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Background: RNA methylation is closely involved in immune regulation, but its

role in sepsis remains unknown. Here, we aim to investigate the role of RNA

methylation-associated genes (RMGs) in classifying and diagnosing of sepsis.

Methods: Five types of RMGs (m1A, m5C, m6Am, m7G and Y) were used to

identify sepsis subgroups based on gene expression profile data obtained from

the GEO database (GSE57065, GSE65682, and GSE95233). Unsupervised

clustering analysis was used to identify distinct RNA modification subtypes. The

CIBERSORT, WGCNA, GO and KEGG analysis were performed to explore

immune infiltration pattern and biological function of each cluster. RF, SVM,

XGB, and GLM algorithm were applied to identify the diagnostic RMGs in sepsis.

Finally, the expression levels of the five key RMGs were verified by collecting

PBMCs from septic patients using qRT-PCR, and their diagnostic efficacy for

sepsis was verified in combination with clinical data using ROC analysis.

Results: Sepsis was divided into three subtypes (cluster 1 to 3). Cluster 1 highly

expressed NSUN7 and TRMT6, with the characteristic of neutrophil activation

and upregulation of MAPK signaling pathways. Cluster 2 highly expressed

NSUN3, and was featured by the regulation of mRNA stability and amino acid

metabolism. NSUN5 and NSUN6 were upregulated in cluster 3 which was

involved in ribonucleoprotein complex biogenesis and carbohydrate

metabolism pathways. In addition, we identified that five RMGs (NSUN7, NOP2,

PUS1, PUS3 and FTO) could function as biomarkers for clinic diagnose of sepsis.

For validation, we determined that the relative expressions of NSUN7, NOP2,

PUS1 and PUS3 were upregulated, while FTO was downregulated in septic

patients. The area under the ROC curve (AUC) of NSUN7, NOP2, PUS1, PUS3

and FTO was 0.828, 0.707, 0.846, 0.834 and 0.976, respectively.
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Conclusions:Our study uncovered that dysregulation of RNA methylation genes

(m1A, m5C, m6Am, m7G and Y) was closely involved in the pathogenesis of

sepsis, providing new insights into the classification of sepsis endotypes. We also

revealed that five hub RMGs could function as novel diagnostic biomarkers and

potential targets for treatment.
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1 Introduction

Sepsis is defined as life-threatening organ dysfunction caused by a

dysregulated host response to infection (1). Although huge advance

has been made in the treatment of sepsis, the mortality rate remains

high, amounting to about 30% to 50% (2). According to the Surviving

Sepsis Campaign International Guidelines, antibiotic treatment

should be initiated within one hour after sepsis onset, delay in

antibiotic therapy is closely associated with mortality (3). However,

early recognition of sepsis remains a big clinical challenge due to its

heterogeneity and complexity in terms of manifestations and

populations (4, 5). Therefore, developing new biomarkers and

classifying sepsis are critical for its early diagnosis and treatment.

The identification and classification of sepsis was previously

based on clinical features or biomarkers. An increasing number of

biomarkers for sepsis have been revealed in different independent

studies including inflammatory cytokines, chemokines,

complement system, metabolic genes, damage associated

molecular patterns (DAMPs), non-coding RNAs, cell membrane

receptors and proteins which facilitate sepsis diagnosis, and allow

an early intervention (6, 7). However, due to the individual

differences and pathophysiological complexity of sepsis, using a

single biomarker in clinical settings does not achieve efficient

diagnosis. Therefore, exploring a panel of specific and sensitive

biomarkers or models combining biomarkers and clinical data to

augment diagnosis and stratify sepsis patients is an urgent need.

RNA methylation is a reversible chemical modification by

adding or removing methyl group on adenosine (A) or cytosine

(C). It is the most abundant RNA modification in eukaryotes and

prokaryotes (8, 9). More than 100 types of RNA methylation

modifications have been identified in messenger RNA (mRNA)

and noncoding RNA (ncRNA), including N6-methyladenosine

(m6A), N1-methyladenosine (m1A), 5-methylcytidine (m5C),

N7-methylguanosine (m7G), 2’-O-dimethyladenosine (m6Am),

Pseudouridine (Y) and so on (9–11). This dynamic process is

regulated by various enzymes and binding proteins including

methyltransferases, demethylases and modified RNA binding

proteins which are known as “writers”, “erasers” and “readers”,

respectively. RNA methylation was revealed to be closely associated

with clustering of various diseases (12) and acts as the potential

biomarker for diagnosis or treatment in cancers, autoimmune

diseases, cardiovascular diseases, and viral infections (13–16).
02
Recently, sepsis was classified into three different subtypes with

different prognostic outcomes according to the expression of m6A

RNA methylation regulatory genes (17). Methyltransferase-like 3

(METTL3), one of the key m6A RNA methylation writers, could

work as a potential therapeutic target for LPS-induced

endotoxemia (18).

Peripheral blood mononuclear cells (PBMCs), including

lymphocytes, macrophages, dendritic cell, monocytes and so on

(19), play a crucial role in sepsis. Pathogens can rapidly induce

inflammatory response by activating PBMCs to produce substantial

pro-inflammatory mediators, while excessive inflammatory

response in turn disrupts the function of PBMCs (20).

Meanwhile, the upregulation of anti-inflammatory mediators and

immunosuppressive factors can induce apoptosis and pyroptosis of

PBMCs (21). Epigenetic modifications, particularly RNA

methylations are important for regulating the function of immune

cells in sepsis. ALKBH5, a m6A erase, was significantly

downregulated in sepsis, and ALKBH5 deficiency would suppress

the expression of the chemokine receptor CXCR2, which inhibited

neutrophil migration and inflammation during bacterial infection

(22). Overexpression of YTHDF1 in macrophages could upregulate

WW domain containing E3 Ubiquitin protein ligase 1 (WWP1) and

thereby alleviate sepsis through promoting NLRP3 ubiquitination

and inhibiting caspase-1-dependent pyroptosis (23).However, the

systemic investigation of the role of RNA methylation including

m1A/m6Am/m5C/m7G/Y in sepsis is lacking. The important role

of RNA methylation in pathogenesis of various diseases indicates

the possibility to evaluate whether RNA methylation (m1A, m5C,

m6Am, m7G andY) associated genes could work as biomarkers for

sepsis classification and early diagnosis.

In this study, by integrated analysis of the expression of RNA

methylation-associated genes (RMGs) from public datasets, we

divided sepsis into three subclusters, and each cluster displayed

distinct immune cells infiltration and physiological functions. In

addition, through machine learning, we identified five hub RMGs

that were closely related to the diagnosis of sepsis. Finally, we

validated the mRNA levels of five hub RMGs in PBMCs of septic

patients and assessed their diagnostic value for sepsis in clinical

settings. These findings elucidate the important role of RNA

methylation in the diagnosis of sepsis and provide a theoretical

and clinical foundation for further investigation into the role of

RMGs in sepsis.
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2 Methods

2.1 Data sources and study selection

The research strategy is presented in Figure 1. We conducted a

search of the GEO database (http://www.ncbi.nlm.nih.gov/geo/)

(24) for expression microarrays related to sepsis. We included

datasets from clinical studies of sepsis in adults using peripheral

blood samples. Retrieved gene expression profile data for sepsis

patients (GSE57065, GSE65682 and GSE95233) using the R package

GEOquery, merged the gene expression groups, and split them into

sepsis and healthy control groups. Details of the datasets are shown

in Table S1.
2.2 Collecting RMGs via systematic review

We first compiled a list of 40 RNA methylation regulators in 5

categories (including m5C, m6Am, m1A, m7G and Y) from

published research (25–27), which included writers, readers, and

erasers, showed in Table S2. We then obtained a total of 34 RMGs
Frontiers in Immunology 03
by screening gene expression with detectable expression in the

GEO datasets.
2.3 Acquisition of data and differentially
expressed genes

All datasets were downloaded and outputs from mRNA array

were normal-exponential background corrected and quantile

normalized between arrays using the limma R package (28).

