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The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)

is a cutting-edge technology that enables researchers to assess genome-wide

chromatin accessibility and to characterize cell type specific gene-regulatory

programs. Recent technological progress allows for using this technology also

on the single-cell level. In this article, we describe the whole value chain from the

isolation of T cells from murine tissues to a complete bioinformatic analysis

workflow. We start with methods for isolating scATAC-seq-ready CD4+ T cells

from murine tissues such as visceral adipose tissue, skin, colon, and secondary

lymphoid tissues such as the spleen. We describe the preparation of nuclei and

quality control parameters during library preparation. Based on publicly available

sequencing data that was generated using these protocols, we describe a step-

by-step bioinformatic analysis pipeline for data pre-processing and downstream

analysis. Our analysis workflowwill follow the R-based bioinformatics framework

ArchR, which is currently well established for scATAC-seq datasets. All in all, this

work serves as a one-stop shop for generating and analyzing chromatin

accessibility landscapes in T cells.
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Introduction

Chromatin describes DNA which is organized around histones

and which makes up the structure of chromosomes. The

accessibility of certain regions of chromatin is dependent on

DNA methylation and histone modifications such as acetylation,

phosphorylation or methylation (1, 2). The accessibility of

chromatin to regulatory proteins such as transcription factors

(TF) plays a key role in gene regulation. Analyzing chromatin

accessibility in different cell types or disease states can help us gain a

better understanding of the molecular programs that are active in

the respective cell type or disease state, and can help elucidate the

molecular mechanisms underlying the development of a

certain disease.

Assay for Transposase-Accessible Chromatin using sequencing

(ATAC-seq) was first introduced by Buenrostro et al. as a method

for characterizing chromatin accessibility across the genome (3).

ATAC-seq utilizes the hyperactive Tn5 transposase, which inserts

sequencing adapters into regions of accessible chromatin.

Sequencing of these accessible, or biologically active, regions lets

us infer the cells’ identity (3, 4). For the characterization of cells in a

heterogeneous population, single-cell (sc)ATAC-seq was developed.

To this end, single-cells are separated and barcoded, treated with

Tn5 transposase (prior to or after separation, depending on the

technology), followed by library preparation. Different methods

have been developed for achieving single-cell resolution, including

combinatorial cellular indexing (5), nano-well technologies (6) and

microfluidics platforms (7). Given the unique perspective provided

into the regulatory mechanisms at the single-cell level, (sc)ATAC-

seq is a valuable tool for characterizing cells from tissues. scATAC-

seq and scRNA-seq are often used as complementary technologies,

delivering a comprehensive picture of the cell identity that

integrates transcriptome and transcriptional regulation, and

multiomic approaches combining both scATAC and scRNA read-

outs from the same cell are currently on the rise.

Although different technologies for performing scATAC-seq

have been established, they all require the processing of tissue

samples for generating single-cell suspensions, the isolation of

target cells, the preparation of nuclei, the deposition of individual

nuclei in wells or droplets, library preparation and sequencing, and

finally bioinformatic analysis. In this methods article, we provide

guidance for all steps that are required to perform scATAC-seq on

CD4+ T cells from murine tissues (see also Figure 1). First, we will

describe wet-lab protocols for isolating T cells from murine tissues

such as skin, visceral adipose tissue (VAT), colon, or secondary

lymphoid tissues such as the spleen. We will describe processing

steps for pre-enrichment and purification of target cells, isolation of

nuclei and further processing using commercially available droplet-

based microfluidic systems and chemistry. We will provide

recommendations for cost-efficient and resource-saving

sequencing strategies, accompanied by links for the download of

freely accessible example datasets where CD4+ T cells from murine

tissues were isolated, processed and sequenced as described (8).

Then, we will guide the readers through the bioinformatic

processing of samples, from initial quality control steps through

data pre-processing to the analysis of the final, filtered dataset. This
Frontiers in Immunology 02
typically includes the calculation of gene activity scores, peak calling

and motif enrichment, footprinting, co-accessibility and trajectory

analysis. We will provide a reproducible workflow for recreating our

findings that readers can extend and adapt to their needs, and

provide advice on typical parametrical and procedural errors that

may occur during analysis.
Methods – experimental procedures

The processing of samples for scATAC-seq is the first key step

to producing high-quality data. In our experience, low quality cell

isolation results in high fragmentation of nuclear DNA, translating

into poor library profiles, low sequencing efficiency and bad data

quality. Therefore, we will describe key steps for isolating CD4+ T

cells from murine peripheral organs compatible with droplet-based

microfluidic systems and chemistry from commercial suppliers,

with details on organ removal, tissue digestion procedures and

enzyme formulations, pre-enrichment of target cells, sorting of

viable cells, nuclei isolation, transposition and barcoding

(Figure 2A). Required equipment for experimental procedure and

computing infrastructure is listed in Tables 1, 2, respectively.
Isolation of T cells from murine spleen

To isolate T cells from murine secondary lymphoid tissues such

as spleen, the tissue is harvested, placed in FACS buffer (Table 3)

and stored at 4°C until use. Then, the spleen is placed on a 100 µM

filter unit and is mechanically dissociated using a plunger or

forceps. Following centrifugation (2 min, 1000g, 4°C), red blood

cells are lysed using a commercially available ACK lysis buffer (e.g.

Thermo Fisher #A1049201). The cell suspension is filtered using a

70 µm strainer, resuspended in 500 µl FACS buffer, and cells

are counted.

Afterwards, we add Fc blocking reagent (Miltenyi Biotec #130-

092-575) to prevent unspecific binding of antibodies and beads,

followed by specific labeling using 1 µg PE-conjugated anti-mouse

CD4 (Clone RM4-5, Biolegend #100512) or 1 µg PE-conjugated

anti-mouse CD25 (Clone PC61, Biolegend # 102008) antibodies in

500 µl and stain for 20 min at 4°C. After staining, cells are

centrifuged (2 min, 1000g, 4°C), washed using 1000 µl of FACS

buffer, and resuspended in MACS buffer (Table 4). In the next step,

target cells are bound by anti-PE ultrapure microbeads (Miltenyi

Biotec #130-105-639) for 20 min at 4°C, followed again by two

centrifugation (2 min, 1000g, 4°C) and washing steps using 1000 µl

of FACS buffer. Finally, samples are re-suspended in 500 µl MACS

buffer. A 70µl filter unit is placed on an equilibrated MACS column

(we recommend working at 4°C to prevent cellular degradation)

and the sample is loaded. The column is washed twice with 5 ml

MACS buffer.

Afterwards, the sample is eluted in 500 µL FACS buffer and

stained using fluorescence-labelled antibodies. We recommend a

gating strategy where CD4 or CD25 T cells are enriched to high

purity, and dead cells, unwanted cell types and doublets are

excluded (Figure 2B, upper panel). A small part of the sorted
frontiersin.org
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population (target cells) can then be re-analyzed before downstream

processing to determine post-sort purity and viability (Figure 2B,

lower panel). If the quality criteria are met, the sample can be

subjected to nuclei preparation and further sample processing, as

described later. For troubleshooting and recommendations see

Box 1.
Isolation of T cells from murine
adipose tissue

To isolate T cells from VAT tissue, gonadal fat pads of male

mice are excised and placed in either a 50 ml conical tube or a

GentleMACS tube (Miltenyi Biotec #130-096-334) containing VAT

digestion buffer (Table 5). The VAT buffer recipe contains a

collagenase subtype to digest the extracellular matrix, DNAse to
Frontiers in Immunology 03
prevent DNA released from dying cells clogging filters, and BSA to

prevent unspecific digestion of cell surface epitopes.

To support the digestion process, the gonadal fat depots are cut

into small pieces using (sharp) scissors and digested for 45 minutes

at 37°C. Ideally, the sample should be rotated (e.g. using a rotating

device in an incubator), placed in an orbitally shaking waterbath, or

stirred and heated automatically using a GentleMACS Dissociator

(program: 37C_mr_ATDK_1). Then, the sample is incubated with

10 ml of 2 mM EDTA-PBS for 2 minutes, followed by a

centrifugation (5 min, 500g, 20°C). The sample is resuspended in

1000 µl FACS buffer and transferred to a 1.5 ml tube through a 100

µm filter unit. Then, the sample is centrifuged again (2 min, 1000g,

4°C), resuspended in 1000 µl FACS buffer and filtered into a new

tube using a 70 µm filter unit. The sample can now be stained for

sorting, with an example shown in Figure 2C. For troubleshooting

and recommendations see Box 2.
FIGURE 1

Graphical Abstract describing the whole value chain from tissue processing and scATAC-seq library prep through sequencing and data pre-processing to the
analysis of the final, filtered dataset. The Left panel describes tissue processing and library prep: Tissue is enzymatically and mechanically digested (1) and
cells are magnetically enriched for target cells (2) to make cell sorting (3) more efficient. After obtaining a pure target cell population (3), cells are made
permeable for the Tn5 transposase during nuclei preparation (4), followed by incubation with the Tn5 transposase and library preparation (5). The Middle
panel describes sequencing (1) and alignment of fragments, as well as quality control using CellRangerATAC (2). Depending the number of fragments per cell,
samples can be sequenced further to yield the desired sequencing depth. Using fragments.tsv files generated by CellRangerATAC count, data is pre-
processed with ArchR (3). Steps include setting cut-offs for TSS enrichment and the number of fragments per cell and visual evaluation of the fragment size
distribution (3.1), the calculation of doublet scores and removal of doublets (3.2), and, if necessary, batch effect correction (3.3), yielding the final, filtered
dataset (4). The Right panel describes data analysis, comprising the calculation of gene activity scores as a proxy for gene expression (1), marker- and
differential analysis on the peak matrix (2) as well as motif enrichment analysis in marker- and differential peaks (3). Motif scores can further be calculated on
the single-cell level using ChromVAR (4), motif footprinting can be performed (5), co-accessibility of peaks can be assessed (6), and pseudotime analysis can
be performed (7). Created with Biorender using figures and plots generated in this manuscript. .
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FIGURE 2

Overview of sample preparation for scATAC-seq of CD4+ T cells from murine tissues. (A) Procedural overview. Organs are removed, followed by
tissue digest and CD4 T cell enrichment. These are then sorted and processed further for generation of the scATAC-seq library (B–E) Flow
cytometry plots illustrating the gating scheme to isolate T cells from tissues such as spleen, fat, skin and colon. For skin, a pre-sort enriches target
cells, followed by purity sorting. Relative enrichment by each sort in table. Figure elements with Biorender.
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Isolation of T cells from murine
skin tissue

To isolate T cells from skin tissue, hair has to be removed from

the back of the animal with an electric shaver and depilatory cream.

