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BCG mediated protection of
the lung against experimental
SARS-CoV-2 infection
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The observation of reduced COVID-19 incidence and severity in populations

receiving neonatal intradermal BCG vaccination vaccine raised the question of

whether BCG can induce non-specific protection against the SARS-CoV-2

(SCV2) virus. Subsequent epidemiologic studies and clinical trials have largely

failed to support this hypothesis. Furthermore, in small animal model studies all

investigators have failed to observe resistance to viral challenge in response to

BCG immunization by the conventional and clinically acceptable intradermal or

subcutaneous routes. Nevertheless, BCG administered by the intravenous (IV)

route has been shown to strongly protect both hamsters and mice against SCV2

infection and disease. In this Perspective, we review the current data on the

effects of BCG vaccination on resistance to COVID-19 as well as summarize

recent work in rodent models on the mechanisms by which IV administered BCG

promotes resistance to the virus and discuss the translational implications of

these findings.
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Introduction

The innate compartment of the immune system differs from the adaptive in its ability

to provide non-specific defense against a wide variety of threats encountered by the body

and its stimulation is an important strategy for enhancing host resistance to pathogens.

Avirulent microbes and their products are themselves important triggers of innate immune

function and recently have been described to do so with long term effects (1). BCG (Bacille

Calmette Guérin) is a well-studied microbial stimulus for its effects on innate immunity.

This attenuated Mycobacterium bovis strain is widely used to vaccinate against

extrapulmonary tuberculosis (TB) in infants and children and was discovered in the

mid-20th century to also promote non-specific resistance against tumors, a finding that led

to its current employment as a treatment for some forms of bladder cancer (2). More

recently BCG vaccination has been associated with lowering all-cause mortality in infants

(3), reducing viremia after a yellow fever vaccine challenge in adults (4), and decreasing risk

of respiratory infections in the elderly (5). Multiple mechanisms have been proposed to
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explain these effects, the most prominent of which involve the

induction of “trained immunity” in which myelopoietic-derived

innate effector cells become epigenetically modified so that they

remain in a long-term primed state (up to 1 year in humans) (6–8).

BCG is typically administered to vaccinees by intradermal (ID)

or subcutaneous (SC) injection although other routes (e.g. oral)

have been employed in the past (9, 10). Although not clinically

approved, the intravenous (IV) route of BCG administration has

recently been employed in two important studies related to TB

vaccination. In the first study, Kaufmann and colleagues showed

that IV BCG preferentially induces trained immunity in mice

because of its ability to access and infect long lived myelopoietic

stem cells in the bone marrow (7). In the second report, Darrah and

colleagues showed that IV in contrast to SC administered BCG

induces sterile immunity againstM. tuberculosis (Mtb) challenge in

a rhesus monkey model (11), a dramatic finding that the authors

attributed to the direct targeting of the lung and the induction of a

strong local memory T cell response when the vaccine is given by

this route (12). Recent studies indicate that in macaques such

resistance can persist after the clearance of culturable BCG bacilli

(13). Nevertheless, the contribution of BCG stimulated innate

immune mechanisms to this striking protection is at

present unclear.
Clinical evidence for or against the
association of BCG vaccination with
host resistance to COVID-19

Given its previously demonstrated ability to stimulate non-

specific host resistance to certain other viral infections, BCG

immunization was suggested in the early months of the COVID-

19 pandemic as a possible prophylactic measure for the prevention

of SCV2 infection and disease (14, 15). This concept was initially

supported by a number of ecological/epidemiologic studies

suggesting an association of prior BCG vaccination with a lower

incidence of COVID-19 disease (16, 17) despite the relatively short

period (up to 1 year) that “trained” responses have been reported to

persist in vivo (8). This early work was followed up with a large

number of more extensive investigations (summarized in Table 1)

that in general have failed to confirm the protective effects of BCG

vaccination on the incidence and severity of SCV2 infection (18–21,

26–29), including a recently published international multi-cohort

randomized trial (BRACE) involving ID administration of BCG to

adult health care workers (22). One study conducted with a small

cohort of older adults in Greece did note some protection against

the incidence of COVID-19 symptoms; however, the existence of

SCV2 infection in these individuals was not confirmed by PCR or

antibody testing (24). A significant reduction in the incidence and

symptom severity of COVID-19 was also observed in a different

study involving the follow-up of adult diabetes patients given 3 ID

doses of intramural BCG over a 2-3 year period before the onset of

the pandemic (25). The explanation for the unusual efficacy

observed in the latter study is unclear but may relate to the

multiple dosage, the use of a highly virulent BCG isolate (Tokyo
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strain) (30, 31), the spacing between BCG vaccination and SCV2