Expression was normalized using a weighted linear regression,

and precision weights were multiplied with corresponding log2

values to yield final gene expression values. Genes with an absolute

log fold change (log2FC) > 1 and adjusted p-value < 0.05 were

considered up-regulated, and those with log2FC < - 1 and adjusted

p-value < 0.05 were considered down-regulated. We also performed

Spearman correlation analysis to investigate the relationship

between each gene. Functional interactions of the RMGs were

explored using the Search Tool for Retrieval of Interacting Genes

(STRING 11.0, http://string-db.org/cgi/input.pl), and a Protein-

protein interaction (PPI) network was constructed. We visualized
FIGURE 1

Workflow of the research. GEO Gene Expression Omnibus, m5C 5-methylcytosine, m6Am 2’-O-dimethyladenosine, m1A N1-methyladenosine, m7G
N7-methylguanosine, Y Pseudouridine, PPI protein-protein interaction, DEG Differentially expressed gene, PCA Principal Component Analysis, GSVA
Gene Set Variation Analysis, WGCNA Weighted gene co-expression network analysis, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and
Genomes, ROC receiver operating characteristic curve, qRT-PCR Quantitative reverse-transcription polymerase chain reaction, PBMCs peripheral
blood mononuclear cells.
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the chromosomal localization of RMGs using the R circos

package (29).
2.4 Exploration of RMGs induced
molecular subtypes of sepsis

The consensus clustering algorithm works by performing

clustering on the same dataset multiple times, using various

clustering methods or different parameter settings. The next step

is to create a consensus matrix or a consensus function that

measures the degree of agreement among the individual

clustering solutions. This consensus matrix represents the overall

consensus for each sample across different clustering methods, and

is used to identify robust and stable clusters. We used consensus k

means clustering to identify highly heterogeneous RNA

methylation subtypes in sepsis based on RNA methylation

regulator expression profiles. Clustering was performed using 100

iterations, with each iteration containing 80% of samples. We

determined the optimal number of clusters using CDF curves of

the consensus score, clear separation of the consensus matrix

heatmaps, characteristics of the consensus cumulative distribution

function plots, and adequate pairwise-consensus values between

cluster members. To assess the expression distribution of RNA

methylation regulators in different subtypes, we utilized moderated

t-tests.
2.5 Analysis of immune infiltrating cells
among subtypes in sepsis

To better understand the situation of infiltrating immune cells in

C1-C3 subtypes, we used the CIBERSORT algorithm. CIBERSORT is a

bioinformatics tool used to deconvolute relative cell type proportions

and gene expression profiles from bulk RNA sequencing datasets. The

Gene Set Variation Analysis (GSVA) R software package was

downloaded from http://www.bioconductor.org, and the pathway

with differential enrichment in the three groups was obtained. GSVA

is used to evaluate the activity or enrichment of biological pathways,

gene sets, or functional signatures in individual samples from high-

throughput gene expression data, such as RNA-Seq. The analysis

quantifies the degree to which a specific gene set is upregulated or

downregulated in each individual sample, generating a continuous

enrichment score for each sample-gene set pair.
2.6 Assessing the heterogeneity of
biological function among subtypes

To find gene-sets significantly correlated to RNA methylation

subtypes, we used weighted correlation network analysis (WGCNA)

with the WGCNA R package (30). WGCNA is a powerful

bioinformatics method used to analyze gene expression data and

identify co-expression patterns among genes. Genes from modules
Frontiers in Immunology 04
highly associated with RNA methylation subtypes (the maximum

correlation coefficient and P < 0.05) were selected for further Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis, to investigate the biological functions and

signaling pathways involved in sepsis.
2.7 Construction and assessment of RF,
GLM, SVM and XGB model

We created Random forest model (RF), support vector machine

model (SVM), eXtreme Gradient Boosting (XGB) and generalized

linear model (GLM) using the integrated dataset based on RMGs.

The RF, GLM, SVM and XGB models all belong to machine

learning model which is used to assess the importance of

variables. Here, we applied them in screening of diagnostic genes

for sepsis. The different classes of sepsis were utilized as the

response variable, and the RMGs were used as explanatory

variables. We then used the explain feature of the “DALEX”

package in R to analyze the aforementioned four models and

residual distribution, and the receiver operating characteristics

(ROC) was plotted to select the best model using the integrated

dataset. Finally, to evaluate the diagnostic efficacy of the five most

important explanatory variables in the best model, we calculated

ROC curve using the ‘survivalROC’ package in the three databases

respectively. The AUC was used to evaluate the diagnostic genes:

0.5-0.7 (moderate), 0.7-0.8 (good), and >0.9 (excellent).
2.8 Construction and validation of a
nomogram model for sepsis diagnosis

Nomogram model is a visual aid that combines multiple

variables and assigns them a weighted score to estimate the

likelihood of a specific outcome. Using the “rms” package, we

established a nomogram model to predict the occurrence of

sepsis. “Points” indicate the score of the corresponding factor

below, and “Total Points” indicate the summation of all the

scores of factors above. We then used calibration curves to assess

the predictive power of the nomogram model. Finally, we evaluated

the clinical value of the model using decision curve analysis.
2.9 Construction of hub RMGs co-
expression and miRNA network

The co-expressed gene network of hub RMGs was constructed

using COEXPEDIA (https://www.coexpedia.org). The potential

miRNAs targeting key RMGs were downloaded from miRanda

(https://www.cs.kent.ac.uk/people/staff/dat/miranda/) and miRDB

(http://mirdb.org/) databases, and overlapping miRNAs were

selected to depict network. The final gene-miRNA and the co-

expression network associated with sepsis were visualized using

Cytoscape software.
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2.10 Septic patients and controls

This study included 39 adult patients from our hospital,

consisting of 26 septic patients diagnosed with sepsis according to

the Third International Consensus Definitions for Sepsis and Septic

Shock (Sepsis-3) (1), and 13 healthy controls. Healthy volunteers

were those who came to East Hospital for routine physical

examination. Peripheral blood samples and corresponding clinical

data were collected upon admission. The characteristics of the

patients are shown in Table 1. PBMCs were isolated within 4

hours after collection.

This study was approved by the Research Ethics Board of East

Hospital, Tongji University (Shanghai, China). Written informed

consent was obtained from all recruited patients or their authorized

family members.
2.11 Isolation of PBMCs

Blood samples in EDTA-containing tubes were centrifuged at

3000 rpm for 5 min at room temperature. Serum was removed, and

PBMCs were separated from the remaining blood using Ficoll-

Paque density gradient centrifugation, following the instruction

manual (Solarbio, Cat. NO. P8610). The PBMCs were then stored at

-80°C until further testing.
2.12 Real-time quantitative PCR

RNA was extracted from cells using TRIzol (Gene Copoeia,

MD, USA), and 1 μg total RNA from each sample was reverse

transcribed to cDNA using PrimeScript® RT Master Mix (Takara,

Cat. NO. RR036A). SYBR® Green (Applied Biosystems™, Cat. NO.

