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Combining different bacteria
in vaccine formulations
enhances the chance for
antiviral cross-reactive immunity:
a detailed in silico analysis
for influenza A virus

Andrés Bodas-Pinedo1†, Esther M. Lafuente2†,
Hector F. Pelaez-Prestel2, Alvaro Ras-Carmona2,
Jose L. Subiza3* and Pedro A. Reche2*

1Children’s Digestive Unit, Institute for Children and Adolescents, Hospital Clinico San Carlos,
Madrid, Spain, 2Department of Immunology & O2, Faculty of Medicine, University Complutense of
Madrid, Ciudad Universitaria, Pza. Ramón y Cajal, Madrid, Spain, 3Inmunotek, Alcalá de Henares, Spain
Bacteria are well known to provide heterologous immunity against viral infections

through various mechanisms including the induction of innate trained immunity

and adaptive cross-reactive immunity. Cross-reactive immunity from bacteria to

viruses is responsible for long-term protection and yet its role has been

downplayed due the difficulty of determining antigen-specific responses. Here,

we carried out a systematic evaluation of the potential cross-reactive immunity

from selected bacteria known to induce heterologous immunity against various

viruses causing recurrent respiratory infections. The bacteria selected in this work

were Bacillus Calmette Guerin and those included in the poly-bacterial preparation

MV130: Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus

epidermidis, Klebsiella pneumoniae, Branhamella catarrhalis and Haemophilus

influenzae. The virus included influenza A and B viruses, human rhinovirus A, B

and C, respiratory syncytial virus A and B and severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). Through BLAST searches, we first identified the

shared peptidome space (identity ≥ 80%, in at least 8 residues) between bacteria

and viruses, and subsequently predicted T and B cell epitopes within shared

peptides. Interestingly, the potential epitope spaces shared between bacteria in

MV130 and viruses are non-overlapping. Hence, combining diverse bacteria can

enhance cross-reactive immunity. We next analyzed in detail the cross-reactive T

and B cell epitopes between MV130 and influenza A virus. We found that MV130

contains numerous cross-reactive T cell epitopes with high population protection

coverage and potentially neutralizing B cell epitopes recognizing hemagglutinin

and matrix protein 2. These results contribute to explain the immune enhancing

properties of MV130 observed in the clinic against respiratory viral infections.
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1 Introduction

Recurrent respiratory tract infections (RRTIs) are a leading

cause of morbidity and mortality in children and adults (1, 2). The

most common cause of RRTIs are seasonal respiratory viruses like

human rhinovirus (HRV), respiratory syncytial virus (RSV) and

influenza A and B viruses (IAV and IBV), among others (3).

Management of these infections is challenging and the search for

new preventive and therapeutic interventions is a subject of intense

research (2, 4). In the absence of effective specific vaccines, an

interesting strategy is the use of poly-bacterial preparations that can

stimulate mucosal immunity and increase the host resistance to

respiratory viral infections (5–7). A relevant example is MV130 that

contains different species of inactivated whole-cell Gram-positive

and negative bacteria (8). MV130 has been shown effective in

reducing the number of RRTIs in both children and adults,

including those of viral etiology (5, 9–11). Moreover, it has been

shown that MV130 immunization protects mice from respiratory

infections caused by influenza A (12) and severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (13). Overall, these data

indicate that MV130 can induce heterologous immunity against

common respiratory viruses. The mechanism by which MV130

mediates protective heterologous immunity has been linked to the

induction of trained immunity, much like with other bacteria-based

formulations like Bacille Calmette-Guérin (BCG) vaccine (14–18).

Trained immunity was originally defined as a kind of non-specific

immunological memory acquired by innate immune cells, involving

epigenetic and metabolic cell reprogramming. Trained immunity

memory is short-lived, usually lasting less than 1 year, and is

independent of T and B cells (19, 20). Although unexplored,

MV130 could also be providing protection against respiratory

viruses by inducing cross-reactive adaptive immunity.

