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It has been for thousands of years in China known medicinal homologous foods

that can be employed both as foods and medicines to benefit human and animal

health. These edible herbal materials perform divert roles in the regulation of

metabolic disorders, cancers, and immune-related diseases. Curcumin, the

primary component derived from medicinal homologous foods like curcuma

longa rhizome, is reported to play vital actions in organic activities, such as the

numerous pharmacological functions including anti-oxidative stress, anti-

inflammation and anti/pro-apoptosis in treating various diseases. However, the

potential mechanisms of curcumin-derived modulation still need to be

developed and attract more attention worldwide. Given that these signal

pathways are enrolled in important bioactive reactions, we collected

curcumin’s last achievements predominantly on the immune-regulation signals

with the underlying targetable strategies in the last 10 years. This mini-review will

be helpful to accelerate curcumin and other extracts from medicinal

homologous foods use in future human clinical applications.
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Introduction

Oxidative stress, inflammation, and apoptosis are interrelated

processes that play pivotal roles in a variety of physiological and

pathological conditions (1). Oxidative stress denotes an imbalance

between reactive oxygen species (ROS) production and the body’s

antioxidant defense mechanisms, resulting in cellular dysfunction and

damage (2), while inflammation is an immune system response to

harmful stimuli, such as tissue injury or pathogens, characterized by the

recruitment of immune cells and the release of inflammatorymediators

(3). Oxidative stress has been proven to activate pro-inflammatory

signaling pathways and produce inflammatory cytokines and

chemokines, thereby triggering inflammation (4). In turn,

inflammation can increase oxidative stress by promoting ROS

production and disrupting antioxidant defense mechanisms.

Additionally, oxidative stress and inflammation can activate pro-

apoptotic signaling pathways and inhibit anti-apoptotic pathways,

ultimately leading to cell death (5, 6). Apoptosis, also known as

programmed cell death, is a tightly controlled mechanism of cellular

demise that serves a vital role in maintaining tissue homeostasis and

eliminating damaged or abnormal cells (7, 8). The relationship among

oxidative stress, inflammation, and apoptosis is multifaceted and

complex. Dysregulation of these processes can contribute to the

development and progression of various diseases, including

metabolic disorders, immune-related diseases, and cancers (9–11).

Therefore, it is crucial to comprehend the mechanisms underlying

these processes and identify potential therapeutic targets to regulate

them in preventing and treating these diseases.

The close interplay between oxidative stress, inflammation, and

apoptosis has led to the investigation of medicinal homologous foods

with these properties. Medicinal homologous foods epitomize a

remarkable amalgamation of food and medicine. In addition to

their inherent nutritional value, these foods harbor extracts imbued

with distinct properties that contribute to disease prevention,

treatment, and a range of healthcare benefits (12). Derived from

natural sources, medicinal homologous food extracts encompass

bioactive compounds with notable therapeutic potential, including

polyphenols, flavonoids, terpenes, and alkaloids (13). These

compounds synergistically contribute to the medicinal attributes of

these foods. Curcumin (CUR) is the primary active compound found

in turmeric, constituting approximately 8% of most turmeric

preparations derived from curcuma longa (14). It serves as a widely

used flavoring agent in food supplements and is responsible for

imparting the characteristic yellow color to turmeric spice. Due to its

role in oxidative stress, inflammatory response, and apoptosis, CUR

shows significant pharmacological potential and has exhibited

favorable effects concerning various metabolic disorders, immune-

related diseases, and cancers (15, 16). Growing experimental evidence

revealed that CUR had been shown to scavenge ROS, inhibit the

production of pro-inflammatory cytokines, and modulate various

signaling pathways involved in apoptosis (17, 18). Furthermore, CUR

exhibits an excellent safety profile, with no significant adverse effects

reported even at high doses (19). This feature makes it an attractive

candidate for therapeutic interventions, either alone or in

combination with other drugs, to enhance treatment outcomes and
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minimize side effects. Therefore, the investigation of CUR’s potential

use in the treatment of oxidative stress, inflammation, and apoptosis

can provide valuable theoretical strategies for developing it as a

promising candidate for the prevention and treatment of

various diseases.
The anti and pro-oxidant properties
of Curcumin

Oxidative stress (OS) is a pathological state that results from an

imbalance between the pro-oxidant and the antioxidant species (20).