The cream is applied for 2 minutes, followed by vigorous washing

using tap water to remove hair. It is important that excess hair is

completely removed to avoid complications during downstream

filtration steps. After cleaning, the skin is separated from the dorsal

surface, cut into small pieces, and transferred to a GentleMACS

tube (Miltenyi Biotec #130-096-334) containing 10ml of skin

digestion buffer (Table 6).

Then, the sample is digested using the GentleMACS Dissociator

(program: 37_C_Multi_H) or via orbital shaking in a preheated

waterbath (37°C). After 90 minutes of digestion or completion of

the GentleMACS program, the single-cell suspension can be cut

again, centrifuged (10 min, 400g, 4°C), resuspended in 5000 µl

FACS buffer and transferred to a 15 ml tube through a 100 µm filter

unit. Then, the sample is centrifuged again (2 min, 1000g, 4°C),

resuspended in 1000 µl FACS buffer and filtered into a new 1.5 ml

tube using a 70 µm filter unit. The sample can now be stained for

sorting, with an example shown in Figure 2D. To increase sort

efficiency, it might be beneficial to first enrich for CD45+ immune

cells (yield sort) by sorting target cells into FACS buffer, followed by

a second purity sort (4-way purity sort) for target cells. For

troubleshooting and recommendations see Box 3.
Isolation of T cells from murine colon

To isolate T cells from colon tissue, the colon is mechanically

separated from small intestine and placed in FACS buffer.

Remaining fat and mesenteric lymph nodes are removed. The

colon is opened longitudinally, cleared of feces, and transferred to

a new tube with 10 ml of colon pre-digestion buffer (Table 7). The

colon is incubated for 15 min on a bacterial shaker at 225 rpm and

37°C, followed by 30sec of vortex. The solution is passed through a

100 µm filter unit, where the colon remains in the filter and is

transferred to a new tube with 10 ml of fresh colon pre-digestion

buffer. The flowthrough is discarded and contains epithelial cells,

while the lamina propria remains on the filter unit. The colon is

incubated again for 15 min on a bacterial shaker at 225 rpm and 37°

C, followed by 30sec of vortex and filtration.

The colon pieces are transferred to a 50ml tube containing 10ml

of colon digestion buffer (Table 8), and scissors are used to cut the

colon into small pieces. Digestion is performed in a bacterial shaker

for 15 min at 37°C and 225 rpm.

Upon completion of digestion, the colon can be cut again to

increase yield. The cell suspension is now centrifuged (10 min, 400g, 4°

C) and resuspended in RPMI media, followed by two additional

filtration steps with 10ml of RPMI. The sample can then be

resuspended in FACS buffer and either pre-enriched (recommended)

or stained for sorting. For troubleshooting and recommendations see

Box 4.
TABLE 3 FACS buffer.

Formulation for FACS buffer

Ingredient Manufacturer
Final
concentration

Phosphate-buffer saline
10X

Gibco #10010023 or
other

1X

FCS 100% Sigma #F7524 or other 2%

Deionized water NA Up to final volume
TABLE 4 MACS buffer.

Formulation for MACS buffer

Ingredient Manufacturer
Final
concentration

Phosphate-buffer saline
10X

Gibco #10010023 or
other

1X

Bovine Serum Albumin
100%

Sigma #A4503 or
other

0,5% (w/v)

Ethylenediaminetetraacetic
acid

ThermoFisher
#15575020

1 mM

Deionized water NA Up to final volume
TABLE 2 Equipment required for data analysis.

Required computing infrastructure

Tool Requirements/Recommendations

Cell Ranger
ATAC
(v2.0.0)

8-core Intel or AMD processor (24 cores recommended)
64GB RAM (160GB recommended)
10-100GB free disk space per sample (depending on various
factors including sequencing depth, sequencing strategy, number
of nuclei sequenced)
64-bit CentOS/RedHat 7.0 or Ubuntu 14.04

R/Analysis
with and
ArchR

Processor 64-bit processor with x86-compatible architecture
(such as AMD64, Intel 64, x86-64, IA-32e, EM64T, or x64 chips)
1 GB free disk space
8 GB RAM (32 GB recommended)
TABLE 1 Equipment required for experimental procedures.

Major equipment required to perform experimental
procedures

Name Manufacturer

Chromium Controller 10X Genomics

Miltenyi GentleMACS Miltenyi Biotec

High-speed cell sorting system BD Biosciences or other

Tapestation or Bioanalyzer Various

Nextseq 500/550 Illumina
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Preparation of nuclei and library for
scATAC-seq

Cells have been sorted in FACS buffer and stored at 4°C until

use. In our experience, it is important to process the samples quickly

after sorting to decrease the overall fragmentation of the chromatin.

Therefore, shortly after sorting, cells are pelleted by centrifugation

(5min, 300g, 4°C). Supernatant is removed and cells are

resuspended in 100 ml 0.04%BSA-PBS buffer. Cells are centrifuged

again (5min, 300g, 4°C) and supernatant is removed completely.

Then, 45 ml chilled lysis buffer (Table 9) is added, and lysis occurs

for 2 min at 4°C.
Frontiers in Immunology 06
After precisely 2 min, 50 µl washing buffer (Table 10) is added

and the sample is centrifuged (5min, 300g, 4°C).

The supernatant is removed and 45µl of chilled diluted nuclei

buffer (10X Genomics #2000207) is added. The sample is

centrifuged again (5min, 300g, 4°C) and resuspended in 7 µl

chilled diluted nuclei buffer (10X Genomics). At this point, 1 µl

of nuclei can be counted using acridine orange/propidium iodide.

The nuclei recovery is listed in Figure 3A and ranges from 30.0%

(spleen CD25+) to 4.5% (VAT CD4+), with 12.7% for colon CD4+

and 14.1% for spleen CD4+. From the nuclei suspension, 5 µl are

used in the transposition reaction (Single-cell ATAC Gel Beads

V1.0 or V1.1 and reagents, 10X Genomics #1000175) for one hour

at 37°C. Samples are supplemented with master mix and beads,

loaded on a 10X Chromium Next GEM Chip H (10X Genomics

#1000161) and processed on the 10X Chromium Controller (10X

Genomics #120212), followed by library preparation according to

the manufacturer’s protocol. GEM incubation was performed with

11-12 cycles of PCR based on the number of nuclei in the

transposition reaction. As listed in Figure 3A, the number of PCR

cycles translates directly into the concentration of the library. Upon

completion of library preparation, the fragment length composition

is usually evaluated using electrophoretic separation of the sample.

In Figure 3B, examples for library profiles from scATAC-seq data of
BOX 1 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Low cell
viability

Analyze buffer ingredients, optimize erythrocyte lysis procedure, keep time spent on isolation of cells as short as possible, work at 4°C

Erythrocyte
contamination

Optimize ACK lysis procedure

Low purity of
CD4 or CD25 T
cells

Use Fc blocking reagent, work at 4°C

Isolation of T
cells from spleen
vs blood

A higher number of peripheral T cells can be isolated from the spleen as compared to the blood of mice. Also taking into consideration the
loss of cells during nuclei preparationaration for scATAC-seq, it is advisable to isolate peripheral T cells from the spleen instead of the blood.

Doublet
exclusion during
sort

When sorting cells from tissues, naturally occurring cell doublets (biological interaction between T cells and other cell types) can be identified
by including markers for these cell types in the sort panel. In our hands, T cell – APC pairs, if not excluded during sorting, are not separated
by nuclei preparation and can be detected in subsequent data analysis. This is true for cells isolated from all tissues.
TABLE 5 VAT digestion buffer.

Formulation for VAT digestion buffer

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type II Sigma #C6885 1 mg/ml

Bovine Serum Albumin Sigma #A4503 20 mg/ml

DNAse I Roche #11284932001 20 µg/ml
BOX 2 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

No gonadal fat depots Gonadal fat depots are only present in male mice. Younger animals, starving or sick animals have small or no depots.

Erythrocyte contamination Add ACK lysis step to procedure

Low purity of CD4 or CD25 T cells Use Fc blocking reagent, work at 4°C

No expression of CD4 or CD8 on T cells Optimize processing time and amount of collagenase enzymes
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primary murine CD4+ T cells from spleen and tissues are shown.