Cross-reactive immunity occurs when preexisting memory T

and B cells elicited by a particular antigen/infectious agent

recognize and respond against different antigens/infections (21,

22). The occurrence of cross-reactive immunity between

unrelated pathogens, including between bacteria and viruses, is

well documented (21, 23–26) and it is facilitated by the poly-

specificity of B and T cell receptors (27–30) and also by the

recognition on small portions within the antigens (epitopes) (31).

Cross-reactive immunity between MV130 and respiratory viruses

remain yet to be verified, as it requires of precision immune

monitoring, testing responses to all potential cross-reactive

antigens and epitopes (32). However, the chance for cross-

reactive immunity can be assessed in silico. To that end, in this

work, we followed an approach consisting on identifying highly

similar peptide sequences between antigen sources (identity ≥ 80%,

over at least 8 residues) and subsequently predicting T or B cell

reactivity (33, 34).

In this way, we obtained the shared peptidome between

common respiratory viruses (IAV, IBV, HRV A, B and C, RSV A

and B and SARS-CoV-2) and BCG and bacteria included in the

MV130 formulation: S. pneumoniae, S. aureus, S. epidermidis, K.

pneumoniae, B. catarrhalis and H. influenzae. Interestingly, the

peptidome space that is shared between the specific bacteria in

MV130 and viruses is non-overlapping, highlighting that
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for cross-reactive immunity. Given that MV130 heterologous

immunity to influenza A virus (IAV) has been confirmed in mice

models, we also determined the potential cross-reactive T and B cell

epitopes with this virus. We found that MV130 contain numerous

potentially cross-reactive T cell epitopes with high population

protection coverage and accessible B cell epitopes in the virion

membrane. Overall, these results support the hypothesis that

MV130 could induce protective cross-reactive immunity against

respiratory viruses, particularly to IAV.
2 Methods

2.1 Microbial proteomes

The entire proteomes of 7 bacteria species and 8 respiratory

viruses were obtained from NCBI after the entries indicated in

Table 1 and assembled into individual files in FASTA format.
2.2 Identification of shared peptides
between microbial proteomes

To identify shared peptides between virus and bacteria

proteomes, the entire viral proteomes were first fragmented into

overlapping 17-mer peptides with a 10-residue overlap.
TABLE 1 Amino acid sequences from pathogens and vaccines
considered in this study.

Pathogen
NCBI
Accession

Proteins/
CDS

Influenza A virus (IAV) GCF_000865725 12

Influenza B virus (IBV) GCF_000820495 10

Human rhinovirus A (HRVA) NC_038311 1

Human rhinovirus B (HRVB) NC_038312 1

Human rhinovirus C (HRVC) NC_009996 1

Respiratory syncytial virus A (RSVA) NC_038235 11

Respiratory syncytial virus A (RSVB) NC_001781 11

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) NC_045512 12

Bacille Calmette-Guérin (BCG) GCF_000009445 4034

Branhamella catarrhalis (BCA) GCF_000092265 1607

Haemophilus influenzae (HIN) GCF_000027305 1597

Klebsiella pneumoniae (KPN) GCF_000240185 5779

Staphylococcus aureus (SAU) GCF_000013425 2767

Staphylococcus epidermidis (SEP) GCF_000007645 2282

Streptococcus pneumoniae (SPN) GCF_000007045 1861

MV130* 15893
fr
* MV130 includes all bacteria but BCG.
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Subsequently, the peptides were used as queries in sequence

similarity searches using BLASTP (35) against the target bacteria

proteomes, previously formatted as BLAST databases. BLAST

searches were performed with default parameters and the e-value

set to 10,000. BLAST results were processed and shared peptides

were identified from ungapped hit alignments including 8 or more

residues with ≥ 80% identity. BLAST searches and processing of

BLAST results were performed using an ad-hoc PERL script that

will be provided by Dr. Reche upon writing request.
2.3 Prediction of T and B cell epitopes