OS induces several oxidative intermediates and promotes protease

secretion, and neutrophilic inflammatory infiltration, ultimately

resulting in cellular senescence and various diseases, including

cancer, cardiovascular disease, and neurodegenerative disorders (21,

22). Reactive oxygen species (ROS) are by-products produced during

oxygen metabolism, comprising free radicals and non-free radicals that

can cause oxidative damage to cellular components, including lipids,

proteins, and DNA, which can disrupt cellular signaling pathways (23).

As a protective mechanism, cellular antioxidant defense systems,

including SOD (superoxide dismutase), peroxidases, antioxidants,

and vitamins, have evolved as a protective mechanism to maintain

the oxidation-reduction (redox) status by preventing the accumulation

of ROS (24).

CUR is a naturally occurring compound derived from plants

that exhibit anti-oxidative stress properties. Research studies have

reported that CUR effectively attenuates the release of ROS in

various experimental settings, including cell lines, preclinical

models, and clinical samples (25–27). Pretreatment with CUR

regulates the expression of antioxidant enzymes through nuclear

factor erythroid 2-related factor 2 (Nrf2) signaling pathways to

stabilize ROS levels (28). Nrf2 is a transcription factor that plays a

critical role in the cellular response to oxidative stress by regulating

the expression of genes that encode antioxidant enzymes and

detoxifying proteins (29). Under normal conditions, Nrf2 is

inhibited by Kelch-like ECH-associated protein 1 (Keap1), which

targets Nrf2 for ubiquitination and proteasomal degradation. In

response to oxidative stress conditions, specific cysteine residues

within the Keap1 protein undergo oxidation, including Cys-151,

Cys-273, Cys-288, Cys-297, and Cys-257, leading to the dissociation

of the NRF2-Keap1 complex (30). A study conducted on the

therapeutic potential of CUR in mouse skin revealed the binding

of CUR to Keap1 Cys151 (31). This finding suggests that the

modification of this specific amino acid by CUR may play a

crucial role in releasing NRF2 from Keap1, thus highlighting its

potential as a therapeutic target (32). Upon activation, Nrf2

translocates to the nucleus, binding to antioxidant response

elements (AREs) and promoting the expression of ARE genes

(33). The dissociation of NRF2 from the NRF2-Keap1 complex is

an essential step in activating the NRF2/ARE signaling pathway,

which increases the expression of antioxidant enzymes, including

glutathione peroxidase (GPx), superoxide dismutase (SOD), and

catalase (CAT), as well as phase II antioxidant enzymes such as

heme oxygenase-1(HO-1) and NAD(P)H quinone dehydrogenase 1
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(NQO1). These enzymes eliminate ROS and maintain redox

homeostasis (34, 35). Studies have found that CUR enhances the

activities of antioxidant enzymes through the Nrf2 pathway, which

contributes to neutralizing ROS and protecting the host from

damage caused by oxidative stress (36, 37).

A recent study has indicated that CUR can alleviate intestinal

barrier injury and mitochondrial damage induced by oxidative stress

through the activation of AMP-activated protein kinase (AMPK)