4309155) was used for qRT-PCR analysis. The DCt method was

used to analyze mRNA levels relative to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). The primer sequences were

listed in Table S3.
2.13 Statistical analysis

GraphPad Prism 9.4 (GraphPad Inc, San Diego, USA) was

used for statistical analyses. Normally distributed data were

compared using Student’s t-test or one-way analysis of

variance (one-way ANOVA), and the results were shown as

the mean ± SD. Nonnormally distributed data were analyzed

using the non-parametric Mann-Whitney U test, and the results

were expressed as the median and interquartile range (IQR).

Categorical variables were compared with the chi-square or

Fisher’s exact test, and the results were shown as numbers and

percentages. All statistical tests were two-sided. P < 0.05 was

regarded as statistically significant.
Frontiers in Immunology 05
3 Results

3.1 Overall expression patterns of RNA
methylation genes in PBMCs from
septic patients

The overall strategy of this study was presented in Figure 1. To

analyze the expression of RMGs in PBMCs from patients with

sepsis, we first performed differential expressed genes (DEGs)

analysis of the integrated gene expression matrix using the limma

package. DEGs in PBMCs from healthy donors and septic patients

were shown in heatmap (Figure 2A). Most of the genes that mediate

one certain type of RNA methylation modifications displayed a

similar expression pattern. For instance, genes mediating RNA Y
modification (TRUB1, TRUB2, PUS1, RPUSD3, RPUSD4, PUS7,

RPUSD2) were mainly suppressed in sepsis (Figure 2A, Table S4).

We then investigated the correlation among RMGs by using

Spearman’s correlation analysis and found that there was a

significantly close correlation among these differentially expressed

RMGs. Of note, YTHDF3 expression was positively correlated with

the expression of TET2, whereas PCIF1 exhibited a negative

correlation with most other regulators (Figure 2B). The correlated

expression among RMGs suggested their functional synergy or

antagonism in the pathogenesis of sepsis. Moreover, we

performed a PPI network analysis of RMGs. Proteins with an

interaction score ≥0.4 were selected and visualized (Figure 2C).

The network comprised 40 nodes and 257 edges, representing genes

and interactions between genes, respectively (Table S5), also

indicating the functional association in sepsis. The chromosomal

locations of RMGs were depicted in Figure 2D.
3.2 Identification of three subtypes of
sepsis based on RMGs
expression characteristics

Given that the differential expression levels of RNA

modification genes and clustering stability, we employed

consensus clustering, an unsupervised clustering method to

obtain a robust ranking for subsequent analysis, and classified

sepsis into three subtypes (cluster 1 to 3). The cumulative

distribution function (CDF) plot displayed the consensus

distributions for each cluster (Figure 3A). The delta area plot

showed the relative change in the area under the CDF curve

(Figure 3B). The CDF distribution was smoother when k = 3 or

4, while the increase in area under the CDF curve was relatively less

at k = 4 than that at k = 3, suggesting that k = 3 was the optimal

number of clusters. As shown in the Consensus matrix heatmap

(Figure 3C, S1), 3 clusters showed clear boundaries, indicating good

cluster stability over repeated iterations. The principal component

analysis (PCA) results also indicated the justification of the three

clusters (Figure 3D).
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In addition, the expression of RMGs in each subtype displayed

distinct patterns (P < 0.05) (Figures 3E, F). In cluster 1, FTO was

relatively downregulated, and of all the highly expressed genes,

NSUN7 and TRMT6 were most upregulated. These genes were

involved in the regulation of m6Am, m5C and m1A RNA

methy l a t i on mod ifica t ion . NSUN3 , encod ing a key

methyltransferase for RNA m5C modification showed a

significantly increased expression in cluster 2. In cluster 3, among
Frontiers in Immunology 06
the relatively highly expressed regulators, NSUN5 and NSUN6

significantly increased, which were also correlated with m5C

modification. Those results indicated that m5C RNA methylation

may play a role in sepsis classification.

Besides, we analyzed the basic clinical characteristics of sepsis

patients in GSE65682 in 3 clusters (Table S6) and found significant

differences in Molecular Diagnosis and Risk Stratification of Sepsis

(MARS) endotypes among the three clusters (P < 0.001). In cluster
TABLE 1 Baseline characteristic of septic patients and healthy volunteers.

Baseline
Characteristics

Septic Shock
(n=11)

Sepsis
(n=15)

Healthy Volunteers
(n=13)

P value in the first two
groups

P value in three
groups

Mean ± SD/Median (IQR)

Age (years) 79.45 ± 12.09 70.47 ± 13.75 66.46 ± 3.431 0.0965 0.0501

Sex[male (%)] 7 (63.64) 13 (86.67) 6 (46.15) 0.0740 0.0772

Comorbidities[n] (%)

Chronic Pulmonary
Disease

2 (5.41) 1 (3.57) – NS. –

Chronic Kidney Disease 6 (16.22) 4 (14.29) – NS. –

Cardiovascular Disease 8 (21.62) 4 (14.29) – NS. –

Hepatopathy 6 (16.22) 5 (17.86) – NS. –

Diabetes 2 (5.41) 7 (25.00) – NS. –

Hypertension 8 (21.62) 6 (21.43) – NS. –

Hyperlipidemia 1 (2.70) 0 (0.00) – NS. –

Coagulation
Dysfunction

3 (8.11) 1 (3.57) – NS. –

Malignant Tomor 1 (2.70) 0 (0.00) – NS. –

Focus of infection[n] (%)

Gastrointestinal 6 (54.55) 8 (50.00) – NS. –

Pulmonary 4 (36.36) 4 (25.00) – NS. –

Urinary tract 1 (9.09) 3 (18.75) – NS. –

Skin or soft tissue 0 (0.00) 1 (6.25) – NS. –

APACHE II score 23.44 ± 7.70 10.45 ± 3.80 – 0.0001 –

SOFA score on day 1 10.45 ± 3.80 5.66 ± 3.22 – 0.0020 –

Length of ICU stay (days) 8.46 (0.00-19.00) 6.87 (0.00-
31.00)

– 0.6113 –

Length of Hospital stay
(days)

13.00 (1.00-30.00) 19.60 (6.00-
42.00)

– 0.1362 –

Mechanical ventilation
percentage

10 (90.90) 3 (20.00) – 0.0010 –

Mechanical ventilation
time (days)

6.64 (0.00-19.00) 1.33 (0.00-
13.00)

– 0.0177 –

7-days mortality 6 (54.55) 0 (0.00) – 0.0020 –

14-days mortality 7 (63.64%) 1 (6.67%) – 0.0038 –

28-days mortality 8 (72.73%) 1 (6.67%) – 0.0008 –
ICU, intensive care unit;. IQR, inter quartile range; APACHE II, score acute physiology and chronic health evaluation II score; SOFA, sequential organ failure assessment P values were calculated
by Mann-Whitney U test, Students’ t-test or one-way analysis of variance (one-way ANOVA), and c² test or Fisher’s exact test, as appropriate. P values below 0.05 indicates statistical significance.
NS, no significance.
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1, MARS 2 endotypes accounted for the highest proportion

(42.44%). The proportion of MARS 1 (47.12%) was significantly

higher in cluster 2 than that in the other two groups (P < 0.05).