The fragment size distribution of a high-quality sample should

show nucleosomal periodicity, with fragment lengths being

enriched in 150bp-steps, which is the circumference of one

nucleosome. If nucleosomal periodicity is lost, this can be an

indication of degenerated chromatin structure. To illustrate this,

we included a sample where either the transposase enzyme was

inactive or the DNA itself was highly degraded, leading to a poor

library profile (Figure 3C). Even so, sequencing this sample will

generate reads that per se are of good quality, yet limited in their

usefulness, as the library will be of low complexity (Figure 4). In

addition, we included a low-quality sample with good library profile

(Skin CD4+) in this comparison, and although the library profile

showed periodicity, the data quality was not sufficient for further

analysis. Therefore, library profiles only indicate that the procedure

itself has been completed and the DNA was intact, but does not

guarantee that all libraries will yield results that can be analyzed and

interpreted. On the other hand, if the library is severely

compromised (e.g. no periodicity at all), we can anticipate that no

meaningful data can be extracted from such samples. For

troubleshooting and recommendations see Box 5.
Methods – sequencing and QC
strategy for scATAC-seq libraries

In Figure 3A, we listed the total number of nuclei loaded onto the

microfluidics systems and the total number of nuclei that were later

identified as cellular event. The recovery rates ranged from 14.0% for

spleen CD25+ to 52.7% for colon CD4+, with a mean recovery of

33.8%. Therefore, we can roughly estimate the number of nuclei that

will be analyzed as about 1/3 of the number of murine tissue T cell

nuclei in our sample. Still, the number of identified nuclei varies,

which makes sequencing in an all-in-one effort rather risky – while,

on the one hand, some samples can be “over-sequenced”, resulting in

high numbers of fragments per cell and good coverage, other samples
Frontiers in Immunology 07
can be “under-sequenced”, resulting in low numbers of fragments per

cell and rather poor coverage. An uneven number of fragments per

cell across different samples calls for artificial down-sampling of

samples with higher sequencing depth, and therefore the removal of

perfectly good sequencing reads to a level comparable with the

sample of the lowest sequencing depth. Down-sampling can be

achieved by subsetting the fragments.tsv file of the sample with

higher sequencing depth in a way that the median unique

fragments per cell equals the median unique fragments per cell of

the sample with lower sequencing depth (in analogy to the depth

normalization function of cellranger atac aggr). If there is high

variation in the number of fragments per sample, this can result in

a loss of many reads and therefore additional cost. Therefore, we

recommend an alternating sequencing and QC strategy, where we

sequence only 10% of the required reads using a custom protocol for

the NextSeq 500/550 sequencer, followed by estimation of the total

number of nuclei, the average fragments per nucleus, general QC

parameters (see later), and sequencing saturation using Cell Ranger

ATAC (10X Genomics Cell Ranger ATAC 2.0.0). We can then use

these parameters to plan the sequencing effort and estimate the

fraction of each sample in our sequencing pool (if all samples are

sequenced together). This reduces the cost, allows for the detection

and removal of low-quality samples, and increases the overall
TABLE 6 Skin digestion buffer.

Formulation for skin digestion buffer

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type II Sigma #C6885 4 mg/ml

Bovine Serum Albumin Sigma #A4503 20 mg/ml

DNAse I Roche #11284932001 20 µg/ml
BOX 3 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Clogging caused by hair Additional filter steps after skin digestion get rid of hair and avoid clogging. Repeat hair removal if patches of hair remain.
TABLE 7 Colon pre-digestion buffer.

Formulation for colon pre-digestion buffer

Ingredient Manufacturer
Final concentra-
tion

Hank’s Balanced Salt
Solution

ThermoFisher
#14175095

1X

Ethylenediaminetetraacetic
acid

ThermoFisher
#15575020

4 mM
TABLE 8 Colon digestion buffer.

Formulation for colon digestion buffer

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type V Sigma #C9263 0,85 mg/ml

Collagenase Type D Roche #11088882001 1,25 mg/ml

DNAse I Roche #11284932001 20 µg/ml

Dispase Gibco #17105 1 mg/ml
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comparability of the datasets. In our laboratory, we sequence 10X

scATAC-seq libraries using a paired-end run with 34-8-16-34

sequencing strategy with a 75-cycle high-output cartridge on a

NextSeq 500/550. In a typical run, Read 1 identifies the i5 index

(cell barcode) with 16 nucleotides and reads 34 nucleotides of the

fragment. On the reverse strand, primer P7 initiates the i7 read

(sample index) with 8 nucleotides and reads 34 nucleotides of the

fragment (Figure 4A).
Quality control of sequencing output files
using FastQC

Running aforementioned libraries on an Illumina sequencing

machine generates binary base call (BCL) files, from which fastq
Frontiers in Immunology 08
files can be generated using Illumina bcl2fastq (Box 6). bcl2fastq

takes as input a sample sheet (see 10X Genomics scATAC-seq

documentation) stating sample indices present in the loaded library,

demultiplexes Illumina BCL files accordingly, and creates an output

containing fastq files for each sample.

To investigate whether we can estimate library quality, we ran

FastQC (9) on all L001 files generated from four libraries: the

“good-quality” libraries scATAC_1 and scATAC_23, which showed

periodical profiles upon electrophoretic separation (Figure 3B), and

the degenerated samples scATAC_D1 and scATAC_D2, which

showed degradation already in the library profile (Figure 3C). As

expected, the overall run quality reports such as per base or per tile

sequence quality or per sequence quality scores did not vary

between libraries (Figure 4B), and can also be visualized

(Figure 4C, top). In general, QC run on the indices generates

errors in duplication rate and overrepresented sequences, which

can be expected. In contrast to this, the degenerated libraries had

high sequence duplication levels also in their long reads R1:34 and

R2:34, which indicates low library complexity, leading to

uninformative samples. This can also be seen when plotting

sequence duplication levels (Figure 4C, bottom). Data from the

libraries scATAC_D1 and scATAC_D2 did not yield any

biologically meaningful information, and the sequencing was

stopped after results from FastQC and Cell Ranger ATAC

identified these problems.
Running Cell Ranger ATAC count to
estimate re-sequencing needs of libraries

As mentioned before, we sequence a small amount of the library

(typically 10%) and run FastQC and Cell Ranger ATAC count to get

a first glimpse of the library quality, the number of cells and the

number of fragments per cell, sequencing saturation and other

parameters. Cell Ranger ATAC count (Box 7) takes fastq files as

input and aligns fragments to the specified reference genome (in our

case we chose the murine reference mm10, for human data the

human reference genome GRCh38 is available). Amongst other

outputs, a summary html file is created. Based on the number of

fragments per cell, the number of sequenced read pairs, and the

sequencing saturation, an estimate can be made of how much

deeper the sample has to be sequenced. Upon re-sequencing, Cell

Ranger ATAC count can be performed on fastq files from both the

first and the second sequencing run together, and appropriate

sequencing depth and quality of the sample can be confirmed.
BOX 4 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Fatty cell pellet after digestion After digestion the cell pellet can contain a lot of fat. If so, add an additional filter step with a 70 µm filter unit.

Clogging during cell sorting For cell sorting samples should be filtered again immediately before acquisition and cooled at 4°C to avoid clogging.
TABLE 9 Lysis buffer.

Formulation for nuclei preparation lysis buffer

Ingredient Manufacturer Final concentration

Nuclease-free water Invitrogen 1X

TRIS-HCL pH7.4 Sigma 10mM

NaCL Sigma 10mM

MgCl2 Sigma 3mM

Tween-20 Biorad 0.1%

NP-40 Sigma 0.1%

Digitonin Invitrogen 0.01%

Bovine Serum Albumin Sigma 1%
TABLE 10 Washing buffer.

Formulation for nuclei preparation washing buffer

Ingredient Manufacturer Final concentration

Nuclease-free water Invitrogen 1X

TRIS-HCL pH7.4 Sigma 10mM

NaCL Sigma 10mM

MgCl2 Sigma 3mM

Tween-20 Biorad 0.1%

Bovine Serum Albumin Sigma 1%
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Combining sequencing files
and running Cell Ranger ATAC
count to create output files for
downstream analysis with ArchR

Once the desired sequencing depth is reached, Cell Ranger

ATAC count is run with fastq files from all sequencing runs of a

certain sample as input (see Box 7). Upon alignment to the

reference genome, a tabix sorted text file containing fragment

start- and end position and the corresponding cell barcodes is
Frontiers in Immunology 09
created, which serves as input for the downstream processing with

ArchR. The fragments.tsv.gz file (~2GB for 5.000 cells with a read

depth of 10.000 reads/cell) only contains fragments which have

passed the following QC criteria: The fragment must be mapped

with a MAPQ > 30 on both reads, it must be non-mitochondrial,

not chimerically mapped, and must map to a primary contig.

Fragments that share the same cell barcode, start- and end

position are further recognized as duplicates generated from the

same template during amplification, and one representative

fragment is kept for each group of duplicates.
A

B

C

FIGURE 3

Overview of recovery and typical profiles for scATAC-seq libraries. (A) Tabular overview of parameters in scATAC-seq experiments. The percentage
of all events indicates the total frequency of target cells (either CD4+ or CD25+ T cells) in all events from the sample. In skin samples, we used a
double-sort approach with a yield sort followed by a purity sort, as described earlier and indicated with an *. (B) Examples for library size profiles for
samples with a good library profile listed in (A). (C) Examples for library size profiles of low-quality samples (faulty transposition or strongly
degenerated DNA). Profiles were generated using a Tapestation with a high sensitivity D1000 Screentape.
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Methods – data pre-processing
with ArchR

In this paragraph, we describe the pre-processing of scATAC-

seq data using ArchR ( (10), v1.0.1), including QC and filtering,
Frontiers in Immunology 10
dimensionality reduction, removal of doublets, evaluation of batch

effect correction, which generates the final filtered dataset for

analysis. For data pre-processing and analysis with ArchR we

provide the code in a GitHub repository (https://github.com/

imbeimainz/scATACseq_TissueTcells) as well as an html file
A B

C

FIGURE 4

FastQC profiles of good-quality and of degenerated scATAC-seq libraries sequenced using PE-34-8-16-34 strategy. (A) Overview of sequencing
strategy using a PE-34-8-16-34 approach. (B) Statistics of FastQC run on scATAC_1 (MD_1_4_run_1_MD_scATAC_1_S1_ L001_I1_001 (i7:8), …
R1_001 (R1:34), …R2_001 (i5:16), …R3_001 (R2:34)), scATAC_23 and the degraded samples scATAC_D1 and scATAC_D2. Errors listed here as
reported in FastQC documentation. (C) Sequence quality and sequence duplication overview of R1:34 in good-quality samples scATAC1 and
scATAC23, and degraded samples scATAC_D1 and scATAC_D2. Produced by FastQC (version 0.11.9).
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Fro
BOX 5 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Quality of nuclei
After nuclei preparation, about 5% viable cells should be remaining. This indicates, that the lysis was not too harsh and that nuclei are intact.
If this is not the case, the lysis time can be reduced.

Variability
nuclei/cells

The number of nuclei that are isolated from a certain number of cells is dependent on a variety of factors, including the tissue of origin
(harshness of the digestion protocol), the % of all events (sort time), sort efficiency, the flow rate (pressure), the time window between sorting
and the nuclei preparation, technical variability during processing of nuclei

Variability
identified cells/
loaded nuclei

The percentage of cells identified per loaded nuclei is dependent on several factors including the quality of nuclei loaded (intact vs disrupted
nuclei) the number of nuclei loaded (multiplets), and the precision of nuclei counting, and usually ranges between 20% and 50%.