pathway (38). AMPK is an important regulator of cellular energy

homeostasis and is activated in response to low energy status. In

addition to its role in energy metabolism, AMPK has been

demonstrated to play a crucial role in the regulation of cellular stress

response pathways, including the Nrf2 pathway (39). Phosphorylation

of Nrf2 by AMPK results in its translocation to the nucleus and

activation of Nrf2-dependent gene expression. AMPK activates Nrf2

through direct phosphorylation at Ser550, leading to the nuclear

accumulation of Nrf2 (40). This phosphorylation enhances Nrf2

transcriptional activity and promotes the expression of Nrf2 target

genes, such as SOD-1 and HO-1, thereby attenuating oxidative stress

and inflammation (41). Therefore, the activation of AMPK enhances

antioxidant defenses and provides cellular protection against oxidative

stress but also represents an important mechanism for CUR to

maintain cellular redox homeostasis and protect cells from oxidative

stress by activating Nrf2 (42).. It is worthmentioning that CUR initiates

a pro-oxidant response that stimulates the ROS and lipid MDA into

less harmful products by inhibiting reduced glutathione (RGS) and

GPx, which enhances cell death in cancer cells (43). Moreover, growing

evidences confirm the effective suppression of gastric cancer cell

proliferation by CUR through the induction of ROS generation,

subsequently triggering apoptosis (44, 45). Overall, a comprehensive

understanding of the intricate details of anti/pro-oxidative properties of

CUR could pave the way for the development of CUR strategies aimed

at preventing and treating oxidative stress-related diseases.
The anti-inflammatory property
of Curcumin

Inflammation is a complex biological response initiated by

diverse stimuli, including pathogens, tissue damage, and cellular

stress. In response to these stimuli, immune and other cells produce

a diverse group of molecules known as inflammatory mediators,

including cytokines, chemokines, prostaglandins, and leukotrienes

(46). While inflammation and inflammatory mediators are essential

for the immune response and play a role in fighting infections and

promoting tissue repair, excessive or chronic inflammation may

develop various diseases, such as autoimmune disorders, metabolic

disorders, and cancer (47–49). Therefore, modulation of

inflammatory mediators has the potential to be a promising

strategy for preventing and treating these conditions.

The efficacy of CUR in modulating the inflammatory response can

be attributed to its capability to regulate multiple signaling pathways

and molecules involved in inflammation. Numerous studies have

demonstrated that CUR exerts anti-inflammatory effects by

inhibiting the activity of several pro-inflammatory mediators,
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including cytokines (e.g., TNF-a, IL-1b, IL-6), chemokines (e.g.,

CXCL8, CCL2), and enzymes (e.g., COX-2, iNOS) (50, 51). The

regulation of the inflammatory response by CUR is attributed to its

ability to block the NF-kB (nuclear factor kappa-light-chain-enhancer

of activated B cells) pathway, which is vital in the inflammatory process

(52). NF-kB, a ubiquitously present transcription factor, critically

regulates the immune response, inflammation, cell proliferation, and

apoptosis while participating in the expression of genes that regulate

cellular responses to various stimuli, including stress, cytokines, free

radicals, and microbial pathogens (53). In an inactive state, NF-kB is

bound to inhibitor proteins, which prevent it from entering the nucleus

and activating gene transcription. Upon activation, NF-kB translocates

to the nucleus and activates the transcription of various pro-

inflammatory genes. Moreover, CUR administration efficiently blocks

the phosphorylation of the inhibitor of kappa B (IKK) and the inhibitor

of NF-kB (IkB), which are necessary for the translocation of NF-kB
into the nucleus in ulcerative colitis and cancer cells (54, 55).

Furthermore, CUR also suppresses the activation of Toll-like

receptors (TLRs) and downstream signaling pathways that lead to

NF-kB activation (56). Overall, these findings indicate that CUR

inhibits TLR activation and blocks the phosphorylation of IKK and

IkB, subsequently preventing the translocation of NF-kB towards the

nucleus. Ultimately, this cascade of events effectively inhibits the

transcription of various pro-inflammatory genes.