Cluster 3 was dominated by MARS 3 (35.56%). Previous studies

have revealed that MARS 1 was consistently correlated to a poor

outcome (31). But we did not observe significant differences in

mortality among the three clusters (P = 0.074) (Table S6).
3.3 Three clusters differed in immune cell
landscape and molecular pathway

By using CIBERSORT and GSVA analyses, we further identified

a significant heterogeneity in terms of immune cell infiltration and

molecular pathways among the three subtypes. The abundance and

proportions of infiltrating immune cells differed among the three

types, of which neutrophils and monocytes accounted for higher

proportions as compared to the other immune cells (Figure 4A). In

cluster 1, the frequencies of neutrophils and gamma delta T (gdT)
cells were relatively increased compared to other clusters, while

CD8 T cells, regulatory T cells (Tregs), activated NK cells were

down-regulated (P < 0.05). The distribution of immune cells in
Frontiers in Immunology 07
cluster 2 and 3 showed relatively opposed patterns as compared to

that in cluster 1 (P < 0.05). In cluster 3, CD8 T cells and monocytes

were relatively upregulated, while gdT cells and neutrophils were

down-regulated (P < 0.05). Immune cells that were up- or down-

regulated in cluster 3 showed the same trend in cluster 2 with a less

degree than those in cluster 3. Collectively, these results suggested

that the three clusters have different immune infiltration in

septic patients.

We then evaluated the different signaling pathways in these

clusters. Figures 4B–D showed relatively up-regulated (11) and

down-regulated (10) signaling pathways in the three sepsis

subgroups. Compared to other subtypes, cluster 1 showed

enhanced inflammatory signaling pathways activation, such as the

Leukocyte transendothelial migration and MAPK signaling

pathway. The Down-regulated pathways in cluster 1 were

involved in amino acid metabolism (Figure 4B). In cluster 2, we

found that up-regulated signaling pathways were associated with

amino acids, glycosphingolipids and unsaturated fatty acids

metabolism. Down-regulated signaling pathways were mainly

related to maintaining the stability of the genome and amino acid

metabolism (Figure 4C). In cluster 3, up-regulated signaling

pathways were mainly involved in carbohydrate metabolism
B

C D

A

FIGURE 2

Landscape of expression and genetic variation of RNA methylation regulators in sepsis. (A) The heatmap shows the expression of RMGs obtained
from integrated gene expression matrix. In the heatmap, rows represent transcripts, and columns represent samples (Medium Turquoise represents
normal profiles, LightPink represents disease profiles). Red represents significantly upregulated genes and blue represents significantly
downregulated genes in the samples. **P < 0.01, and ***P < 0.001 vs. The healthy group. (B) Spearman correlation analysis of the studied RMGs, the
two scatter plots displayed the most positively or negatively correlated RMGs. (C) The protein-protein interaction between RMGs. (D) The
chromosomal locations of RMGs across 23 chromosomes.
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pathways. Down-regulated signaling pathways were related to

inflammatory diseases (Figure 4D). These functional analyses

indicated that septic patients with different RMG expression

patterns have distinct molecular pathways.
3.4 Identification of key modules in three
sepsis clusters by weighted gene co-
expression network analysis

Next, we performedWGCNA to analyze the gene co-expression

networks and identify biologically meaningful modules that

corresponded to designated phenotype-related genes. A scale free

co-expression network was established with the soft threshold

power as 12 (scale-free R2 = 0.90) (Figures 5A, B) and cut height

as 0.25 (Figure 5C). The cluster dendrogram was displayed in

Figure 5D. WGCNA identified 18 modules in the sepsis cohort
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(Figure 5E). Cluster 1 was positively correlated with MEblack

module (containing 390 genes) (Table S7), with a correlation

coefficient of 0.64 and P value of 6.00E-112 (Figure S2A). Cluster

2 was positively associated with MEblue module (containing 1510

genes) (Table S7), with a correlation coefficient of 0.58 and P value

of 1.00E-84 (Figure S2B). Cluster 3 was significantly positively

correlated to MEyellow (containing 547 genes) (Table S7), with a

correlation coefficient of 0.62 and P value of 4.00E-100 (Figure

S2C). To identify genes highly correlated with the key module in

each cluster, we set module membership (MM) > 0.8 and gene

significance (GS) > 0.3, and results were shown in Table S8.

To further explore the biological function of each module, we

conducted GO and KEGG enrichment analyses (Figures 6A–F). GO

enrichment analysis demonstrated that the biological functions of

MEblack module (correlated with cluster 1) were mainly enriched

in Neutrophil activation (Figure 6A); the MEblue module

(correlated with cluster 2) was mainly related to cellular catabolic
B C

D E

F

A

FIGURE 3

Identification of optimal sepsis subtypes based on the expression of RMGs. (A) The CDF curves based on different subtype numbers (k=2, 3, 4, 5, 6,
7, 8, 9) are represented, and each curve is associated with a unique color. CDF, cumulative distribution function curves. (B) The CDF Delta area curve
of all samples. (C) Consensus heatmaps show a relativeiy stable partitioning of the samples at k = 3. (D) PCA is performed on different groups, where
blue represents cluster 1, red represents cluster 2, and yellow represents cluster 3. PCA, principal component analysis. (E) The expression of RMGs
among subtypes. *P < 0.05, **P < 0.01, ***P < 0.001. (F) The heatmap of the expression of RMGs between the C1, C2 and C3 groups.
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processes and mRNA stability (Figure 6B); and the MEyellow

module (correlated with cluster 3) was mainly associated with

Ribonucleoprotein complex biogenesis and carbohydrate

metabolism pathways (Figure 6C). KEGG enrichment analysis

showed that MEblack module (correlated with cluster 1) was

mainly enriched in MAPK signaling pathway and cytokine-

cytokine receptor interaction signaling pathway (Figure 6D); the

MEblue module (correlated with cluster 2) was mainly related to

Cushing syndrome and autophagy (Figure 6E); and the MEyellow

module (correlated with cluster 3) was mainly associated with

ribosome and Coronavirus disease-COVID-19 (Figure 6F).
3.5 Five hub RMGs showed diagnostic
value for sepsis based on machine learning

To identify hub RMGs with diagnostic value for sepsis, firstly,

we refined the selection of RMGs by four algorithms, namely the

RF, SVM, XGB and GLM, and used differentially expressed RMGs

in Figure 2A to construct the four diagnostic models. We further

evaluated the efficiency of the four models by usage of “DALEX” R

package. As shown in Figures 7A–C, SVM model was the most

suitable model for its least sample residual. In addition, the

performance of the four models was evaluated by using ROC

curves, SVM model displayed the highest AUC value

(AUC=0.998) (Figure 7D). To further assess the accuracy and

reliability of the SVM model, we conducted ROC analysis of three
Frontiers in Immunology 09
GEO databases. The AUC amount to 0.808 in GSE57065

(Figure 8A), 0.976 in GSE65682 (Figure 8B) and 0.983 in

GSE95233 (Figure 8C). Therefore, the above results indicated that

the SVM diagnostic model exhibited excellent predictive efficiency.

Subsequently, according to the feature importance of models in

Figure 6B, the top 5 genes (NSUN7, FTO, NOP2, PUS1, and PUS3)

selected by SVM were used for the analysis of diagnostic

performance. AUC values of the ROC of these signature genes

were 0.912 for PUS1, 0.962 for NSUN7, 0.903 for NOP2, 0.688 for

PUS3, and 0.966 for FTO in GSE57065 (Figure 8D). In GSE65682,

the AUC values of ROC were 0.855 for PUS1, 0.983 for NSUN7,

0.950 for NOP2, 0.730 for PUS3, and 0.997 for FTO, respectively

(Figure 8E). Finally, the AUC values of ROC were 0.861 for PUS1,

0.975 for NSUN7, 0.974 for NOP2, 0.484 for PUS3, and 0.998 for

FTO in GSE95233 (Figure 8F). Table S9 reports the specificity,

sensitivity and optimal cutoff point for discriminating between

sepsis and healthy controls in GSE57065, GSE65682, and

GSE95233, respectively. These results indicated that the screened

signature genes particularly NSUN7 and FTO exhibited remarkable

diagnostic efficiency in sepsis.