Peptides were assessed as potential T cell epitopes by predicting

their binding to major histocompatibility complex (MHC)

molecules. Peptide binding to MHC class I (MHC I) molecules

was predicted using standalone versions of RANKPEP (36, 37) and

NetMHCpan (38, 39). RANKPEP and NetMHCpan prediction

models were selected to match the size of the peptides if they

include 8 or 9 residues. The binding of peptides with more than 9

residues to MHC I molecules was assessed by evaluating that of all

nested 9mer peptides. Binding of a peptide to a given MHC I

molecule was considered to occur at a 2% Rank cutoff given by both

RANKPEP and NetMHCpan, which allows selecting weak and

strong binders % Ranks of test peptides are obtained by ranking

their predicted binding affinity or binding scores compared to a

large set of random peptides. The use of binding thresholds based

on % Rank removes bias of certain molecules towards higher or

lower predicted affinities and facilitates comparing and combining

predictions by distinct methods. Binding of peptides to MHC class

II (MHC II) was predicted using NetMHCIIpan (40) using a 10%

Rank cutoff, which allows detecting strong and weak binding

peptides. Human MHC II molecules targeted for predictions

included HLA-DR, HLA-DQ, and HLA-DP molecules.

B cell epitopes were predicted using an standalone version of

BepiPred1.0 (41). BepiPred reports antigenicity values per residue

(ai), and a global B cell epitope score (B) was computed as indicated

elsewhere (34, 42) consisting of the average ai value. Peptides with B

value ≥ 0.4 were considered as antigenic or potential B cell epitopes.
2.4 Statistical analyses

c2 tests were used as reported previously (43) to assess whether

the distribution of the cross-reactive epitope sequences in proteins

is proportional to the size of the proteins. The c2-statistics value was
computed using equation 1.

c2 =ok
i=1

(Oi − Ei)
2

Ei
  Eq: 1

In this equation, k is the number of protein antigens, Oi the

number of observed epitopes in antigen i, and Ei the number of

expected epitopes in antigen i if they were distributed

proportionally to the size of the proteins. The null, H0, hypothesis

considers that epitopes are distributed proportionally to the size of
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proteins and it is rejected when the computed c2-statistic value is

above the c2–distribution value at k – 1 degrees of freedom and a

given a value.
2.5 Other procedures

The percentage of the world population that could respond to

CD8 and CD4 T cell epitopes (population coverage) was computed

after their MHC binding profiles using a command line version of

EPISOPT (44) and the IEDB PPC tool at http://tools.iedb.org/tools/

population/iedb_input (45), respectively, considering the relevant

allele expression for the entire world population. The presence of a

C-terminus in potential CD8 T cell epitopes compatible with

cleavage by the proteasome was predicted from the relevant

antigens using PCPS at http://imed.med.ucm.es/Tools/pcps/ with

default settings (46, 47). Ectodomains of hemagglutinin (HA),

neuraminidase (NA) and matrix protein 2 (M2) from IAV (A/

Puerto Rico/8) were identified from UNIPROT accession

H2KIW3_9INFA, H2KIW6_9INFA and H2KIW4_9INFA,

respectively. PyMOL Molecular Graphics System Version 2.4.1

Schrödinger, LLC was used to map peptide sequences in tertiary

structure of influenza A virus hemagglutinin (HA) (PDB: 1RU7)

and to generate molecular renderings. Relative solvent accessibility

(RSA) of peptide residues mapping in HA and M2 protein was

calculated using NACCESS (48) and average solvent accessibility

(ASA) of peptides was computed upon them as reported elsewhere

(42, 49). Venn diagrams were generated using the nVennR package

version 0.2.3 (50).
3 Results and discussion

3.1 Shared peptidome space between
selected bacteria and respiratory viruses

Cross-reactive immunity is much more likely to happen

between antigens with high sequence similarity. However, because

B and T cells recognize small regions in protein antigens (epitopes),

cross-reactivity is better predicted by the volume of peptides

(peptidome) that are shared between antigens (34). Thereby, we

determined the shared peptidomes between 8 common respiratory

viruses (IAV, IBV, HRV A, B and C, RSV A and B, and SARS-CoV-

2) and 7 bacteria species, including BCG and those in MV130. To

that end, we obtained the relevant proteomes and through a BLAST

based approach (details in Methods) identified all unique peptides

with identity ≥ 80% and length ≥ 8 in common between viruses and

bacteria. The results of this analysis are summarized in Table 2. As

noted by previous works, the volume of shared peptides increases

with the size of the proteomes (34, 51). Thus, of all the studied

bacteria and viruses, K. pneumoniae (KPN) followed by Bacille

Calmette-Guérin (BCG) share with SARS-CoV-2 (SARS) the largest

number of peptides, 138 and 102, respectively.