The Activator Protein-1 (AP-1) pathway is an important

pathway involved in CUR’s regulation of the inflammatory

response (57). AP-1 is a transcription factor that promotes the

transcription of several pro-inflammatory genes, such as cytokines,

chemokines, and matrix metalloproteinases (MMPs) (58, 59). In

line with this, Woo et al. revealed that CUR blocks AP-1 activation

by inhibiting JNK, which phosphorylates and activates c-Jun (an

AP-1 subunit) (60). Moreover, it has been demonstrated that CUR

can directly bind to c-Jun and inhibit its DNA binding activity,

thereby suppressing the expression of pro-inflammatory genes and

alleviating inflammation (60). Furthermore, CUR can also depress

the activity of inflammation-related enzymes (e.g., COX-2, iNOS)

by inhibiting p38 MAPK signaling (61). Aside from its impact on

inflammatory mediators, CUR has been observed to modulate the

activity of immune cells involved in the inflammatory response,

suppressing the production of pro-inflammatory cytokines TNF-a
and IL-6 by macrophages and inducing the polarization of

macrophages towards an anti-inflammatory M2 phenotype (62).

These studies provide insights into the regulation of signaling

pathways by CUR, which has been shown to inhibit the activation

of NF-kB, AP-1, and MAPK, as well as the expression and activity

of numerous pro-inflammatory mediators, underscoring its

potential as a therapeutic agent for various inflammatory disorders.
The anti and pro-apoptosis properties
of Curcumin

Apoptosis, also referred to as programmed cell death, is a

precisely regulated process that eliminates impaired or unneeded

cells to maintain tissue homeostasis (63). Disruption of apoptosis
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can result in various pathological conditions, including

autoimmune diseases, cancer, and neurodegeneration (11, 64, 65).

Apoptosis is governed by an intricate network of signaling

pathways, which include extrinsic and intrinsic pathways (66).

The extrinsic pathway is triggered by the binding of extracellular

ligands to death receptors (e.g., TNF, Fas receptors). In contrast, the

intrinsic pathway is initiated by intracellular stress signals, such as

oxidative stress and inflammatory response (67, 68). Therefore,

comprehending the molecular mechanisms that regulate apoptosis

and identifying effective strategies for modulating apoptosis is

critical for preventing and treating diseases.

Compelling scientific and dietary evidence has demonstrated

the potential of CUR to induce apoptosis in various cancer cells.

For instance, CUR has been extensively investigated for its

potential to inhibit the PI3K/AKT pathway in cancer cells,

leading to the downregulation of downstream targets such as

mTOR and inducing apoptosis (69, 70). The activation of the

PI3K/AKT pathway, triggered by the production of 3 ’-

phosphorylated phosphoinositides, is a critical signaling

pathway involved in both apoptosis and cell cycle progression

(71). Abnormal activation of the PI3K/AKT pathway hinders

apoptosis by upregulating anti-apoptotic genes such as Bcl-2

and downregulating pro-apoptotic genes like Bax (71). In

addition, CUR is validated to upregulate the expression of

PTEN, a tumor suppressor that negatively regulates PI3K/AKT

signaling, while downregulating the expression of genes involved

in AKT activation (72). Moreover, CUR modulates upstream

regulators of the PI3K/AKT/mTOR pathway, including growth

factor receptors and integrins. Chiu et al. reported that CUR

inhibits the activity of EGFR, a receptor tyrosine kinase that

activates the PI3K/AKT pathway, leading to apoptosis induction

in cancer cells (73). Aside from PI3K/AKT/mTOR pathway, the

Janus kinase/signal transducer and activator of transcription

(JAK/STAT) pathway is another major signaling pathway that

regulates apoptosis (74). The JAK/STAT pathway is a signaling

cascade that plays a critical role in the regulation of cell

prol i ferat ion, di fferent ia t ion, and apoptos is , and i ts

dysregulation has been implicated in various diseases (74). In a

myeloproliferative neoplasms model, CUR activates the JAK2/

STAT pathway, inducing apoptosis and inhibiting proliferation,

thus exerting an antitumor effect on human JAK2-mutated cells

(75). Furthermore, it has been noted that CUR modulates several

apoptotic pathways, including the death receptor and

endoplasmic reticulum (ER) stress-induced apoptosis pathways

(76). The death receptor pathway is initiated when death ligands,

such as TNF and Fas ligand, bind to their respective receptors,

activating caspase-8 and downstream effector caspases, ultimately

leading to apoptosis (77). CUR has been shown to sensitize cancer

cells to death receptor-mediated apoptosis by promoting Fas-

receptor and by activation of caspase-3 and -8 in tumor cells (78).

