model 3: immune-related risk

model; Model 4: prognostic-related risk model; Model 5: Cachexia-
inducing factors (CIFs)-related risk model.

SUPPLEMENTARY FIGURE 3

Correlation between LARrisk and TIDE. (A) Analysis of differences in TIDE

values between high and low-risk groups in the GSE181063 dataset. (B)
Difference analysis of TIDE values between high and low-risk groups in the

GSE32918 dataset. (C) Difference analysis of TIDE values between high and
low-risk groups in the GSE10846 dataset. (D) Analysis of differences in TIDE

values between high and low-risk groups in the GSE69053 dataset. (E)
Correlation test between risk score and TIDE value in the high and low-risk

groups across the four datasets.
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