exposure, or possibly the diabetic state of the participants. Overall,

there is currently no compelling evidence that a single-dose

intradermal BCG inoculation provides protection against SCV2

infection and disease; however, there may be certain conditions that

favor the protective outcomes observed with multiple BCG doses

(25). Future studies examining prolonged or repeated mycobacterial

exposures, either due to population level exposure to environmental

mycobacteria and/or BCG re-vaccination strategies, may provide

further insights into any potential protective effects (32).
Evidence in animal models for
BCG induced protection against
SARS-CoV-2

The hypothesis that prior BCG vaccination might offer

protection against COVID-19 prompted a series of studies in

different animal models to examine the effects of prior BCG

administration on resistance to SCV2 challenge (Table 2). This

work has generated a consensus that when inoculated by the

conventional ID (or subcutaneous) route to mice (33, 35–37) or

hamsters (35, 38) or by aerosol to monkeys (39), BCG fails to trigger

significant protection against intranasal or intra-bronchial infection

with the virus. Nevertheless, a number of independent studies have

shown that when administered by the IV route to mice or hamsters,

BCG can confer high levels of resistance to both SCV2 infection and

disease (Table 2) (33, 34, 38, 40, 41). In the initial description of this

effect, K18 transgenic mice which express the human ACE2

receptor (K18-hACE2) for the virus were IV inoculated with BCG

(Pasteur strain) before intranasal SCV2 infection with a lethal dose

of the WA/2020 strain (33). At 42 days following BCG

administration, the virus challenged mice showed a striking

protection from SCV2 induced weight loss and mortality along

with pronounced reductions in pulmonary viral loads at 5 days post

infection. This protection was still evident 112 days following BCG

inoculation but at lower levels (33). To confirm that the COVID-19

resistance induced by IV BCG is not peculiar to hACE2 transgenic

mice, the experiments were repeated using a second model in which

wild type C57BL/6 mice were challenged with the more virulent

B.1.1.7 SCV2 variant. In this situation unvaccinated mice support

viral replication for 3-4 days before clearing the infection with

minimal accompanying disease. Again, IV BCG induced striking

protection against SCV2 with the majority of the BCG exposed mice

showing no detectable virus in their lungs at 3 days following B.1.1.7

challenge (33). Consistent with the other studies cited above, no

significant resistance against SCV2 was observed in mice inoculated

with the same dose of BCG by the SC route in either of the two

murine models. The ability of IV BCG to protect K18-hACE2 mice

from early SCV2 infection was confirmed in a second study using

the Tokyo strain of BCG and intranasal viral challenge with either

an original “wild-type” strain or more virulent kappa or delta

variants (40). In additional work, IV administered BCG (Tice

strain) was shown to reduce viral loads and bronchopneumonia

in Syrian hamsters challenged intranasally with the Wuhan-1 strain
frontiersin.org
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SCV2 (38). In contrast to the above findings, Kaufmann et al.

reported that K18-hACE2 mice or hamsters given IV (or SC) BCG

(Tice strain) showed no significant protection against intranasal (or

in the case of mice either intranasal or intratracheal) challenge with

a SCV2-B lineage variant. Nevertheless, the same BCG exposed

mice displayed resistance to intranasally administered Influenza A

virus (35). Ongoing follow up studies suggest that the negative

results with SCV2 obtained in the latter study may relate to the BCG

strain (42), its preparation and/or the dose employed for

vaccination (Kaufmann and Hilligan, unpublished).