To predict the occurrence of sepsis, we constructed a

nomogram model for diagnosing sepsis based on the expression

levels of five hub RMGs (NSUN7, FTO, NOP2, PUS1 and PUS3)

(Figure 8G). Decision curve analysis (DCA) revealed that the

“nomogram model” curve was superior to the gray line,

suggesting that the patients could benefit from the nomogram

model at high-risk threshold from 0 to 1 and the clinical
B

C D

A

FIGURE 4

Immune cell infiltration and biological characteristics of three clusters. (A) Differences in infiltrating immune cells between the C1, C2 and C3
clusters. The upper and lower ends of the boxes indicate the interquartile range of values, with the lines in the boxes representing the median value
and the dots indicating outliers. *P < 0.05; **P < 0.01; ***P < 0.001. (B–D) GSVA analysis conducted on different subtypes of sepsis. (B)
Representative barplot showing the 11 relatively up-regulated and 10 down-regulated signaling pathways in C1 compared to C2 and C3. (C)
Representative barplot showing the 11 relatively up-regulated and 10 down-regulated signaling pathways in C2 compared to C1 and C3. (D)
Representative barplot showing the 11 relatively up-regulated and 10 down-regulated signaling pathways in C3 compared to C1 and C2.
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advantage of the nomogram model was higher (Figure 8H). We

further assessed the predictive power of nomogram model via a

calibration curve. The calibration curve showed no significant

difference between the actual sepsis risk and the predicted risk,

indicating that this model was accurate in predicting sepsis

(Figure 8I). These findings suggested that the five hub genes are

efficient for the diagnosis of sepsis.
3.6 Correlation between hub RMGs and
immune cells in sepsis

We further investigated whether the hub RMGs were associated

with immune cell infiltration in sepsis (Figure 9). We observed that

PUS3 was negatively correlated with resting mast cells and

neutrophils . PUS1 was negatively correlated with M1

macrophages, M2 macrophages, neutrophils, plasma cells and gdT
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cells, but positively correlated with monocytes, activated NK cells

and CD8 T cells. Interestingly, similar to PUS1, NOP2 and FTO

were also positively correlated with monocytes, activated NK cells

and CD8 T cells. Conversely, NSUN7 displayed a negative

correlation with monocytes, activated NK cells and CD8 T cells,

but positive correlation with neutrophils, gdT cells and M1

macrophages. These results suggested that PUS1, NOP2, and FTO

may act synergistically in sepsis, while NSUN7 may counteract the

function of aforementioned three genes.

Furthermore, by determining the expression of hub genes from

single-cell transcriptome in Human Protein Atlas database (https://

www.proteinatlas.org ), we found that NOP2, FTO, PUS1, and PUS3

were all enriched in T cells, however, the NSUN7 gene is not

expressed in any immune cells in PBMCs from healthy subjects

(Figure S3). In addition, to better understand the genes and

microRNA associated with key RMGs, we constructed a gene co-

expression analysis and mRNA-miRNAs networks (Figure S4,
B
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FIGURE 5

Identification of the key module by WGCNA. (A, B) The analysis of network topology for various soft thresholding powers of WGCNA. (C) Clustering
dendrogram of module eigengenes. The red line indicates the cut height (0.25). (D) Hierarchical clustering dendrograms of co-expressed genes in
identified modules are shown. Both dynamic and merged modules were identified. (E) WGCNA in the three sepsis subtypes. The 18 modules were
validated and are designated by the different colors. The heatmap displays the correlation between feature vectors of 18 modules and three
subtypes. The correlation coefficient in each cell represented the correlation between the gene module and the clusters, which decreases in size
from red to green. The corresponding P-value is also annotated.
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Table S10-S11), suggesting that NOP2 and PUS1 may be

functionally synergistic with each other. Genes associated with

hub RMGs may linked to the progression of sepsis, NOP2 and

NAT10 were co-expressed, and previous research reported that

NAT10 improves the survival and ameliorates lung injury in septic

mice by inhibiting neutrophil pyroptosis (32). We found miRNAs

such as miR-21-3p (33) and miR-126-5p (34) were also crucial

components in regulating the sepsis pathogenesis by interacting

with key RMGs.
3.7 The validation of diagnostic value of
the five hub RMGs in clinical settings

To validate the expression and diagnostic potential of the five hub

RMGs in clinical samples, we prospectively recruited patients with

sepsis and healthy controls. The general clinical characteristics of the

patients was shown in Table 1. The cohort was comprised of 11

patients with septic shock, 15 sepsis patients without shock (sepsis),
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and 13 healthy volunteers. There were no significant differences in sex

or age between the two (septic shock and sepsis) (P = 0.0965, P =

0.0740) or three groups (septic shock, sepsis and health) (P = 0.0501,

P = 0.0772). Additionally, there were no significant differences in

comorbidities or sites of infection between the two groups (septic shock

and sepsis). Compared to the sepsis group, the patients in the shock

groups exhibited higher Sequential Organ Failure Assessment (SOFA)

and Acute Physiology and Chronic Health Evaluation (APACH) II

scores (P = 0.0020, P = 0.0001), longerMechanical ventilation time and

higher mortality rate at day 7, 14 and 28 (P = 0.0177, P = 0.0020, P =

0.0038, P = 0.0008).

Firstly, we determined the genes expression in PBMCs by qRT-

PCR analysis, and found the expression of NSUN7, NOP2, PUS1

and PUS3 in septic patients (septic shock and sepsis) at day 1 were

significantly higher than in healthy volunteers, and FTO expression

was lower in septic patients (Figure 10A). However, the expression

levels of the five genes displayed no significant difference in

survivors and non-survivors in septic patients at day 28 (Figure

S5A). In addition, their expression did not show any significant
B

C

D

E

F

A

FIGURE 6

GO and KEGG enrichment analysis of eigengenes from the key module in C1-C3. GO functional enrichment analysis of the intersecting genes with
the top 10, including molecular functions(MF), biological processes (BP) and cellular components (CC) terms and KEGG pathways. The horizontal
axis shows the number of genes and the vertical shows the GO and KEGG terms. The color depth of the barplots represents the p-value. (A, D) GO
and KEGG enrichment analysis of genes from MEblack module in cluster 1. (B, E) GO and KEGG enrichment analysis of genes from the MEblue
module in cluster 2. (C, F) GO and KEGG enrichment analysis of genes from the MEyellow module in cluster 3.
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difference between septic shock and sepsis patients (Figure S5B).

Notably, the expression of NOP2 and PUS1 was concurrently

increased in patients with sepsis of group C3 in the integrated

gene expression matrix (Figure 2F), which was consistent with the

results observed in our clinic samples.

Then, we investigated the diagnostic value of hub RMGs in sepsis

using ROC analysis. The AUC ofNSUN7,NOP2, PUS1, PUS3 and FTO

at day 1 was 0.828, 0.707, 0.846, 0.834 and 0.976 respectively

(Figure 10B). Notably, FTO exhibited the highest diagnostic value

among these genes, with sensitivity of 0.846 and specificity of 1 (Table

S12). Furthermore, we evaluated the combined diagnostic value of

NSUN7, NOP2, PUS1, PUS3 and FTO (the integrated RMGs model)

among non-septic shock and septic shock patients. We compared the

AUC of integrated RMGs model with Lactate (Lac) and procalcitonin

(PCT) at day 1 and found that the AUC of the integrated RMGs model

was not inferior to Lac and PCT (0.72 vs. 0.68, P = 0.78; 0.72 vs. 0.52, P

= 0.24) (Figure 10C), with a sensitivity of 0.467 and specificity of 1

(Table S13).
4 Discussion

Sepsis is a complex and heterogenous clinical syndrome that

requires extensive research to validate biomarkers, facilitate
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diagnosis and identify distinct molecular subtypes. By

combination of bioinformatics analysis and clinical investigations,

our study identified three distinct subtypes of sepsis based on the

expression levels of the most significantly aberrant RMGs. Firstly,

we identified genes that were characteristically expressed in each

subgroup. In cluster 1, the genes NSUN7 and TRMT6 showed the

highest levels of upregulation, and they were involved in the

regulation of m5C and m1A RNA methylation modifications. In

cluster 2, there was a significant increase in the expression of

NSUN3, which plays a role in RNA m5C modification.