Processing of
human samples

The isolation of CD4+ T cells from human tissues requires different dissociation protocols, however the nuclei preparationaration as well as
scATAC-seq library preparation is identical.
nt
iers in Immunolog
BOX 6 bcl2fastq.

Terminal input to run bcl2fastq

$ bcl2fastq –use-bases-mask=Y34,I8,Y16,Y34 \

–create-fastq-for-index-reads \

–minimum-trimmed-read-length=8 \

–mask-short-adapter-reads=8 \

–ignore-missing-positions \

–ignore-missing-controls \

–ignore-missing-filter \

–ignore-missing-bcls \

-r 6 -w 6 \

-R /media/raw_data/NextSeq/name_of_the_run \

–output-dir=/media/raw_data/NextSeq/name_of_the_run/fastq \

–sample-sheet=/media/raw_data/NextSeq/name_of_the_run/SampleSheet.csv \

–no-lane-splitting
y frontiers11
BOX 7 Cell Ranger ATAC count.

Terminal input to run Cell Ranger ATAC count

# download the appropriate reference data from

# https://support.10xgenomics.com/single-cell-atac/software/downloads/latest

# move to the directory you want the output to be written to and prepend cellranger-atac

$ cd ~/directory

$ export PATH=./path/to/cellranger-atac-2.0.0:$PATH

#run cellranger-atac count for several files (fastq files from multiple runs)

$ for x in samplename1 samplename2 samplename3;

do cellranger-atac count \

–localcores=10 \

–id=name_your_sample_"$x" \

–reference=./path/to/reference/data\ #download see 10X documentation

–fastqs=./path/to/fastq/files,./path/to/more/fastq/files \

–sample="$x";

done
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containing all code and output from the analysis of our test dataset

(https://zenodo.org/record/8160122), which we refer to in the

corresponding paragraphs.
Creating the Count Matrix from Cell
Ranger ATAC output

scATAC-seq data analysis is performed on a count matrix,

containing the Tn5 insertion counts per genomic region per cell. As

for any specific region we either get insertions (open chromatin) or

no insertion (closed chromatin or no transposition event), the

scATAC-seq count matrix is very sparse. In ArchR, the count

matrix can be constructed from the fragments.tsv file output by

Cell Ranger ATAC, which is a tabix-sorted text file containing

chromosome, beginning- and end position of each sequenced

fragment along with the corresponding cell barcode. For the

count matrix, the genome is subdivided into 500bp-tiles, and the

insertion counts are listed per cell per tile.

In ArchR, an arrow file is created from the fragments.tsv file of

each sample, to which metadata and sequence-derived data like the

tile matrix are added (Box 8). The arrow file is a HDF5 format file to

which layers of additional information (e.g. gene score matrix, peak

count matrix etc.) can be appended later on. For analysis, arrow files

are combined into an ArchRProject (Box 9). Having the arrow files

as HDF5 makes it possible to access the data on-disk rather than

having to load it into memory, which would be much more

resource-consuming. See sections “2 Create ArrowFiles” and “3

Create ArchRProject”. It is possible at any point during analysis to

convert the ArchRProject to a Seurat object using the

ArchRtoSignac package (https://github.com/swaruplabUCI/

ArchRtoSignac), favoring the interoperability among existing

workflows. Similarly, it is possible to convert such objects into
Frontiers in Immunology 12
SingleCellExperiment objects, widely adopted throughout the

Bioconductor ecosystem of packages, where users can e.g.

interactively explore their data with iSEE (11) or other software.
Per-cell QC and filtering for
high-quality cells

Stringent filtering for high-quality cells is required prior to

analysis. Quality parameters implemented in ArchR’s quality

control are fragment size distribution, number of unique nuclear

fragments, and signal-to-background ratio. The fragment size

distribution of a high-quality sample should show nucleosomal

periodicity, with fragment lengths being enriched in 150bp-steps,

which is the circumference of one nucleosome (Figure 5C). If

nucleosomal periodicity is lost, this can be an indication of

degenerated chromatin structure. A certain number of unique

nuclear fragments per cell is required for a robust analysis,

therefore a cut-off can be set accordingly. In our analysis, we

discarded cells with less than 1000 unique fragments per cell.

Non-nuclear, i.e. mitochondrial, fragments are enriched in dead

or dying cells. Those fragments are identified by Cell Ranger ATAC

and are excluded from the fragments.tsv file that serves as an input

for ArchR, as are chimerically mapped reads and reads not mapping

to a primary contig. The signal-to-background ratio can be

quantified via the enrichment of fragments at transcription start

sites (TSS) compared to TSS-distal regions. This quality metric is

based on the observation that in viable cells, chromatin is more

accessible at TSS regions due to the large protein complexes that

bind there. Loss of the relative enrichment of fragments at TSS sites

again can indicate degeneration of the chromatin structure. In order

to choose cut-offs fitting all samples to be included in the analysis, it

is advisable to plot the unique nuclear fragments per cell against the
BOX 8 Creating arrow files.

R code for creating arrow files

# Read in fragments files

samples = paste0("MD_scATAC_", c(1,4,5,8,9))

inputFiles = file.path("data", samples, "fragments.tsv.gz")

names(inputFiles) = paste0("scATAC_", c(1,4,5,8,9))

# Create arrow files

# Evaluate different thresholds depending on your data:

# - minTSS: Start with 0 to see all cells, afterwards evaluate which threshold

# works for all of the samples

# - minFrags: Recommended to set >= 1000, otherwise the analysis might not be

# robust enough

# Check different parameters to set with ?createArrowFiles

ArrowFiles = createArrowFiles(

inputFiles = inputFiles,

sampleNames = names(inputFiles),

minTSS = 0,

minFrags = 1000,

addTileMat = TRUE,

addGeneScoreMat = TRUE,

force = TRUE

)
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TSS enrichment for each sample, and to set the cut-offs accordingly,

see section “2 Create Arrow files”, Box 8–11. TSS enrichment vs

unique fragment values of all cellular events in the ArchRProject are

displayed as density scatter plots in Figure 5A, and of each sample

separately in Figure 5B. As all samples contain very similar cell

types (CD25+ T cells for scATAC_8 and CD4+ T cells for the

remaining samples), we expect similar distributions of TSS

enrichment. We can observe comparable profiles for the samples

scATAC_1, scATAC_4, scATAC_5, scATAC_8, and scATAC_9. In

contrast, sample scATAC_23 shows both decreased TSS

enrichment and unique fragments per cell (Figure 5D). If we

combined this sample with the other samples, down-sampling to

the median number of fragments per cell of scATAC_23 would be

required (for instructions on how downsampling can be achieved

see Box 10). However, this would remove a lot of information from

the other samples. Further, the TSS enrichment, as a proxy for the

overall data quality, would still be lower compared to samples

scATAC_1-9. Therefore, at this point, the sample scATAC_23 was

removed from analysis. As displayed before, this sample could not

be distinguished from high-quality samples scATAC_1-9 by

fragment size distribution, showing the expected nucleosomal

periodicity (Figure 3B), or by FastQC (Figure 4B, C).
Dimensionality reduction using an iterative
LSI approach

With scATAC-seq data, there are several challenges when it

comes to dimensionality reduction: Firstly, we have a vast number

of features at hand, from which we need to select the ones with a

higher degree of variability (i.e. carry the information) within the

dataset. Moreover, the transposition events contain the information

that this site is accessible, yet it might be difficult to distinguish a

non-accessible region (a “biological zero”) from a non-sampled

region (a “technical zero”). And finally, the sparsity of the matrix

makes many of the commonly used methods for dimensionality

reduction, e.g. PCA, not directly applicable to the data at hand.

For scATAC-seq data, latent semantic indexing (LSI) is used for

dimensionality reduction, which originally stems from language

processing and which was developed especially for sparse data (12).
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LSI was first used for the analysis of scATAC-seq data by

Cusanovich et al. (5), and is performed on the tile matrix as

follows: 1) The “term frequency”, i.e. the frequency of accessible

tiles, is calculated per single-cell with normalization for sequencing

depth; 2) The resulting values are then divided by the “document

frequency” (i.e. in how many cells of the dataset a certain tile is

accessible) to calculate the term frequency – inverse document

frequency (TF-IDF) matrix. TF-IDF penalizes a term that is present

in many documents. In scATAC-seq data, chromatin regions that

are accessible in many cells and thus do not contribute much to

telling cell types apart are penalized, as are regions that are not

accessible in any of the cells. 3) Singular value decomposition (SVD)

for dimensionality reduction.

Specifically, in ArchR, an iterative LSI approach is implemented

(described in (13) in more detail), which initially does an LSI

transformation based on the most accessible features, and then

performs further iterations based on the most variable features

across the clusters computed in the previous iteration. An issue with

dimensionality reduction is often that the first LSI component

correlates strongly with sequencing depth. This is why e.g. in

Signac (14), the first LSI component is dropped. In ArchR,

dimensions with a correlation to sequencing depth > 0.75 are

excluded automatically. Dimensionality reduction (Box 12) is

showcased in “5 Dimensionality reduction”, and a varying

number of iterations, variable features and the dimensions to use

as a means to minimize the influence of technical variability are

applied in “5.5 Tweak different parameters of LSI dimensionality

reduction”. For troubleshooting and recommendations see Box 13.

Alternative approaches to LSI are presented in the results of Chen

et al., 2019 (15), adopting e.g. some forms of summarization such as

gene activity scores or quantifications into meta-features, followed by

steps commonly used in the analysis of scRNA-seq data.
Clustering using the Louvain
or Leiden algorithm

Per default, ArchR uses the Louvain algorithm (16) for

clustering, which is a heuristic graph-based clustering approach.

In this approach, a k-nearest neighbor (kNN) graph (17) is
BOX 9 Creating the ArchRProject.