The consistent failure of SC or ID inoculated BCG to provide

protection against SCV2 infection suggests that the resistance

conferred by IV BCG may relate to the long-term presence

mycobacteria in the lungs and accompanying granulomatous

inflammation occurring in animals inoculated by that route (33,
Frontiers in Immunology 03
40). Consistent with this hypothesis, K18-hACE2 or non-transgenic

mice infected by aerosol with virulent Mycobacterium tuberculosis

and developing pulmonary TB, display high levels of resistance to

SCV2 comparable to that reported in IV BCG exposed animals (37,

43, 44). Nevertheless, as noted above, in rhesus macaques BCG

given by the aerosol route failed to induce protection against SCV2

challenge (39). Since pulmonary bacterial infection and local tissue

responses were not evaluated in that study, it is difficult to ascertain

whether this discrepancy with the rodent studies reflects the

different host species employed or the local levels of BCG and/or

immune responses occurring at that site. Indeed, a comparison

between IV and aerosol inoculation of rhesus macaques by Darrah

et al, showed that only IV BCG resulted in the formation of

“microgranuloma” structures in the lung as well as increased

numbers of CD4+ T cells and CD11c+ antigen-presenting cells (11).
TABLE 1 Summary of human trials investigating BCG efficacy against COVID-19.

Trial
design

Participant
characteristics

BCG
strain

SCV2 outcomes (versus control arm)
Reference

Incidence Severity Other parameters

RCT, ~1000
individuals/

arm

Adult, 60y+ Danish
1331

NC NA Higher SCV2 antibody titers in BCG vaccinated participants (18)

RCT, ~1000
individuals/

arm

Adult, 60y+ VPM1002 NC NA NC in self-reported duration of illness with respiratory tract
infection, but trend towards lower duration in BCG vaccinated
individuals within the cohort who did not received COVID-19-

specific vaccines.

(19)

RCT, ~750
individuals/

arm

Adult, health care
workers

Danish
1331

NC NC (20, 21)

RCT, ~1700
individuals/

arm

Adult, health care
workers

Danish
1331

NC NC Lower cytokine responses in whole blood samples exposed to
irradiated SCV2 in BCG vaccinated individuals (n=25)

(22, 23)

RCT, ~150
individuals/

arm

Adult, 50y+ Moscow Reduced* NA (24)

RCT, 48 in
placebo

arm, 96 in
BCG arm

Adult, type-1
diabetes patients

Tokyo
172, 3
doses

Reduced Reduced (25)

RCT, ~3000
individuals/

arm

Adult, 60y+ with >1
co-morbidities

Danish
1331

NC NC NC in incidence of other respiratory infections (26)

RCT, ~130
individuals/

arm

Adult, health care
workers

Moscow
or

Moreau

NC NA (27)

RCT, ~70
individuals/

arm

Adult, health care
workers

Moscow NC NA (28)

RCT, ~250
individuals/

arm

Adults Not
specified

NC Reduced (29)
NC, no change; NA, not assessed.
*COVID-19 incidence was defined as “possible/probable/definitive” in this study.
These citations are based on a literature search in May 2023.
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Mechanisms underlying BCG
induced resistance to SCV2
infection and disease

It was originally proposed that ID (or SC) administered BCG

might offer protection against COVID-19 because of its previously

documented ability to enhance clinical resistance to other viral

infections, effects that were attributed to the induction of trained

immunity (14, 15). Since in nearly all studies humans vaccinated

with BCG by this route fail to display significant resistance to COVID-

19, it would appear that any response induced by a single-dose BCG

inoculation is not sufficient to restrict SCV2. Nevertheless, it is still

possible that boosting of the response by intradermal re-vaccination

could induce more effective immunity and this could be the basis of the

protection against COVID-19 observed by Faustman and colleagues in

diabetes patients given multiple BCG inoculations (25).

Since with the latter exception BCG induced protection against

SCV2 has not been documented in humans or non-human primates,

nearly all the current information on anti-viral mechanisms derives

from the studies on murine and hamster rodents involving IV

administered bacteria. That route of inoculation has been previously

shown in mice to preferentially stimulate myelopoiesis and the

generation of monocyte/macrophages with a trained phenotype (7).