Interestingly, the peptides that are shared between the selected

respiratory viruses and each bacterium in MV130 are largely
frontiersin.org
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distinct, as highlighted by the Venn diagrams depicted in Figure 1.

Within the set of peptides shared by any of the viruses and a

particular MV130 bacterium, only a handful coincides with those

shared with another bacterium. An exception occurs in the case of S.

aureus (SAU) and S. epidermidis (SEP), whose shared peptidomes

with viruses are highly overlapping, as one could expect for they are

closely related bacteria. As a result, the number of peptides that are
Frontiers in Immunology 04
shared between MV130, as a whole, and the different viruses is close

to the sum of peptides that are shared by each bacterium in MV130

(Table 2). This effect is far from trivial as indicates that combining

different bacteria, as those in MV130, increases the chance for cross-

reactive immunity. Moreover, it supports the noted view (34) that a

diverse microbiota helps to fight viral infections (26) by enhancing

cross-reactive immunity.
TABLE 2 Size of the shared peptidome between bacteria in MV130 and respiratory viruses.

ORF IAV IBV HRVA HRVB HRVC RSVA RSVB SARS

Streptococcus pneumoniae (SPN) 1861 12 17 8 13 17 25 31 52

Staphylococcus aureus (SAU) 2767 23 36 8 12 10 39 46 68

Staphylococcus epidermidis (SEP) 2282 27 30 11 14 10 27 30 53

Klebsiella pneumoniae (KPN) 5770 48 57 19 32 21 53 53 138

Branhamella catarrhalis (BCA) 1607 15 18 11 10 9 27 20 38

Haemophilus influenzae (HIN) 1597 25 18 4 9 8 31 20 50

Bacille Calmette-Guérin (BCG) 4045 46 41 13 27 25 32 32 102

MV130 15884 139 163 54 79 72 185 183 360
frontie
ORF, Open Reading Frame; IAV, Influenza A virus; IBV, Influenza B virus; HRVA, human rhinovirus A; HRVB, human rhinovirus B; HRVC, human rhinovirus C, RSVA, Respiratory Syncytial
virus A, RSVB, Respiratory Syncytial virus B; SARS, SARS-CoV-2. Whole dataset available in Supplementary Dataset 1.
FIGURE 1

Comparison of peptidomes shared by respiratory viruses and bacteria in MV130. The sets of peptides that are shared between 8 respiratory viruses
and each bacterium included in the MV130 formulation were compared and represented using Venn diagrams to visualize the overlaps. The number
of peptides in overlapping and non-overlapping regions is indicated. The represented viruses are (from left to right and up to down): IAV: Influenza A
virus; IBV: Influenza B virus; HRVA: human rhinovirus A; HRVB: human rhinovirus B; HRVC: human rhinovirus C, RSVA: Respiratory Syncytial virus A,
RSVB: Respiratory Syncytial virus B; SARS: SARS-CoV-2. The six bacteria species included in MV130 are indicated and colored as follows: S.
pneumoniae (SPN, red); S. aureus (SAU, green); S. epidermidis (SEP, yellow); K. pneumoniae (KPN, blue); B. catarrhalis (BCA, orange); H. influenzae
(HIN, purple).
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3.2 Potential cross-reactive immunity from
MV130 to IAV

The large size of the peptidome shared between MV130 and the

studied respiratory viruses is indicative that MV130 could be a

major source of cross-reactive immunity against these viruses.

However, for the realization of cross-reactive immunity these

peptides must be recognized by the adaptive immune system.