R code for creating the ArchRProject

# Define arrow files

ArrowFiles = paste0(("scATAC", c(1,4,5,8,9), ".arrow")

# Create ArchRProject

# It is recommended to set copyArrows = TRUE to maintain an unaltered copy for

# later usage.

proj = ArchRProject(

ArrowFiles = ArrowFiles,

copyArrows = TRUE

)
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FIGURE 5

Unique fragments vs TSS enrichment. (A) TSS enrichment vs log10(unique fragments) of the ArchRProject displayed as scatter plots. Each datapoint
is colored by the number of neighboring datapoints. (B) TSS enrichment vs log10(unique fragments) of each individual sample in the dataset.
Samples scATAC_1, scATAC_4, scATAC_5, scATAC_8, and scATAC_9 show comparable TSS enrichment and unique fragments. Sample scATAC_23
has both a lower mean TSS enrichment, i.e. lower quality, and a lower mean number of unique fragments and was therefore excluded from analysis.
(C) Fragment size distribution displaying nucleosomal periodicity of 150bp. (D) Violin plots of TSS Enrichment and the number of fragments per cell
for all samples after setting the cut-offs for TSS Enrichment and the number of unique fragments per cell.
Fro
BOX 10 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Choose cut-offs
To get an overview of the quality of your data, plot the TSS enrichment against the number of fragments per cell for each of the samples.
Choose appropriate cut-offs. Optimally, they should be the same for all samples analyzed together

Differing
number of
fragments per
cell

Sequence libraries with low coverage deeper (unless sequencing saturation is too high already) or down-sample unique fragments per cell of
samples which were sequenced too deeply. The latter can be achieved by using cell ranger aggr with depth normalization, or by subsetting the
fragments.tsv file of the sample with higher sequencing depth in a way that the mean number of unique fragments per cell is identical
between samples.
nt
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constructed, in which each cell is connected to the k nearest cells in

Euclidean distance in PCA space. The edge weights are refined

based on the Jaccard distance, which evaluates the similarity or

overlap of neighboring cells. The cells are then clustered using the

Louvain algorithm, which is a heuristic clustering approach used for

large datasets, and which performs clustering by optimizing for

modularity (method described in (18)). It is also possible to use the

Leiden algorithm for clustering, which has been shown to be both

faster than the Louvain algorithm and to identify better partitions

(19). This can be done by passing algorithm = 4 to the addClusters()

function (Box 14). Clustering can thereafter be visualized in a

UMAP embedding, as shown in Figure 6 (see also section “5.2
Frontiers in Immunology 15
Visualization in UMAP embedding”, Box 14). For troubleshooting

and recommendations see Box 15.
Removal of cell doublets and further
filtering steps

In droplet-based single-cell technologies, droplets that received a

single barcoded bead but more than one nucleus are referred to as

“doublets”, which need to be removed prior to data analysis. To this

end, a doublet score can be calculated as in the original ArchR

implementation, which works as follows: Synthetic doublets are
BOX 11 Subset the project to cells making the TSS enrichment cut-off.

R code for subsetting the project to cells making the TSS enrichment cut-off

# Filter for cells passing the TSS enrichent cut-off determined above

proj = proj[proj@cellColData$TSSEnrichment >= 10, ]
fr
BOX 12 Dimensionality reduction.

R code for dimensionality reduction

# LSI dimensionality reduction

proj = addIterativeLSI(

ArchRProj = proj,

useMatrix = "TileMatrix",

name = "IterativeLSI",

iterations = 2,

clusterParams = list(

resolution = 0.2,

sampleCells = 10000,

n.start = 10

),

varFeatures = 25000,

dimsToUse = 1:30,

force = TRUE

)

ont
BOX 13 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Batch effects after
dimensionality reduction

Increase the number of iterations, decrease the number of variable features, or exclude LSI1

Correlation to sequencing
depth

ArchR automatically filters out LSI components with a strong correlation to sequencing depth; however, other technical noise can
also strongly influence LSI1

dimsToUse parameter
The number of dimensions used for dimensionality reduction impacts how well subsequent clustering results represent cell type
identity. It can therefore be useful to test several dimensionalities
iersin.org
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calculated from the data by combining any combination of two cells,

and are projected onto the UMAP space. Their nearest neighbors are

identified using the kNN algorithm, and enrichment scores are

computed. Enrichment scores can then be overlayed on the UMAP

embedding to facilitate pattern recognition across cells.

Based on the calculated doublet score, a filter ratio can be applied

to drop the specified percentage of cells with the highest doublet

scores. To find an appropriate filter ratio, different considerations can

be made: 1) Depending on the number of nuclei loaded on the chip, a

certain number of cell multiplets is expected (Chromium Next GEM

Single-cell ATAC Reagent Kits v1.1 User Guide CG000209). The
Frontiers in Immunology 16
filter ratio can be chosen accordingly. 2) As doublets are a mixture of

two cells, they can usually be found between two clusters on the

UMAP. 3) Doublets are expected to have a rather high number of

reads, as they contain reads from two cells. Nevertheless, the number

of reads can also be cell type- or quality-dependent. 4) It further

makes sense to overlay gene scores onto the UMAP to evaluate

whether a cluster has activity in markers from two different cell types,

and to make sure you do not remove an entire cell type. It is generally

advisable to always check whether the biology makes sense. Different

filter ratios can then be applied, and the filter ratio which makes most

sense both technically and biologically should be chosen for filtering.
BOX 14 Clustering and visualization.

R code for clustering and visualization as UMAP

# Clustering using the Louvain algorithm

# The Leiden algorithm can be using instead by passing “algorithm = 4”, which is

# an argument of Seurat’s FindClusters() function, to the addClusters() function

# (requires the leidenalg Python package)

proj = addClusters(

input = proj,

reducedDims = "IterativeLSI",

method = "Seurat",

name = "Clusters",

resolution = 0.8,

force = TRUE

)

# Visualization of clustering as UMAP

proj = addUMAP(

ArchRProj = proj,

reducedDims = "IterativeLSI",

name = "UMAP",

nNeighbors = 30,

minDist = 0.5,

metric = "cosine",

force = TRUE

)

# Color by clusters

p_clusters <- plotEmbedding(

ArchRProj = proj,

colorBy = "cellColData",

name = "Clusters",

embedding = "UMAP",

size = 0.5

)

frontiers
BOX 15 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Cluster
resolution

Always check whether clustering makes sense biologically. It can be helpful to start with a higher clustering resolution and then decrease, to
make sure you are not losing any cell populations of interest (overlay gene scores). The package “clustree” can additionally be useful for
visualizing how clusters change over increasing resolutions.
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Testing of different filter ratios and filtering of doublets is showcased

in “6 Filter doublets”, and UMAPs colored by cluster are shown in

Figure 7A for the filter ratio of 0.5, 1, and 2. Figure 7B shows the

reduction of cells per cluster upon filtering. Note that filtering out
Frontiers in Immunology 17
cells using the specified filter ratio removes a certain percentage of

cells with the highest doublet scores. The number of cells filtered from

each sample therefore depends on the total number of cells in

the sample.
A

B

FIGURE 6

Dimensionality reduction, clustering and visualization in UMAP embedding. (A) UMAP colored by samples, with the single samples highlighted (top
row), clusters, doublet enrichment and the number of unique fragments per cell (bottom row, left to right). (B) Imputed gene scores for a selection
of marker genes overlayed on UMAP (top) or as violin plots (bottom).
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Prior to doublet filtering (Box 16), cells that are marked by Cell

Ranger ATAC as gel bead doublet, barcode multiplet, or low-

targeting, should be excluded from the analysis, see section “5.6

Filter out barcodes marked as non-cell by Cell Ranger” and Box 17.

This information is stored in the singlecell.csv file output by Cell

Ranger ATAC count, and the ArchRProject can be subset to only

contain cells that meet these criteria. After doublet filtering, further

filtering steps can be performed similarly, e.g. filtering for cells with

a certain threshold for mitochondrial reads.

Upon removing cel ls from the ArchRProject , LSI

dimensionality reduction, clustering, and UMAP need to be re-

computed. For troubleshooting and recommendations see Box 18.
Frontiers in Immunology 18
Dataset Integration using HARMONY

When samples that are to be analyzed together have a lot of

technical variability, sometimes the iterative LSI is not enough to get

rid of all non-biological differences. In these cases, a harmonization

tool like HARMONY can be employed (20). HARMONY uses a soft

k-means clustering algorithm that penalizes clusters that are

homogeneous regarding the dataset-origin of the cells they contain,

and thus favors the clustering of cells from different datasets. The

centroids of these clusters are then used for computing cluster-specific

correction factors, which is meant to eliminate dataset-specific

differences, while maintaining biological differences (20). Results
A B

FIGURE 7

Filtering doublets. (A) UMAP colored by clusters, doublet enrichment, and the number of unique fragments per cell (top row). Cells which are filtered
out upon applying different filter ratios are highlighted in the respective UMAP (bottom row). (B) For each cluster, the reduction in cell number upon
applying different filter ratios is plotted.
BOX 16 Filtering doublets.

R code for filtering doublets

# Calculate doublet scores on the ArchRProject

proj = addDoubletScores(

input = proj,

k = 10,

knnMethod = "UMAP",

LSIMethod = 1,

force = TRUE

)

# After trying out different filter ratios, create new ArchRProject and filter doublets with a filterRatio of 0.5

proj = filterDoublets(

proj,

filterRatio = 0.5,

)
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from batch effect-corrected dataset should, however, be treated with

care. Batch effect correction methods like HARMONY, beside the

desired effect of reducing the impact of technical variability on the

clustering, also affect biological effects. This has been shown to lead to

lower reproducibility of cell-type specific markers in batch effect-

corrected datasets, although selecting higher cut-offs for effect size and

p-value partly mitigates this effect (21).

We performed data integration with HARMONY (Box

19), yet we decided not to include this step, since it did not
Frontiers in Immunology 19
produce the desired effect of the same cell type from different

samples clustering together, as shown in Figure 8. (see also

section “7 Test batch effect correction using HARMONY”).