Consistent with these earlier findings, Zhang and colleagues reported

that IV BCG vaccinated mice challenged with SCV2 display enhanced
Frontiers in Immunology 04
bone marrow myelopoiesis, augmented pulmonary monocyte/

macrophage infiltration and upregulated innate immune and

metabolic gene signatures previously described as associated with

training (40). Although not specifically addressing the issue of

trained immunity, both the NIH murine model study of Hilligan

et al. and hamster study of Singh and colleagues described enhanced

pulmonary macrophage numbers in IV BCG inoculated animals that

likely arise from bonemarrowmonocytes (33, 38). Given the long-term

persistence of both mycobacteria and granulomatous inflammation in

the lungs of IV BCG vaccinated mice (33, 40), it is unlikely that

resistance to SCV2 challenge would require the type of trained myeloid

cells previously described as arising in hosts exposed to a prior single

intradermal bacterial inoculation.

In each of the three studies documenting protection against SCV2

induced by IV BCG, vaccination was shown to simultaneously reduce

pulmonary viral load and virus induced bronchopneumonia, in some

cases as early as 2 days post challenge. Consistent with the latter

observation, in both mouse studies BCG inoculation resulted in

lowered production of SCV2 induced IL-6 and MCP1 (CCL2) (33,

40). Although this decrease could reflect an effect of reduced viral load

in the vaccinated animals, the results of a multivariate analysis

performed in the NIH murine study revealed an inhibitory effect of

prior IV BCG administration on the induction of these pathology

associated cytokines independent of viral titer (33). These data align

with results from the BRACE clinical trial that showed that while BCG

vaccination did not protect against COVID-19 (22), BCG did limit
TABLE 2 Summary of animal studies assessing efficacy of BCG against SCV2 infection and disease.

Animal model Route of BCG administration BCG strain
SCV2 outcomes (versus control group)

Reference
Disease phenotype Viral titers

Mouse, K18-hACE2 SC Pasteur NC (survival and weight loss) NC (33)

Mouse, K18-hACE2 IV Pasteur Improved (survival and weight loss) Reduced (33)

Mouse, wildtype B6 SC Pasteur n/a NC (33)

Mouse, wildtype B6 IV Pasteur n/a Reduced (33, 34)

Mouse, K18-hACE2 SC Tice NC (survival and weight loss) NC (35)

Mouse, K18-hACE2 IV Tice NC (survival and weight loss) NC (35)

Hamster, Syrian Golden SC Tice NC (weight loss) NC (35)

Hamster, Syrian Golden IV Tice NC (weight loss) NC (35)

Hamster, Roborovski SC Tice NC (survival and weight loss) NC (35)

Hamster, Roborovski IV Tice NC (survival and weight loss) NC (35)

Mouse, K18-hACE2 SC Pasteur NC (weight loss) NC (36)

Mouse, K18-hACE2 SC Pasteur NC (survival and weight loss) NC (37)

Hamster, Syrian Golden IV Tice Improved (bronchopneumonia score) Reduced (38)

Rhesus macaque aerosol Danish 1331 NC (pathology score) NC (39)

Mouse, K18-hACE2 SC Tokyo 172 NA NC (40)

Mouse, K18-hACE2 IV Tokyo 172 Modestly improved (weight loss) Reduced (40)

Mouse, wildtype B6 IV Tice Improved (weight loss)* Reduced* (41)
NC, no change; NA, not assessed; n/a, not applicable.
*protective effect only apparent from 21 days after IV BCG inoculation.
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SCV2-induced pro-inflammatory cytokine responses ex vivo,

suggesting that BCG inoculation can modulate virus triggered

immune responses independent of its protective effect (23).

In both mice and hamsters, IV BCG administration led to

pronounced elevations in pulmonary T cells, while only a minor

response was seen in mice given SC BCG. In mice, IV BCG

enhanced lymphocytes were characterized as CD8+, FoxP3− CD4+,

and FoxP3+ CD4+T cells, as well asMAIT cells and their levels did not

significantly increase following viral challenge (33, 38). Indeed, if

anything, prior IV BCG administration appeared to suppress the

CD8+ T cell expansion triggered by SCV2 infection. Somewhat in

contrast, in the hamster model, prior IV BCG inoculation resulted in

an expansion of cells with Th1, Th17, Treg, CTLs or Tmem

transcriptional markers after viral challenge as well as the emergence

of a new plasma cell population not present prior to SCV2 exposure

and expressing genes associated with immunoglobulin production

suggestive of accelerated antibody production. In the same hamster

study, IV BCG vaccination also appeared to dampen the expression of

T cell exhaustion markers triggered by SCV2 infection (38). Together

these observations show that IV BCG triggers the recruitment of

adaptive immune cells into the lung tissue that in addition to

supplying a potential source of protective antibodies may be

important in providing cytokines and other signals that shape the

innate immune landscape. Another interesting possibility is that the

response to the bacteria has hindered the ability of the host to respond

to another inflammatory stimuli.