Here, we explored such realization for IAV, since it causes

respiratory infections prevented by MV130 (10, 11) and MV130

confers resistance to lethal IAV challenges in mice (12). To that end,

we predicted the potential of the peptides shared between MV130

and IAV to represent B and T cell epitopes. Briefly, peptides

predicted to bind class I and/or class II MHC molecules (in

human HLA molecules) were considered CD8 and CD4 T cell

epitopes, respectively (details in Methods). Moreover, for

fulfillment of T cell cross-reactivity we required that both, the

IAV peptide and the equivalent MV130 peptide, bind to the same

MHC/HLA molecule. Because B cell reactivity is somewhat less

predictable than T cell reactivity, B cell cross-reactivity was

considered when either the IAV peptide or the equivalent MV130

peptide had a B cell epitope score ≥ 0.4 (details in Methods). In

Table 3, we summarize the results of this analysis. Many more

cross-reactive CD8 than CD4 T cell epitopes were predicted. This is

the expected result, as CD4 T cell epitopes are longer than CD8 T

cell epitopes and there are few peptides in the shared peptidome

with the size required to be CD4 T cell epitopes. Nonetheless, we

realize that we identified fewer cross-reactive T cell epitopes than in

a previous work (33, 34) using Immune Epitope Database (IEDB)

MHC-binding models through the RESTful interface (52).

As expected, the number of distinct cross-reactive B and T cell

epitope peptides correlated with the number of shared peptides and

hence with the size of the proteomes of the bacteria in MV130

(Table 2 and Supplementary Dataset 1). These cross-reactive

peptide epitopes were private, differ between bacteria, and so the

potential cross-reactive immunity of the MV130 formulation is the

sum of each individual bacterium. Hence, MV130 appears to be a

truly enhanced source of cross-reactive immunity. We next

examined in detail the predicted cross-reactive epitopes to

evaluate to what extent they could provide protective immunity

against IAV.
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3.3 Cross-reactive T cell epitopes
between MV130 and IAV target
numerous HLA molecules

MHC molecules restricting T cells are highly polymorphic in

humans (HLA), bind/present distinct sets of peptides that can

nonetheless be overlapping, and are expressed at different

frequency in the population depending on ethnicity and

geography (53, 54). Subsequently, the immunogenicity of any

given T cell epitope varies between individuals, as it is contingent

on the expression/presence of the specific MHC molecule

restricting the epitopes. In Table 4, we show all the potential

cross-reactive T cell peptide epitopes along with their predicted

HLA binding/presentation profiles (details in Methods). We also

show the MHC molecules expressed by C57BL/6 and BALB/c mice

strains that can present these same peptide epitopes (peptides that

were only predicted to bind to mouse MHC molecules are not

shown). Given the key role of CD8 T cells in clearing and containing

viral infections we will pay particular attention to cross-reactive

CD8 T cell epitopes.

MV130 encompasses 37 unique peptide sequences consisting of

cross-reactive CD8 T cell epitopes with IAV that are distributed

through all IAV antigens but M2 (Tables 3, 4). These epitopes are

not distributed proportionally to the size of the IAV antigens as

revealed by c2 statistics (p< 0.005). The largest contributions to c2

statistics are found in non-structural protein 2 (NS2), polymerase

PA and M1 (Figure 2A). In particular, while NS2 and M1 bear more

cross-reactive T cell epitopes than the expected, PA includes fewer

than the expected (Figure 2B). The uneven distribution of cross-

reactive CD8 T cell epitopes throughout the IAV proteome supports

the specificity of T cell cross-reactivity. In fact, it is worth noting

that 24 of the 37 cross-reactive peptides coincide with IAV-specific

CD8 T cell epitopes deposited in the IEDB (Table 4).