On the contrary, some cell types (e.g. naïve CD4+ T cells or

tissue Treg precursor cells) seem to be separated by sample

after harmonization. We would like to bring to the attention

of the readers that alternative methods exist, such as MNN, Liger, and

Conos (22, 23). For troubleshooting and recommendations see

Box 20.
BOX 17

R code for filtering out barcodes marked as non-cell by Cell Ranger ATAC

singlecell = list()

for (x in c("1","4","5","8","9")){

filename = paste("data/MD_scATAC_",x,"/singlecell.csv",sep = "")

data = read.csv(filename)

# To match quality information to cells, we need the barcodes to match the

# ones in our ArchRProject. For this we:

# 1) create a vector of "scATAC_x#"

# 2) add vector as a column to the data

# 3) create column containing ArchRProj-style barcodes

bc = c(rep(paste("scATAC_",x,"#",sep = ""),nrow(data)))

data_barcode = cbind(bc,data)

data_fullbc = data_barcode %>% unite("full_barcode", bc:barcode, remove = FALSE, sep = "")

singlecell[[x]] = data_fullbc

}

# Combine the dataframes

singlecell_fullbc = rbindlist(singlecell, use.names = FALSE, fill = FALSE)

# Extract rownames that are also in the ArchRProject

rownames_archr = rownames(proj@cellColData)

subset_singlecell_fullbc = singlecell_fullbc[singlecell_fullbc$full_barcode %in% rownames_archr, ]

# Extract is:cell_barcode column from singlecell.csv and give it barcodes as rownames

df_is_cell_barcode = as.data.frame(subset_singlecell_fullbc$is:cell_barcode)

rownames(df_is_cell_barcode) = subset_singlecell_fullbc$full_barcode

# Order is_cell_barcode the way the ArchRProject is ordered and create filter

is_cell_barcode = df_is_cell_barcode[order(match(rownames(df_is_cell_barcode), rownames_archr)), ]

filter_archr = is_cell_barcode==1

# Filter out barcodes marked as non-cell by Cell Ranger ATAC

proj = proj[filter_archr, ]
frontiers
BOX 18 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Sample
heterogeneity

When calculating the doublet scores, ArchR prints the R^2 of the UMAP projection, which should be above 0.9. If this is not the case, the
heterogeneity within the samples is too low to accurately call doublets, as the synthetic doublets would then look too similar to the actual
cells the sample contains. In that case, either skip doublet inference or choose knnMethod = “LSI”.

Filter ratio
Test different filter ratios on your dataset, and choose one that makes sense both technically (percentage of multiplets you would expect
according to the number of nuclei loaded) and biologically (cell populations according to gene scores).
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Methods – advanced data analysis
with ArchR

Cell type annotation

There are several options for cell type annotation: 1) Manual,

cluster-based cell type annotation using prior-knowledge marker

genes, 2) data-based cell type annotation using cell type annotation
Frontiers in Immunology 20
tools such as SingleR (24), and 3) Identifying cell types of interest

using published signatures for the respective cell type.
Manual cell type annotation using gene scores of
prior-knowledge marker genes

Based on the accessibility of gene-encoding regions and their

regulatory elements, a proxy for gene expression can be estimated.

This is done by calculating gene scores. In ArchR, gene scores are
BOX 19 Batch effect correction using HARMONY.

R code for batch effect correction using HARMONY

# Create a new ArchRProject with a reducedDims object named “Harmony”

proj_harmonyTest = addHarmony(

ArchRProj = proj,

reducedDims = "IterativeLSI",

name = "Harmony",

groupBy = "Sample"

)

frontiers
FIGURE 8

Batch effect correction using HARMONY. UMAP without (left) and with (right) harmonization using HARMONY, colored by sample or tissue type (left
panel) and by cell type annotation (right panel).
BOX 20 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Recommendation Only use batch effect correction when necessary.

Technical vs
biological
variability

If you choose to do batch effect correction, be aware of the fact that while this might reduce the impact of technical variability on the
clustering, it might also take away some of the biological effects. The strength of batch effect correction can be influenced by the parameters
sigma (width of soft k-means clusters), lambda (ridge regression penalty parameter), and theta (diversity clustering penalty parameter). Treat
results from batch effect-corrected datasets with care.

Markers
When extracting cell-type specific markers from batch effect-corrected datasets, make sure to choose an appropriately large cut-off for effect
size and p-value.
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calculated as follows: tiles within the gene window of a certain gene

are identified, and the ones that overlap with another gene region

are excluded. Of the remaining tiles, the distance to the gene is

calculated and an exponential weighing function is applied to also

take into consideration distal regulatory elements. To address the

bias resulting from the fact that large genes tend to have more

accessible regions than smaller genes, the latter get larger weights.

Gene scores can be calculated directly during arrow file creation

or can be added later. Since we found the gene scores particularly

useful during QC and filtering, we generated them directly when

creating the arrow files by setting the parameter addGeneScoreMat

to TRUE, see section “2 Create ArrowFiles”. Due to the sparsity of

scATAC-seq data, gene score plots may appear quite variable.

Therefore, imputation using MAGIC (25) can be used to smooth

gene scores across nearby cells. Imputed gene scores can then be

mapped on the UMAP embedding (Box 21). Figure 9A

demonstrates how imputation facilitates visual interpretation of

the data. Cell types of interest can be identified using gene scores of

prior-knowledge marker genes in combination with sample

information: According to the gene scores of Foxp3 and Batf,

clusters C10 and C11 seem to be lymphoid tissue Treg cells,

whereas clusters C12, C14, C15 are tissue Treg cells from colon,

skin, and VAT, respectively (Figure 9A). Manual cell type

annotation using gene scores is showcased in “2.1 Manual cluster-

based annotation using prior-knowledge marker genes”. For

troubleshooting and recommendations see Box 22.

Reference data-based cell type annotation using
SingleR

Cell type annotation can further be performed in a reference

data-based manner using SingleR. SingleR was developed for the

annotation of scRNA-seq data and can be used with built-in

reference datasets, but also accepts custom reference datasets. We

annotated our data using the ImmGen database (26) as well as the

“Th-Express” mouse CD4+ T cell transcriptome atlas (27). As

shown in Figure 9B, annotation with both reference datasets
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identified Treg cells in most of the clusters with an increased

Foxp3 gene score. However, additional clusters, which we did not

identify as Treg cells using gene score-based annotation, were falsely

identified as Treg cell clusters using SingleR. For reference data-

based cell type annotation the choice of reference dataset (i.e. how

well the cell types match the dataset which is to be annotated) is

crucial. It is also important to keep in mind that we are comparing

computed gene scores based on chromatin availability with RNA-

seq data. Cell type annotation using SingleR is showcased in “2.2

Reference data-based annotation using SingleR”.

Alternatives to the cell type annotation using SingleR exist, such

as Seurat’s label transfer approach (28) and scmap (29). Data-based

cell type annotation tools are benchmarked in (30, 31). Moreover, if

users want to refine the results of such automated annotation tools,

manual steps might be required; we refer to the work of Clarke et al.

(2021) for additional guidance (32).

Identifying cell types of interest using published
signatures

For identifying cell types of interest, z-scores for cell type-

specific signatures can be calculated on the peak matrix (see section

below), and overlayed on the UMAP (Figure 9C, Box 23). This can

be done using the addDeviationsMatrix function, which uses

functionality from the ChromVAR package ( (33), see below). We

calculated z-scores for early- and late tissue Treg progenitors, as

well as skin and VAT tissue Treg cell signatures (8) and overlayed

them on the UMAP (Figure 9C), which confirms the classification

we did using gene scores. Cell type annotations based on signature

z-scores is showcased in “4.1.2 Calculate signature scores”.
Identifying marker features

Based on the gene scores, genes that can be leveraged to

discriminate the cell state or type of any subset identified e.g. in a

reduced dimensionality embedding, can be identified for either
BOX 21 Overlaying gene scores on the UMAP embedding.

R code for overlaying gene scores on the UMAP embedding

# Overlay gene scores on UMAP embedding of proj, use MAGIC smoothing

# Define which genes to plot

markerGenes = c("Foxp3","Il2","Rorc","Ikzf2","Batf","Klrg1","Tbx21","Ifng")

# Add impute weights

roj = addImputeWeights(proj)

# Plot

magic_genes = plotEmbedding(

ArchRProj = proj,

colorBy = "GeneScoreMatrix",

name = markerGenes,

embedding = "UMAP",

plotAs = "points",

imputeWeights = getImputeWeights(proj),

size = 0.5

)
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clusters (corresponding to cell types) or additional discrete

covariates (e.g. tissue of origin, genotype, etc.). To this end, the

group of cells is compared to a “background” group using a

Wilcoxon rank-sum test (34) with multiple hypothesis test

correction after Benjamini-Hochberg (35). For the background
Frontiers in Immunology 22
group, nearest neighbors in Euclidean space are selected after

removing the bias introduced by the number of fragments per cell

and the TSS Enrichment by applying the same relative scale to the

variance of these two dimensions. Thus, the group of cells to

identify marker genes for is compared to the cells that do not
A

B C

FIGURE 9

Cell type annotation. (A) Manual cluster annotation based on gene scores (left panel). Overlay of gene scores of marker genes with imputation (right
panel, top) and without imputation (right panel, bottom) on the UMAP embedding. (B) Cell type annotation using SingleR with two different
reference datasets. (C) Cell type annotation using signatures for specific cell types. Overlay of tissue Treg early progenitor (top left), late progenitor
(bottom left), skin tissue Treg (top right), and colon tissue Treg (bottom right) signature z-scores on the UMAP embedding.
BOX 22 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Gene-dense
areas

It is important to keep in mind that gene scores are just an estimation of gene expression. Due to the way gene scores are calculated, they
might not be entirely reliable for genes in gene-dense areas.
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Fro
BOX 23 Calculating signature z-scores.