Additionally, cluster 3 demonstrated a significant increase in the

expression of NSUN5 and NSUN6, both of which were associated

with m5C modification. Next, the CIBERSORT algorithm was

utilized to comprehensively assess the distribution of infiltrating

immune cells in distinct subtypes. In cluster 1, there was a relatively

increased frequency of neutrophils and gdT cells, while CD8 T cells,

Tregs and activated NK cells were down-regulated. In contrast,

cluster 2 and 3 exhibited opposing immune cell distribution

patterns compared to cluster 1. In cluster 3, CD8 T cells and

monocytes were observed to be relatively upregulated, while gdT
cells and neutrophils showed down-regulation. Then, through

GSVA, GO and KEGG analyses, we explored molecular pathways

among the three clusters. In Cluster 1, we observed enhanced

neutrophil and inflammatory signaling pathways activation, such
B

C D
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FIGURE 7

Construction and assessment of RF, GLM, SVM and XGB model. (A) Boxplots displaying the residuals of the sample, with the red dot indicating the
root mean square of the residuals. (B) The feature importance of the variables in the RF, GLM, SVM and XGB model. (C) Cumulative residual
distribution map of the sample. (D) ROC evaluation of the performance of the RF, GLM, SVM and XGB models. RF Random Forest, SVM Support
Vector Machine, XGB eXtreme Gradient Boosting, GLM generalized linear models, ROC receiver operating characteristic.
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as the Leukocyte transendothelial migration and MAPK signaling

pathway. Cluster 2 was featured by the regulation of mRNA stability

and amino acid metabolism. cluster 3 was primarily associated with

ribonucleoprotein complex biogenesis and carbohydrate

metabolism pathways. We also identified RMGs that may have

diagnostic value for sepsis. To our knowledge, this is the first study

that focused on investigating the classification and diagnostic value

of RNA methylation (including m5C, m6Am, m1A, m7G andY) in

sepsis by transcriptome-wide mapping.

To start with, we observed the expressions of various RNA

methylation modifying enzymes in PBMCs from sepsis patients and

found that RNA m5C modification may be involved in the

pathology of sepsis. An active methyl-group from the donor,

usually S-adenosyl-methionine (SAM), is added to the carbon-5

position of the cytosine base in RNA to form the m5C modification

(35), which exerts biological functions including regulation of
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inflammatory response. In hyperhomocysteinemia, NSUN2

upregulates IL-17A expression by mediating IL-17A mRNA m5C

modification in T lymphocytes to induce chronic inflammation

(36). In SLE, the m5C level and NSUN2 expression are decreased in

CD4+ T cells, and hypermethylated m5C is related to inflammatory

pathways (37). Till now, the role of RNA m5C modification in

sepsis has not been reported. Our study indicates that RNA m5C

may be involved in sepsis and the underlying mechanism of this

modification in the pathogenesis of sepsis st i l l need

further investigation.

We also discovered that immune-activated status and metabolic

mechanisms (amino acid and carbohydrate metabolism) may be

regulated by RNA methylation in sepsis. Our results showed that

NSUN7 (m5C gene) and TRMT6 (m1A gene) were increased in

cluster 1, accompanied by neutrophil activation and upregulation of

the MAPK signaling pathway. Neutrophil activation in sepsis is a
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FIGURE 8

The diagnostic efficacy of hub RMGs. (A–C) The diagnostic efficacy of the SVM model in the discovery cohorts. (A) GSE57065 datasets. (B)
GSE65682 datasets. (C) GSE95233 datasets. (D–F) ROC curves show the sepsis diagnostic efficacy of NSUN7, FTO, NOP2, PUS1, PUS3 respectively.
(D) GSE57065 datasets. (E) GSE65682 datasets. (F) GSE95233 datasets. (G) Nomogram to predict the occurrence of sepsis. (H) Decision curve
analysis was applied to evaluate the clinical value of the nomogram model. The Y-axis represents the net benefit. The black line represents the
hypothesis that no patients die. The X-axis represents the threshold probability, where the expected benefit of treatment equals the expected benefit
of avoiding treatment. (I) Calibration curve indicates the predictive power of the nomogram model.
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FIGURE 9

The correlation between hub RMGs and infiltrating immune cells in GEO datasets. *P < 0.01, **P < 0.001 and ***P < 0.0001.
B

C

A

FIGURE 10

The relative expressions and ROC of hub RMGs in patients. (A) The concentrations of NSUN7, NOP2, PUS1, PUS3 and FTO mRNA in PBMCs were
measured by qRT-PCR from septic patients and healthy controls at day 1 after enrollment. **P < 0.01, ***P < 0.001, and ****P < 0.0001 vs. Healthy.
(B) ROC curves of NSUN7, NOP2, PUS1, PUS3 and FTO for diagnostic at admission in healthy and septic patients. (C) ROC curves illustrating the
diagnostic performance of the integrated hub RMGs, Lac and PCT in sepsis and septic shock patients. Model the combined of NSUN7, NOP2, PUS1,
PUS3 and FTO. Lac Lactic acid. PCT procalcitonin.
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complex process, and dysregulation of MAPK signaling can

contribute to excessive neutrophil activation (38). In cluster 2, the

physiological function analysis demonstrated that NSUN3 may be

involved in amino acid metabolism in sepsis. Untargeted

metabolomics analysis revealed widespread dysregulation of

amino acid metabolism in patients with sepsis, which regulates

inflammation and immunity (39). In addition, NSUN3 and m5C

RNA methylation modification has been established to regulate

metabolism in metastasis (40), which is in consistent with our

findings in sepsis. Our analysis further revealed that the cluster 3

exhibited elevated levels of NSUN5 and NSUN6, which primarily

involved in carbohydrate metabolism. Recently, an increasing

number of studies have indicated that glycolysis plays a crucial

role in regulating both innate and adaptive inflammatory responses.

Inhibition of glycolysis can reduce the levels of inflammatory

cytokines and lactate expression in the myocardium of septic

mice and improve cardiac function (41, 42). Furthermore, RNA

methylation has been demonstrated to regulate glycolysis in tumors

and immune diseases (43, 44). In summary, our study provides

insights into the heterogeneity of sepsis, which is largely associated

with m5C RNA methylation and involves immune and metabolic

mechanisms, the underlying molecular mechanism of m5C RNA

modification in regulation of sepsis needs further investigation.

Finally, by using machine learning, we identified five hub RMGs

(NSUN7, FTO, NOP2, PUS1, and PUS3), which showed efficient

diagnostic value of sepsis. We also evaluated the diagnostic value by

combination of the five genes, and illustrated that the combined

diagnostic value was not inferior to the value of classical biomarkers

as Lac or PCT for septic shock. NSUN7, a member of the NSUN

methyltransferase family, reduces protein activity and motility of

sperms and is associated with male infertility (45). A recent study

has reported that NSUN7 is up-regulated in neonatal sepsis,

combined with bioinformatic analyses, NSUN7 is closely related

to immune and inflammatory responses, implying its potential as a

biomarker for the pathogenesis of neonatal sepsis (46).