The majority of potential MV130-IAV cross-reactive CD8 T cell

epitopes can also be presented by more than one HLA I molecule and

5 of them can also be presented by HLA II molecules (Table 4). The

combined phenotypic frequency in the population of all HLA I

molecules restricting these cross-reactive CD8 T cell epitopes

would imply that MV130 could elicit cross-reactive CD8 T cell

immunity to IAV will in ≥ 95% of the population the regardless of

their genetic background (details in Methods). Bacteria eliciting
TABLE 3 Potential cross-reactive epitopes between MV130 and IAV.

IAV (1) B (2) CD8 T (H) CD4 T (H) CD8 T (M) CD4 T (M)

Streptococcus pneumoniae (SPN) 12 2 4 1 1 0

Staphylococcus aureus (SAU) 25 5 2 0 3 0

Staphylococcus epidermidis (SEP) 27 6 7 1 7 1

Klebsiella pneumoniae (KPN) 48 10 13 1 4 1

Branhamella catarrhalis (BCA) 15 7 4 1 1 0

Haemophilus influenzae (HIN) 25 4 7 1 5 1

MV130 139 34 37 5 21 3
fr
1Number of shared peptides between IAV (Puerto Rico 8 Strain) and bacteria, 2 number of cross-reactive B cell epitopes, H number of T cell epitopes restricted by human MHC molecules;
M number of T cell epitopes restricted by mouse MHC molecules.
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TABLE 4 Potential cross-reactive T cell epitopes between MV130 and IAV.

IAV (1)

ACN|
ANTIGEN

MV130 (2)

ACN|BACTE-
RIA

IAV SEQ (3) HIT SEQ (4)
ID
(%)
(5)

HLA I (6) HLA II (7) H-2I (8)
H-
2II
(9)

IEDB
(10)