R code for calculating signature z-scores and overlaying them on the UMAP embedding

# Calculate signature z-scores (input: GRanges object)

archr_add_peak_signatures = function(proj, signature_list, signature_name){

#signature_list: list of GRanges

#signature_name: name string for the set of signatures

add_df_to_cellcoldata = function(pro, pheno_df, force=FALSE){

stopifnot(identical(rownames(pro@cellColData), rownames(pheno_df)))

cnames = colnames(pheno_df)

for(i in 1:ncol(pheno_df)){

pro = addCellColData(ArchRProj = pro, data=pheno_df[, i], name = cnames[i],

cells = rownames(pro@cellColData), force = force)

}

return(pro)
}

if(length(signature_list)<2){
stop('Currently, only works if at least two signatures are provided')

}

for(i in seq_along(signature_list)){

names(signature_list[[i]]) = NULL

}

proj = addPeakAnnotations(ArchRProj = proj,

regions = signature_list,

name = signature_name,

force = TRUE)

method_use = "chromVAR" #does only work with fixed width peaks

if(any(sapply(signature_list, function(x) length(unique(width(x)))) > 1)){

method_use = 'ArchR'

}

proj = addBgdPeaks(proj, force = T, method=method_use)

proj = addDeviationsMatrix(

ArchRProj = proj,

peakAnnotation = signature_name,

binarize = TRUE,

bgdPeaks = getBgdPeaks(proj, method = method_use),

force = TRUE

)

dr_df = as.data.frame(proj@cellColData)

sig_se = getMatrixFromProject(proj, paste0(signature_name, 'Matrix'))

z_score_mat = t(assays(sig_se)[['z']])

z_score_mat = z_score_mat[match(rownames(dr_df),rownames(z_score_mat)), ]

colnames(z_score_mat) = paste0('z_', colnames(z_score_mat))

stopifnot(identical(rownames(z_score_mat), rownames(dr_df)))

dev_score_mat = t(assays(sig_se)[['deviations']])

dev_score_mat = dev_score_mat[match(rownames(dr_df),rownames(dev_score_mat)), ]

colnames(dev_score_mat) = paste0('dev_', colnames(dev_score_mat))

stopifnot(identical(rownames(dev_score_mat), rownames(dr_df)))

proj = add_df_to_cellcoldata(proj, z_score_mat, force=T)

proj = add_df_to_cellcoldata(proj, dev_score_mat, force=T)

return(proj)
}

signature_list = list(

late_progenitor_tisTreg_sig = late_progenitor_tisTreg_GR,

tisTreg_skin_sig = tisTreg_skin_GR

)

proj_final = archr_add_peak_signatures(proj_final, signature_list, "signatures")

# Overlay signature z-scores on UMAP

p_tisTreg_skin_sig = plotEmbedding(

ArchRProj = proj_final,

(Continued)
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belong to this group themselves, but are the most similar cells in the

dataset in terms of gene scores. This makes the calculated marker

genes very specific for the group in this dataset.

Apart from the gene score matrix, other matrices like the tile

matrix and the peak matrix (which will be introduced in the next

paragraph) can be used as input to identify regions of accessible

chromatin or peaks specific for a group of cells, respectively. See

sections “2.1 Manual cluster-based annotation using prior-

knowledge marker genes” (marker genes), “4.2 Identifying marker

peaks” (marker peaks), and Box 24.

In addition to identifying marker features for a specific group,

differential analysis can be performed on abovementioned matrices

in order to identify differences between two groups, see section “4.3

Pairwise testing between groups” and Box 25.
Creating pseudobulk replicates

Due to the sparse nature of scATAC-seq data, pseudobulk

replicates have to be calculated in order to perform certain

analyses, like peak calling and peak- and motif enrichment

analysis. The creation of pseudobulk replicates is done as

implemented in the original ArchR framework:

Cells are grouped by cluster, and pseudobulk replicates are

created in a sample-aware fashion, if the cluster size and

composition allows for it. It is important to note that pseudobulk

replicates may be created in a sample-agnostic fashion and that cells

may be sampled with replacement if the number of cells from each

sample or the total cell number in a given cluster is lower than

minCells x minReplicates, respectively (Box 26). For

troubleshooting and recommendations see Box 27.
Peak calling using MACS2

On the pseudobulk data created above, we can now perform

peak calling using MACS2 (36). This algorithm handles peak

overlap between pseudobulk samples by iterative peak merging:

Peaks are ordered by significance, and peaks overlapping with the

peak of the highest significance are removed. This process is

repeated until no peaks overlap. Peak calling is showcased in “4

Peak-Calling” and Box 28.

Marker peaks can then be identified in analogy to marker gene

identification as described above, and as shown in section “4.2
Frontiers in Immunology 24
Identifying Marker Peaks” of the script. A heatmap of the marker

peaks for each cluster is shown in Figure 10A, top, with a

dendrogram indicating the similarity of clusters in terms of

marker peaks, as determined by Wilcoxon rank-sum test. Here

we can nicely see how the cell types across tissue types cluster

together. Differential peaks (see “4.3 Pairwise testing between

groups”) between tissue Treg cells and Treg cells from the spleen

are shown in Figure 10A, bottom.
Motif and deviations enrichment,
integrated with motif footprinting
to identify upstream regulators of
chromatin accessibility

After identifying marker peaks for the individual clusters, as well

as differential peaks between two clusters of interest, we can now look

for transcription factor (TF) motifs that are enriched in these peaks.

This gives us insights into which transcription factors are active in a

certain cell type, and into how different cell types differentially depend

on certain transcription factors. To this end, a TF motif-by-peak

matrix is created using motif annotations. The enrichment of certain

motifs in marker peaks can then be analyzed (Figure 10B, top, Box 29,

and “5.2 Motif enrichment in marker peaks”). Further, TF motifs in

differential peaks can be analyzed (Figure 10B, bottom, Box 30, and

“5.3 Motif enrichment in differential peaks”). Batf and associated AP-

1 subunits are detected as enriched TFmotifs in tissue Treg cells from

different tissues, which nicely recapitulates the finding of Delacher

et al. (37, 38). These are further the TF motifs, which are enriched in

peaks differentially present in tissue Treg cells vs Treg cells from the

spleen (Figure 10B).

ChromVAR is an R package designed to infer TF-associated

chromatin accessibility from scATAC-seq data on a single-cell

basis, while accounting for the insertion bias introduced by the

Tn5 transposase (33). For each cell, we calculated the deviation

of accessibility of each motif compared to the expected motif

accessibility based on all cells using ChromVAR, as well as the z-

score, i.e. number of standard deviations a value deviates from

the mean of the dataset. The deviations enrichment analysis

implemented by ArchR is based on the ChromVAR approach,

with adaptations for the processing of large datasets. The Batf

motif z-score calculated with ChromVAR (Box 31) is shown in

Figure 11B, with in increasing z-score from naïve CD4+ T cells,

via early and late precursors to tissue Treg cells.
Continued

R code for calculating signature z-scores and overlaying them on the UMAP embedding

colorBy = "cellColData",

name = "z_tisTreg_skin_sig",

embedding = "UMAP",

plotAs = "points",

size = 0.5

)
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BOX 24 Identifying marker features.

R code for identifying marker features

# Get marker features

markersGS = getMarkerFeatures(

ArchRProj = proj,

useMatrix = "GeneScoreMatrix",

groupBy = "Clusters",

bias = c("TSSEnrichment", "log10(nFrags)"),

testMethod = "wilcoxon"

)

nt
iers in Immunology frontiers25
BOX 25 Differential analysis.

R code for differential analysis

# Get differential peaks between tisTreg and Treg cell clusters

markerTest = getMarkerFeatures(

ArchRProj = proj,

useMatrix = "PeakMatrix",

groupBy = "Clusters",

testMethod = "wilcoxon",

bias = c("TSSEnrichment", "log10(nFrags)"),

useGroups = tisTreg_cluster,

bgdGroups = tTreg_cluster

)

BOX 26 Computing pseudobulk replicates.

R code for computing pseudobulk replicates

# The key parameter here is groupBy, which defines the groups for which pseudo-bulk replicates should be made

proj = addGroupCoverages(

ArchRProj = proj,

groupBy = "Clusters",

minCells = 40,

maxCells = 500,

minReplicates = 2,

maxReplicates = 5,

sampleRatio = 0.8

)

BOX 27 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Parameters for the
generation of pseudobulk
replicates

Parameters to tweak here are minCells, maxCells, minReplicates and maxReplicates, setting the min and max number of cells
used for calculating pseudobulk replicates, and the min and max number of replicates calculated per cluster, respectively.

Sample-aware pseudobulk
replicates

If you are interested in differences between samples as well as clusters, choose minCells in a way that allows pseudobulk
replicates to be calculated in a sample-aware fashion.
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A B

FIGURE 10

Marker peaks and differential peaks with TF motif enrichment. (A) Marker peaks grouped by clusters, with dendrogram indicating the overall similarity
of clusters (top). Volcano plot showing differential peaks between tissue Treg cells and Treg cells from the spleen (bottom) (B) Motif enrichment in
marker peaks grouped by clusters (top). Motifs enriched in tissue Treg cells compared to Treg cells (bottom left) and in Treg cells compared to tissue
Treg cells (bottom right).
Fro
BOX 28 Peak calling.

R code for calling peaks

# You can use the following function to search the path to Macs2

# However, sometimes this might not work and you have to manually add the path

# like it is shown in the second line.

pathToMacs2 = findMacs2()

# If you manually add the path, you have to change this line!

pathToMacs2 = "Path/to/Macs2"

proj = addReproduciblePeakSet(

ArchRProj = proj,

groupBy = "Clusters",

pathToMacs2 = pathToMacs2

)

# add peak matrix to ArchRProject

proj = addPeakMatrix(proj)
nt
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BOX 29 Computing motif enrichment in marker peaks.

R code for computing motif enrichment in marker peaks

# We must first add these motif annotations to our ArchRProject; this

# effectively creates a binary matrix where the presence of a motif in each peak

# is indicated numerically

proj = addMotifAnnotations(ArchRProj = proj, motifSet = "cisbp", name = "Motif")

# We perform motif enrichment on our marker peaks

enrichMotifs = peakAnnoEnrichment(

seMarker = markersPeaks,

ArchRProj = proj,

peakAnnotation = "Motif",

cutOff = "FDR <= 0.1 & Log2FC >= 1"

)

# Plot these motif enrichments across all cell groups

heatmapEM = plotEnrichHeatmap(enrichMotifs,

n = 10,

transpose = TRUE

)

# Visualize

heatmapEM2 = ComplexHeatmap::draw(heatmapEM,

heatmap_legend_side = "bot",

annotation_legend_side = "bot",

row_order = row_order

)

nt
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BOX 30 Computing motif enrichment in differential peaks.