Type I IFNs are important for control of viral pathogens but in

SCV2 and other virus infections these cytokines can also promote

pathology (45, 46). Interestingly in the NIH mouse model study prior

IV BCG inoculation appeared to suppress rather than augment the

SCV2 triggered Type I IFN response consistent with the suppression

of COVID-19-like pathology observed in these animals. BCG

infection is classically associated with strong IFNg production from

CD4+ T, CD8+ T and NK cells and the cytokine was found to be

heavily induced in the lungs of both mice and hamsters months after

IV BCG inoculation (33, 38, 40). Importantly, this local Type II IFN

response was minimal in mice vaccinated by the SC route consistent

with the dearth of both BCG and its associated granulomatous tissue

inflammation in lungs of these animals in contrast to IV inoculated
Frontiers in Immunology 05
mice. Recent functional studies in the murinemodels suggest that this

IFNg response deriving primarily from CD4+ T cells and acting on

non-hematopoietic cells in the lung is required for the reduction in

both SCV2 virus and its associated pathology and that the

recombinant cytokine itself can trigger these effects (34, 41).

Whether IV BCG induced protection against SCV2 is mediated

entirely through this mechanism or also involves the myeloid, T or

B lymphocytes changes reported to be associated with resistance in

the studies discussed above is at present unclear. A summary of the

different effector mechanisms currently proposed to explain the

protection against SCV2 induced by IV BCG is presented in Figure 1.
Discussion and translational
implications

The findings reviewed above establish a proof of principle in

animal models that single dose BCG can stimulate protection against

SCV2 but only when given IV, a mode of administration that is

currently not clinically acceptable. The data do not rule out the

possibility that through repeated boosting (25) or the use of a

specially engineered bacterial strain (36) protection against COVID-

19 could be generated through conventional ID or SC vaccination

although it is likely that such resistance would involve a different

mechanism. There is currently considerable interest in the possible use

of IV administered BCG for vaccination against M. tuberculosis

because of its ability to confer sterile immunity against this

important pathogen in rhesus monkeys (11, 13). This has stimulated

efforts to develop attenuated BCG mutants (e.g. auxotrophs) that

would be safe for human intravenous use and such strains could be

tested as candidates for protection against COVID-19 (47).

Regardless, the demonstration that bacterial stimulation of the

lung can induce high levels of resistance against SCV2 could lead to

the discovery of novel mechanisms of anti-viral protection with

potential clinical applicability. For example, the recent evidence

that BCG induced IFNg can protect mice from SCV2 challenge (34,

41) raises the question of whether the cytokine could be used

intranasally to protect subjects at high risk of infection possibly

with less risk of toxicity than Type I IFN. It is also becoming clear that
FIGURE 1

Possible mechanisms contributing to IV BCG conferred protection against SCV2 in mice.
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IV BCG is not a unique non-specific stimulus for host protection

against experimental SCV2. In addition to prior M. tuberculosis

infection (37, 43, 44), recent findings indicate that intranasally

administered PRR ligands can also trigger host resistance in the

same murine models (48–50) as can prior infection with a lung-

transiting helminth (51). While seemingly distinct stimuli, it is

possible that they all act by triggering the production of anti-viral

effectors by pulmonary myeloid or epithelial cells.

As noted in the studies reviewed here, IV BCG infection can

trigger long term changes in the cellular composition and adaptive

immune responsiveness of lung tissue. While trained immunity

may contribute [recently reviewed by Netea et al. (52)], other factors

such as bacterial induced tissue remodeling and continuous

immune stimulation by the bacteria surviving within granuloma-

like structures in the lung are in this situation likely to play a more

important role in promoting the long-lived property of the

protection triggered by IV BCG at that tissue site (Figure 1).

Despite its limitations as a vaccine, studies on BCG continue to

provide important insights on the interplay of innate and adaptive

immunity in the host response to pathogens and in this case hopefully

add to our understanding of how the lung can be stimulated to

control both SCV2 and COVID-19 associated pathology.
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