Consistently, we verified NSNU7 was highly expressed in adult

septic patients compared to healthy controls. Meanwhile, our

results found NSUN7 displayed a negative correlation with

monocytes, activated NK cells and CD8 T cells, but a positive

correlation with neutrophils, gdT cells and M1 macrophages,

suggesting that NSUN7 may be related to the excessive

inflammatory response in sepsis. FTO belongs to the AlkB protein

family, and its expression is closely related to weight gain and

obesity (47). It is well established that the expression of FTO is

decreased in septic mice (48), and our results further found a low

expression in septic patients. A recent investigation demonstrated

that knockdown of FTO inhibited inflammatory factor secretion,

improved organ damage and survival in septic mice (49), suggesting

a correlation between FTO and the inflammatory response process

of sepsis, implying its potential as a diagnostic or prognostic marker

for sepsis. The PUS3 is a type of enzyme that catalyzes the formation

of Y38 in the anticodon loop of certain tRNAs (50). Mutations in

the PUS3 gene have been associated with intellectual disability (51).

However, little is known about its expression and function in
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relation to infectious or inflammatory diseases. PUS1 is

responsible for the isomerization of uridine to pseudouridine in

RNA molecules. Mutations in the PUS1 gene have been linked to

mitochondrial myopathy, encephalopathy, lactic acidosis, and

stroke-like episodes (MELAS) (52). In our study, the expression

of PUS1 in the clinical validation and bioinformatics analysis results

was not consistent, potentially due to patient heterogeneity and

sample size. NSUN1 is an RNA-binding protein that belongs to the

NOP2/SUN (NSUN) RNA-methyltransferase family. Previous

research suggests that NOP2 is expressed at higher levels in

human malignant tumor cells and is considered as a prognostic

marker for cancer aggressiveness (53). Our clinical validation

results are consistent with a previous study reporting a high

NOP2 expression in septic patients (54), and its role and

mechanism in sepsis remain to be further explored

experimentally. Overall, NSUN7, NOP2, PUS1, PUS3, and FTO

were identified as important diagnostic markers for sepsis.

The present study provided possible regulatory relationships

between RNA methylation regulators and sepsis. There are still

some limitations to our study. First, our clinical study only included

patients from a single center with a relatively small sample size.

Further multi-center clinical studies with larger sample sizes are

necessary to confirm the expression levels, diagnostic value for

clinical use. Second, the specificity of the hub genes for diagnosing

sepsis is high, but the sensitivity is relatively low. Future studies are

needed by using enrolling non-septic patients with infection as

control to assess the sensitivity and specificity of the diagnostic

markers for sepsis. Third, in vitro and in vivo experiments are

needed to explore the molecular mechanisms and identify the exact

roles of the hub genes in sepsis.
Data availability statement

Publicly available databases were analyzed in this study. This

data can be found here: https://www.ncbi.nlm.nih.gov/geo/,

GSE57065, GSE65682, and GSE95233.
Ethics statement

This study was approved by the Research Ethics Board of East

Hospital, Tongji University (Shanghai, China). Written informed

consent was obtained from all recruited patients or their authorized

family members.
Author contributions

QZ designed the research, conducted experiments and wrote

the manuscript. XB collected baseline information of clinical

patients. QZ and JLJ performed data analysis. MC, CW and JJ

contributed to the writing of the manuscript. All authors

contributed to the article and approved the submitted version.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2023.1231898
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1231898
Funding

This work was supported by grants from the National Natural

Science Foundation of China (81970072 to LT), the leading medical

talent project of Shanghai Pudong heath bureau (PWRI2019‐05 to

LT), the action plan for scientific and technological innovation of

Shanghai Scientific Committee of China (20Y11901200 to LT), the

municipal Natural Science Foundation of Shanghai Scientific

Committee of China (22ZR1451000 to LT), the key clinical

discipline of Shanghai Pudong heath bureau (PWZxk2022-17 to

LT), the clinical peak discipline of Shanghai Pudong heath bureau

(PWYgf2021-03), Shanghai Rising-Star Program (21QA1407600 to

KC), Fundamental Research Funds for the Central Universities

(22120220082, 22120230020 to KC).
Acknowledgments

We all authors sincerely acknowledge the contributors to the

GEO database.
Frontiers in Immunology 16
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1231898/

full#supplementary-material
References
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M,
et al. The third international consensus definitions for sepsis and septic shock (Sepsis-
3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287

2. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, et al. Hospital
deaths in patients with sepsis from 2 independent cohorts. JAMA (2014) 312:90–2.
doi: 10.1001/jama.2014.5804

3. Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP,
et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock
from the first hour: results from a guideline-based performance improvement program.
Crit Care Med (2014) 42:1749–55. doi: 10.1097/ccm.0000000000000330

4. Vincent JL. The clinical challenge of sepsis identification and monitoring. PloS
Med (2016) 13:e1002022. doi: 10.1371/journal.pmed.1002022

5. de Grooth HJ, Postema J, Loer SA, Parienti JJ, Oudemans-van Straaten HM,
Girbes AR. Unexplained mortality differences between septic shock trials: a systematic
analysis of population characteristics and control-group mortality rates. Intensive Care
Med (2018) 44:311–22. doi: 10.1007/s00134-018-5134-8

6. Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more
than just fever and leukocytosis-a narrative review. Crit Care (2022) 26:14.
doi: 10.1186/s13054-021-03862-5

7. Yang D, Zhao D, Ji J, Wang C, Liu N, Bao X, et al. CircRNA_0075723 protects
against pneumonia-induced sepsis through inhibiting macrophage pyroptosis by
sponging miR-155-5p and regulating SHIP1 expression. Front Immunol (2023)
14:1095457. doi: 10.3389/fimmu.2023.1095457

8. Courtney DG, Tsai K, Bogerd HP, Kennedy EM, Law BA, Emery A, et al.
Epitranscriptomic addition of m(5)C to HIV-1 transcripts regulates viral gene
expression. Cell Host Microbe (2019) 26:217–227.e6. doi: 10.1016/j.chom.2019.07.005

9. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA
methylation writers, readers, and erasers. Mol Cell (2019) 74:640–50. doi: 10.1016/
j.molcel.2019.04.025

10. Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa EM. The RNA
modification landscape in human disease. Rna (2017) 23:1754–69. doi: 10.1261/
rna.063503.117

11. Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse
RNA modifications: Re-defining the bridge between transcription and translation. Mol
Cancer (2020) 19:78. doi: 10.1186/s12943-020-01194-6

12. Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu Z, et al. YTHDF2 reduction fuels
inflammation and vascular abnorMalization in hepatocellular carcinoma. Mol Cancer
(2019) 18:163. doi: 10.1186/s12943-019-1082-3

13. Wu X, Tang J, Cheng B. Oral squamous cell carcinoma gene patterns connected
with RNA methylation for prognostic prediction. Oral Dis (2022). doi: 10.1111/
odi.14341
14. Zhang M, Song J, Yuan W, Zhang W, Sun Z. Roles of RNA methylation on
tumor immunity and clinical implications. Front Immunol (2021) 12:641507.
doi: 10.3389/fimmu.2021.641507

15. Zha LF, Wang JL, Cheng X. The effects of RNA methylation on immune cells
development and function. FASEB J (2022) 36:e22552. doi: 10.1096/fj.202200716R

16. Fleming AM, Mathewson NJ, Howpay Manage SA, Burrows CJ. Nanopore dwell
time analysis permits sequencing and conformational assignment of pseudouridine in
SARS-coV-2. ACS Cent Sci (2021) 7:1707–17. doi: 10.1021/acscentsci.1c00788