R code for computing motif enrichment in differential peaks between two clusters

# Create SummarizedExperiment object

motifsUp = peakAnnoEnrichment(

seMarker = markerTest,

ArchRProj = proj,

peakAnnotation = "Motif",

cutOff = "FDR <= 0.1 & Log2FC >= 0.5"

)

# Prepare data for plotting with ggplot

# Create a simplified data.frame object containing the motif names, the corrected

# p-values, and the significance rank

df_up = data.frame(TF = rownames(motifsUp), mlog10Padj = assay(motifsUp)[,1])

df_up = df_up[order(df_up$mlog10Padj, decreasing = TRUE),]

df_up$rank = seq_len(nrow(df_up))

# Plot rank-sorted TF motifs and color them by significance of their enrichment

ggUp = ggplot(df_up, aes(rank, mlog10Padj, color = mlog10Padj)) +

geom_point(size = 1) +

ggrepel::geom_label_repel(

data = df_up[rev(seq_len(30)), ], aes(x = rank, y = mlog10Padj, label = TF),

size = 1.5,

nudge_x = 2,

color = "black"

) + theme_ArchR() +

ylab("-log10(P-adj) Motif Enrichment") +

xlab("Rank Sorted TFs Enriched") +

scale_color_gradientn(colors = paletteContinuous(set = "comet")

)
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The prevalence of TF motifs of interest in a certain cell

group can further be evaluated using ArchR’s getFootprints

function (Box 32). Reads in all known binding locations of

the respective TF are combined and insertion counts are plotted

over the distance from the motif center. As can be seen in

Figure 11A, insertion counts increase towards the motif center.

At the motif center itself insertion counts drop, as DNA bases at

the motif center are protected from transposition by TF

binding. Footprinting is performed on the pseudobulk data

generated above to achieve sufficient coverage. Footprint plots

shown in Figure 11A indicate the prevalence of a certain TF

footprint in a certain cluster or cell type. As expected, the

footprint for Batf increases from tissue Treg precursor in the

spleen (C10) to tissue Treg cells in the spleen (C8) to tissue Treg

cells in non-lymphoid tissues (C12, C14, C15).
Analyzing co-accessibility of
genomic regions

To find which peaks are often accessible together, co-

accessibility analysis can be performed on peaks of single cells

across clusters. A typical use case for this approach would be to

identify the regions enriched in regulatory elements (such as

promoters and enhancers) which are likely to operate together.

Since peaks can be very similar within a cell type, co-accessibility

analysis will also find a correlation for peaks specific for a cell type.

Thus, co-accessibility analysis does not allow for identification of

regulatory relationships (see Box 33). Figure 11C, section “8 Co-

accessibility analysis” of the script, Box 34.
Analyzing gene and motif scores
along pseudotime

Trajectory analysis is very useful for analyzing gene expression or

motif enrichment along pseudotime, as a proxy of the “real” time over
Frontiers in Immunology 28
continuous processes such as development and differentiation. The

trajectory analysis approach implemented in ArchR needs prior

knowledge on developmental stages of the cells. In our case we know

that tissue Treg cells develop from early progenitors via late progenitors

and tissue Treg cell in the spleen to tissue Treg cells in non-lymphoid

tissues (39). Along the user-defined backbone (in our case, the set of

clusters C11, C10, C8, C15), a pseudotime vector is calculated as

follows: 1) the mean coordinates for each cluster are calculated in the

LSI subspace, and the top 5% of cells closest to the mean coordinates

will be kept. 2) A pseudotime vector is calculated from the distance of

each cell from a cluster to the mean coordinates of the cluster that

comes next in the user-defined backbone, and a trajectory is fitted. 3)

For all cells in the user-defined clusters, the nearest point to the

trajectory in Euclidian space is found, and cells are aligned to the

trajectory. Gene scores or motif enrichment can then be plotted along

the trajectory (Box 35, section “9 Trajectory Analysis” of the script). In

Figure 12 we plotted the Batf gene score (A) and motif enrichment (B)

along pseudotime from early and late precursors to tissue Treg cells in

the spleen, to VAT tissue Treg cells. We observe a steady increase of

both the gene score and the motif enrichment over pseudotime, which

is what we would expect, considering that Batf orchestrates the tissue

repair program. Further, heatmaps of gene and TF activity along

pseudotime of the top variable genes or motifs are shown. Trajectory

analysis without prior knowledge can be performed using Slingshot

(40) or Monocle 3 (41–43).
Conclusion

In this article, we provide an end-to-end solution covering every

step from the isolation of high-quality CD4+ T cells from murine

tissues, via scATAC-seq library generation and sequencing, to data pre-

processing and advanced bioinformatic analysis. We draw attention to

possible pitfalls and give recommendations regarding delicate steps.

While our method is focused on the chromatin accessibility for tissue

Treg cells, we can anticipate the omics landscape will expand in the

coming years, obtaining simultaneously multi-omics and spatial
BOX 31 Computing ChromVAR deviations enrichment.

R code for predicting enrichment of TF activity on a per-cell basis using ChromVAR

# Add a set of background peaks; sample peaks based on similarity in GC-content and nFrags across all samples using the

Mahalanobis distance

proj = addBgdPeaks(proj)

# Compute per-cell deviations across all of our motif annotations

proj = addDeviationsMatrix(

ArchRProj = proj,

peakAnnotation = "Motif",

force = TRUE

)
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A B
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FIGURE 11

Motif footprinting, chromVAR, and co-accessibility. (A) Batf footprint in tissue Treg precursors (C10), tissue Treg cells from spleen (C8) and tissue
Treg cells from non-lymphoid tissues (C12, C14, C15). (B) TF deviations computed using ChromVAR as ridge plot (top right) and Batf motif z-score as
an overlay on the UMAP embedding (bottom right), next to the Batf gene score. (C) Co-accessibility analysis of Batf.
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BOX 32 Calculating motif footprints.

R code for calculating motif footprints

# Obtain the positions of the relevant motifs

motifPositions = getPositions(proj, name = "Motif")

# This creates a GRangesList object where each TF motif is represented by a separate GRanges object

# We can subset this GRangesList to a few TF motifs that we are interested in

motifs_fp = c("Foxp3", "Batf")

markerMotifs_fp =

unlist(lapply(motifs_fp, function(x)
grep(x, names(motifPositions), value = TRUE)

)

)

# To accurately profile TF footprints, a large number of reads is required.

# Therefore we will use the pseudobulk data stored as group coverages calculated above.

# Compute footprints for the subset of marker motifs defined above:

seFoot = getFootprints(

ArchRProj = proj,

positions = motifPositions[markerMotifs_fp],

groupBy = "Clusters"

)

nt
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BOX 33 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Correlation/
regulatory
relationship

Besides peaks being co-accessible as result of a regulatory relationship, peaks are also often co-accessible in one cell type compared to other
cell types. The latter case simply is correlation, not causation, therefore co-accessibility analysis does not allow for the identification of
regulatory relationships.
BOX 34 Co-accessibility analysis.

R code for co-accessibility analysis

# Calculate co-accessibility

proj_final = addCoAccessibility(

ArchRProj = proj_final,

reducedDims = "IterativeLSI"

)

# Retrieve co-accessibility information via the getCoAccessibility() function

cA = getCoAccessibility(

ArchRProj = proj_final,

corCutOff = 0.5,

resolution = 1000,

returnLoops = TRUE

)

# Plot browser tracks of co-accessibility for our marker genes

markerGenes = "Batf"

p_cA = plotBrowserTrack(

ArchRProj = proj_final,

groupBy = "Clusters",

geneSymbol = markerGenes,

upstream = 50000,

downstream = 50000,

loops = getCoAccessibility(proj_final)

)
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BOX 35 Trajectory analysis.

R code for trajectory analysis

# Create user-defined trajectory backbone

Treg_trajectory_VAT = c("C11", "C10", "C8", "C15")

# Create the trajectory

proj_final = addTrajectory(

ArchRProj = proj_final,

name = "Treg_trajectory_VAT",

groupBy = "Clusters",

trajectory = Treg_trajectory_VAT,

embedding = "UMAP",

force = TRUE

)

# Exclude cells with NA values because these are not part of the trajectory

proj_final$Treg_trajectory_VAT[!is.na(proj_final$Treg_trajectory_VAT)]

# Overlay pseudotime values on UMAP embedding

Treg_trajectory_VAT_p = plotTrajectory(proj_final,

trajectory = "Treg_trajectory_VAT",

colorBy = "cellColData",

name = "Treg_trajectory_VAT",

plotAs = "points"

)

# Plot gene scores and motif enrichment along Treg trajectory

Treg_traj_VAT_p_Batf = plotTrajectory(proj_final,

trajectory = "Treg_trajectory_VAT",

colorBy = "GeneScoreMatrix",

name = "Batf",

continuousSet = "horizonExtra",

plotAs = "points"

)

Treg_traj_VAT_p_Batf = plotTrajectory(proj_final,

trajectory = "Treg_trajectory_VAT",

colorBy = "MotifMatrix",

name = "Batf_790",

continuousSet = "horizonExtra",

plotAs = "points"

)

# Visualize changes in features (MotifMatrix, GeneScoreMatrix) across

# pseudo-time using heatmaps.

# varCutOff (variance quantile cut-off) can be adjusted to set the top variable

# features across the trajectory

# Treg pseudotime GeneScoreMatrix:

Treg_trajGSM = getTrajectory(ArchRProj = proj,

name = "Treg_trajectory_VAT",

useMatrix = "GeneScoreMatrix",

log2Norm = FALSE

)

# Plot:

Treg_trajGSM_p = plotTrajectoryHeatmap(Treg_trajGSM,

pal = paletteContinuous(set = "horizonExtra"),

varCutOff = 0.9

)
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profiles for the system under investigation. Moreover, our

bioinformatics workflow can smoothly be reproduced, expanded, and

adapted to other scenarios, empowering researchers to perform

comprehensive and complex workflows.
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FIGURE 12

Trajectory analysis. (A) from left to right: UMAP colored by clusters; trajectory from C11 early progenitors via C10 late progenitors and C8 tissue Treg
cell in the spleen to C15 VAT tissue Treg cells; Batf gene score is shown over pseudotime; heatmap of top variable features over pseudotime
(B) Analogous to (A), motif enrichment is shown over pseudotime.
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