YP_418248|
PB1-F2

WP_003657597.1|
BCA|

GQQTPKLEHRN GQLTGKLEHRN 81.81
HLA-A*31:01, HLA-
A*33:01, HLA-B*15:01

– – –

NP_040983|
NS2

WP_041786745.1|
BCA|

WLIEEVRHKLK* WLIELLRHKLK* 81.81

HLA-A*02:01, HLA-
A*02:03, HLA-A*02:06,
HLA-A*03:01, HLA-

A*11:01, HLA-B*07:02,
HLA-B*08:01, HLA-
B*40:01, HLA-B*44:02,

HLA-B*44:03

–
H-2-Kk,
H-2-Kq

–

148643

NP_040982|
NP

WP_164927877.1|
HIN|

SGYDFEREGY* KGYQFEREGY* 80 HLA-A*30:02 – – –
21577

NP_040985|
PB1

WP_001831697.1|
SEP|

LNPFVSHKEI* LNGFVPHKEI* 80 HLA-B*51:01 – –

H-
2-
IEd

–

NP_040978|
M1

YP_005224566.1|
KPN|

PLKAEIAQRL* PTRAEIAQRL* 80
HLA-A*31:01, HLA-

A*33:01
– H-2-Kk –

48376

NP_040981|
NA

YP_005229006.1|
KPN|

TFFLTQGALL* TFFLTFGSLL* 80
HLA-A*23:01, HLA-
A*24:02, HLA-B*08:01

–
H-2-Kb,
H-2-Kd

–
127810

NP_040987|
PB2

YP_005226190.1|
KPN|

LRISSSFSFG LRIISSFGFG 80 HLA-A*32:01 – – –
2133253

NP_040985|
PB1

WP_003658761.1|
BCA|

EKIRPLLIEG EKIRFLLLEG 80 HLA-A*30:01 – – –
212044

NP_040985|
PB1

WP_002484992.1|
SEP|

MDVNPTLLFL* MDVMPTLLHL* 80

HLA-A*02:06, HLA-
A*26:01, HLA-A*68:02,
HLA-B*35:01, HLA-
B*51:01, HLA-B*53:01

–

H-2-Db,
H-2-Dd,
H-2-Dq,
H-2-Kb,
H-2-Kk,
H-2-Kq,
H-2-Lq

–

41282

NP_040978|
M1

WP_002440602.1|
SEP|

DKAVKLYRK* DKLVKHYRKL* 80
HLA-A*30:01, HLA-

A*32:01, HLA-A*33:01,
HLA-B*08:01

HLA-
DRB1*13:02

H-2-Db,
H-2-Dd,
H-2-Kb

–

231836

NP_040984|
NS1

YP_005225903.1|
KPN|

LGDAPFLDRL* LGIAPLLDRL* 80 HLA-B*51:01 –
H-2-Dd,
H-2-Kb

–
_

NP_040983|
NS2

YP_005226633.1|
KPN|

RDSLGEAVMR* RDSLLEAVLR* 80
HLA-A*31:01, HLA-

A*33:01, HLA-A*68:01,
HLA-B*40:01

– – –

1846494

NP_040981|
NA

WP_010869183.1|
HIN|

SVRQDVVAMT SVAQDVDAMT 80
HLA-A*02:06, HLA-

A*26:01, HLA-A*68:02,
HLA-B*35:01

– H-2-Db –

–

NP_040983
NS2

YP_005226684.1|
KPN|

EIRWLIEEVR EIRWMIEELR 80
HLA-A*26:01, HLA-

A*33:01, HLA-A*68:01,
HLA-A*68:02

– – –

–

NP_040987|
PB2

WP_013107773.1|
BCA|

QSLIIAARNI* QSLIGAVRNI* 80 HLA-A*02:03
HLA-

DRB1*11:01
– –

128453

NP_040987|
PB2

YP_005225299.1|
KPN|

LRVRDQRGNV* VRVRLQRGNV* 80
HLA-A*30:01, HLA-

B*07:02
– – –

129735

NP_040980|
HA

WP_005693451.1|
HIN|

QNAINGITNK* QNAIAGLTNK* 80
HLA-A*03:01, HLA-
A*11:01, HLA-A*68:01

HLA-
DRB1*15:01

–

H-
2-
IAs

128451

NP_040980|
HA

YP_005226466.1|
KPN|

LGAINSSLPF* LGVINSGLPF* 80
HLA-A*32:01, HLA-
B*15:01, HLA-B*35:01

– – –
–

(Continued)
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memory CD8 T cells capable of recognizing antigens displayed by

virally infected cells can occur through antigen cross-presentation

(55). This mechanism enables professional antigen presenting cells to

redirect antigens taken from the extracellular milieu for presentation

in the context of HLA I molecules and prime CD8 T cells against
Frontiers in Immunology 07
extracellular antigens (55). There are distinct cross-presentation

pathways, including some that are proteasome dependent, just like

the classical class I antigen presentation pathway (56). In this regard,

29 out of 37 shared peptides defining potential cross-reactive T cell

epitopes have a C-terminus that is compatible with cleavage by the
TABLE 4 Continued

IAV (1)

ACN|
ANTIGEN

MV130 (2)

ACN|BACTE-
RIA

IAV SEQ (3) HIT SEQ (4)
ID
(%)
(5)

HLA I (6) HLA II (7) H-2I (8)
H-
2II
(9)

IEDB
(10)