17. Zhang S, Liu F, Wu Z, Xie J, Yang Y, Qiu H. Contribution of m6A subtype
classification on heterogeneity of sepsis. Ann Transl Med (2020) 8:306. doi: 10.21037/
atm.2020.03.07

18. Luo S, Liao C, Zhang L, Ling C, Zhang X, Xie P, et al. METTL3-mediated m6A
mRNA methylation regulates neutrophil activation through targeting TLR4 signaling.
Cell Rep (2023) 42:112259. doi: 10.1016/j.celrep.2023.112259

19. Xie W, Zou S, Dong C, Yang C. SPI1-mediated autophagy of peripheral blood
monocyte cells as a mechanism for sepsis based on single-cell RNA sequencing. Int
Immunopharmacol (2023) 117:109909. doi: 10.1016/j.intimp.2023.109909

20. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease
pathogenesis. Semin Immunopathol (2017) 39:517–28. doi: 10.1007/s00281-017-0639-8

21. Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, et al. Sepsis-induced
immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med
Res (2022) 9:56. doi: 10.1186/s40779-022-00422-y

22. Liu Y, Song R, Zhao L, Lu Z, Li Y, Zhan X, et al. m(6)A demethylase ALKBH5 is
required for antibacterial innate defense by intrinsic motivation of neutrophil migration.
Signal Transduct Target Ther (2022) 7:194. doi: 10.1038/s41392-022-01020-z

23. Zhang S, Guan X, Liu W, Zhu Z, Jin H, Zhu Y, et al. YTHDF1 alleviates sepsis by
upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent
pyroptosis. Cell Death Discovery (2022) 8:244. doi: 10.1038/s41420-022-00872-2

24. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus
(GEO) and BioConductor. Bioinformatics (2007) 23:1846–7. doi: 10.1093/
bioinformatics/btm254

25. Wang X, Guo Z, Yan F. RNA epigenetics in chronic lung diseases. Genes (Basel)
(2022) 13(12):2381. doi: 10.3390/genes13122381

26. Chao Y, Li HB, Zhou J. Multiple functions of RNA methylation in T cells: A
review. Front Immunol (2021) 12:627455. doi: 10.3389/fimmu.2021.627455

27. Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS, Zou C. RNAmethylation and cancer
treatment. Pharmacol Res (2021) 174:105937. doi: 10.1016/j.phrs.2021.105937

28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1231898/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1231898/full#supplementary-material
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1001/jama.2014.5804
https://doi.org/10.1097/ccm.0000000000000330
https://doi.org/10.1371/journal.pmed.1002022
https://doi.org/10.1007/s00134-018-5134-8
https://doi.org/10.1186/s13054-021-03862-5
https://doi.org/10.3389/fimmu.2023.1095457
https://doi.org/10.1016/j.chom.2019.07.005
https://doi.org/10.1016/j.molcel.2019.04.025
https://doi.org/10.1016/j.molcel.2019.04.025
https://doi.org/10.1261/rna.063503.117
https://doi.org/10.1261/rna.063503.117
https://doi.org/10.1186/s12943-020-01194-6
https://doi.org/10.1186/s12943-019-1082-3
https://doi.org/10.1111/odi.14341
https://doi.org/10.1111/odi.14341
https://doi.org/10.3389/fimmu.2021.641507
https://doi.org/10.1096/fj.202200716R
https://doi.org/10.1021/acscentsci.1c00788
https://doi.org/10.21037/atm.2020.03.07
https://doi.org/10.21037/atm.2020.03.07
https://doi.org/10.1016/j.celrep.2023.112259
https://doi.org/10.1016/j.intimp.2023.109909
https://doi.org/10.1007/s00281-017-0639-8
https://doi.org/10.1186/s40779-022-00422-y
https://doi.org/10.1038/s41392-022-01020-z
https://doi.org/10.1038/s41420-022-00872-2
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.3390/genes13122381
https://doi.org/10.3389/fimmu.2021.627455
https://doi.org/10.1016/j.phrs.2021.105937
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.3389/fimmu.2023.1231898
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1231898
29. An J, Lai J, Sajjanhar A, Batra J, Wang C, Nelson CC. J-Circos: an interactive
Circos plotter. Bioinformatics (2015) 31:1463–5. doi: 10.1093/bioinformatics/btu842

30. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

31. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE,
Burnham KL, et al. Classification of patients with sepsis according to blood genomic
endotype: a prospective cohort study. Lancet Respir Med (2017) 5:816–26. doi: 10.1016/
s2213-2600(17)30294-1

32. Zhang H, Chen Z, Zhou J, Gu J, Wu H, Jiang Y, et al. NAT10 regulates
neutrophil pyroptosis in sepsis via acetylating ULK1 RNA and activating STING
pathway. Commun Biol (2022) 5:916. doi: 10.1038/s42003-022-03868-x

33. Wang H, Bei Y, Shen S, Huang P, Shi J, Zhang J, et al. miR-21-3p controls sepsis-
associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol (2016) 94:43–
53. doi: 10.1016/j.yjmcc.2016.03.014

34. Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, et al. Exosomes
from endothelial progenitor cells improve the outcome of a murine model of sepsis.
Mol Ther (2018) 26:1375–84. doi: 10.1016/j.ymthe.2018.02.020

35. Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, et al.
The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res (2011) 39:
D195–201. doi: 10.1093/nar/gkq1028

36. Wang N, Tang H, Wang X, WangW, Feng J. Homocysteine upregulates interleukin-
17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem Biophys
Res Commun (2017) 493:94–9. doi: 10.1016/j.bbrc.2017.09.069

37. Guo G, Wang H, Shi X, Ye L, Yan K, Chen Z, et al. Disease Activity-Associated
Alteration of mRNA m(5) C Methylation in CD4(+) T Cells of Systemic Lupus
Erythematosus. Front Cell Dev Biol (2020) 8:430. doi: 10.3389/fcell.2020.00430

38. Hua Y, Liu D, Zhang D, Wang X, Wei Q, Qin W. Extracellular AMP suppresses
endotoxemia-induced inflammation by alleviating neutrophil activation. Front
Immunol (2020) 11:1220. doi: 10.3389/fimmu.2020.01220

39. Chen Q, Liang X, Wu T, Jiang J, Jiang Y, Zhang S, et al. Integrative analysis of
metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. J
Transl Med (2022) 20:123. doi: 10.1186/s12967-022-03320-y

40. Delaunay S, Pascual G, Feng B, Klann K, Behm M, Hotz-Wagenblatt A, et al.
Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature
(2022) 607:593–603. doi: 10.1038/s41586-022-04898-5
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Glossary

RMGs RNA methylation genes

DEGs Differentially expressed genes

GSVA Gene Set Variation Analysis

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI Protein–protein interaction

BP Biological process

CC Cellular component

MF Molecular function

RF Random Forest

SVM Support Vector Machine

XGB eXtreme Gradient Boosting

GLM generalized linear models

ROC receiver operating characteristics

AUC area under the ROC curve

PBMCs peripheral blood mononuclear cells

PBMCs peripheral blood mononuclear cells

WGCNA weighted correlation network analysis

m1A N1-methyladenosine

m5C 5-methylcytosine

m6A N6-methyladenosine

m6Am 2’-O-dimethyladenosine

m7G N7-methylguanosine

Y Pseudouridine

NSUN Nol1/Nop2/Sun

FTO fat mass and obesity-associated protein

PUS1 pseudouridine synthase 1 gene

PUS3 pseudouridine synthase 3 gene

NSUN7 NOP2/Sun RNA methyltransferase 7

NOP2 nucleolar protein P120
F
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