In addition, CUR activates the ER stress-induced apoptosis

pathway, a critical membranous organelle during apoptosis, and

participates in complex interaction with the mitochondria (79).

Furthermore, in tumor therapy, CUR induces ER stress. It

activates the unfolded protein response (UPR), leading to the
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upregulation of the pro-apoptotic proteins (CHOP and Bax) and

the activation of caspase-3, which ultimately triggers apoptosis

and exerts anti-tumor property (80). Experimental data have

conclusively proved that CUR exerts anti-cancer effects by

promoting apoptosis through several signaling pathways in

cancer cells.

Intriguingly, CUR has also been demonstrated to possess

inhibitory effects on apoptosis in non-cancerous diseases,

expanding its potential therapeutic applications beyond cancer

treatment. In diabetic cardiomyopathy, CUR inhibits apoptosis

and alleviates oxidative stress by eliminating ROS levels and

activating PI3K-AKT signaling pathways, resulting in the

downregulation of caspase-3 and Bax protein expression (81).

Moreover, CUR treatment was shown to attenuate apoptosis and

inflammation by inhibiting JAK2/STAT3 and NF-kB signaling

pathways, which results in the upregulation of Bcl-2, and the

downregulation of Bax and caspase-3 in an acute kidney injury

model (82). In addition, the treatment of CUR enhances the

viability of Saos-2 cells, mitigates apoptosis, improves

mitochondrial membrane function and potential , and

upregulates the phosphorylation of GSK3b and protein kinase B

(AKT) (83). Furthermore, in the gentamicin-induced

nephrotoxicity model, CUR reverses the expression levels of ER

stress markers (CHOP, calpain-2, caspase-12, and cleaved

caspase-7) and decreased apoptotic protein biomarkers

expression (cleaved caspase-3 and Bax) (84). Therefore, besides

its anticancer effects through promoting apoptosis in cancer cells,

CUR has also demonstrated the ability to inhibit apoptosis in non-

cancerous diseases, such as diabetic cardiomyopathy and acute

kidney injury. These significant findings underscore the

multifaceted role of CUR in modulating apoptosis and establish

a foundation for its therapeutic applications in diverse

disease contexts.
Conclusions and perspectives

Curcumin, a bioactive compound present in turmeric, has

emerged as a potential health-promoting agent in the regulation of

various diseases. This mini-review offers a comprehensive

summary of recent advances in elucidating the preventive and

curative effects of CUR on oxidative stress, inflammation, and

apoptosis in non-cancerous diseases and cancers. Generally, CUR

exhibits its antioxidant property through AMPK/Nrf2/ARE/

Keap1 pathway activation, its anti-inflammatory property via

NF-kB/AP-1/MAPK pathways inhibition, and its anti-apoptosis

property by blocking JAK/STAT and ER stress-induced pathways

while activating PI3K/AKT/mTOR pathways in non-cancerous

diseases (Figure 1). Conversely, CUR demonstrates pro-oxidant,

anti-inflammatory, and pro-apoptosis properties in cancers

(Figure 1). Therefore, the future perspectives of CUR ’s

application encompass exploring novel drug formulations,

investigating combination therapy approaches, conducting

disease-specific clinical trials, developing targeted therapies, and

integrating them with lifestyle interventions to optimize its
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therapeutic potential in both non-cancerous diseases and cancers.

However, further research is necessary to comprehensively

elucidate the underlying mechanisms of CUR in alleviating host

diseases and to devise more effective clinical strategies.
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