NP_040978|
M1

WP_010869065.1|
HIN|

LTEVETYVLS LLEVETPVLS 80 HLA-B*40:01 –
H-2-Kk,
H-2-Kq

–
128060

NP_040985|
PB1

YP_005228858.1|
KPN|

KLRTQIPAE KLREQIPAE 88.89 HLA-A*30:01
HLA-

DPA1*02:01/
DPB1*14:01

– –

–

NP_040980|
HA

WP_000260666.1|
SPN|

TVLEKNVTV* AVLEKNVTV* 88.9

HLA-A*02:01, HLA-
A*02:03, HLA-A*02:06,
HLA-A*32:01, HLA-
A*68:02, HLA-B*08:01

HLA-
DRB3*02:02

H-2-Db,
H-2-Kb

–

238314

NP_040982|
NP

WP_164927877.1|
HIN|

GYDFEREGY* GYQFEREGY* 88.9 HLA-A*30:02 – – –
128838

NP_040987|
PB2

WP_001830401.1|
SEP|

FVNRANQRL* FVNRKNQRL* 88.9
HLA-A*02:03, HLA-

A*02:06, HLA-A*33:01,
HLA-A*68:02

– H-2-Kb –

97519

NP_040987|
PB2

YP_005227236.1|
KPN|

QSLIIAAR QSLIIAAR 100 HLA-A*33:01 – – –
128453

NP_040980|
HA

WP_000260666.1|
SPN|

VLEKNVTV* VLEKNVTV* 100
HLA-A*02:01, HLA-

A*02:03
– – –

69459

NP_040983|
NS2

WP_002468856.1|
SEP|

FEEIRWLI* FESIRWLI* 87.5 HLA-B*40:01 –
H-2-Kk,
H-2-Kq

–
–

NP_040985|
PB1

WP_005688698.1|
HIN|

ALANTIEV* ALANTIVV* 87.5
HLA-A*02:01, HLA-

A*02:03
– – –

62904

NP_040985|
PB1

WP_005693559.1|
HIN|

RSKAGLLV* RSKKGLLV* 87.5 HLA-A*30:01 – – –
–

NP_040985|
PB1

YP_499926.1|
SAU|

SMKLRTQI* SPKLRTQI* 87.5 HLA-B*08:01 – – –
128581

NP_040987|
PB2

WP_001832661.1|
SEP|

PNEVGARI* PNEVGRRI* 87.5 HLA-B*51:01 – – –
68545

NP_040984|
NS1

YP_005228222.1|
KPN|

ESDEALKM* ESDELLKM* 87.5 HLA-A*01:01 – – –
97398

YP_006495785|
PA-X

YP_005229545.1|
KPN|

PREEKRQL* PREEWRQL* 87.5 HLA-B*07:02 – – –
–

NP_040987|
PB2

YP_500587.1|
SAU|

FVNRANQR* FVNRKNQR* 87.5 HLA-A*33:01 – – –
97519

NP_040978|
M1

WP_000597995.1|
SPN|

WLKTRPIL* WLSTRPIL* 87.5 HLA-B*08:01 – – –
69642

NP_040981|
NA

YP_005229237.1|
KPN|

ITETIKSW* IGETIKSW* 87.5
HLA-B*57:01, HLA-

B*58:01
– – –

–

NP_040986|
PA

WP_001830509.1|
SEP|

VELAEKTM* VELNEKTM* 87.5 HLA-B*40:01 –
H-2-Kk,
H-2-Kq

–
–

NP_040983|
NS2

WP_010976535.1|
SPN|

LESSSEDL* LESDSEDL* 87.5 HLA-B*40:01 – – –
–

front
(1) Accession and antigen of IAV peptide, (2) Accession of bacteria peptide, (3) Sequence of IAV peptide, (4) Sequence of bacteria peptide, (5) Percentage of identity between IAV and bacteria
peptides, (6) HLA I and (7) HLA II molecules, and (8) Mouse H2-I and (9) H2-II molecules predicted to bind both the IAV and bacteria peptides, (10) Accession of IAV T cell epitope in IEDB
coinciding with IAV cross-reactive peptide (≥ 90% identity and ≥ 8 residues). * Peptides have a C-terminus compatible with cleavage by the proteasome.
iersin.org
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proteasome (Table 4, details in Supplementary Dataset 1). Vaccines

consisting of inactivated virus or viral antigens can likely induce

protective anti-viral CD8 T cell memory thanks to this

same mechanism.

Since only 5 potential cross-reactive CD4 T cell epitopes were

detected (Tables 3, 4), it could be argued that MV130 may not

induce enough T helper (Th) cells to support the whole antiviral

potential of cross-reactive CD8 T cells. However, the percentage of

the world population that could respond to any of these 5 cross-

reactive CD4 T cell epitopes is actually about 33.7% as computed

using the frequency of the relevant HLA II molecules (see Methods).

Moreover, it is likely that there are many more cross-reactive CD4 T

cell epitopes than those detected through our methodology. In fact,

CD4 T cells are in general more cross-reactive than CD8 T cells and

can recognize many distinct peptides despite sharing little sequence

similarity (57, 58). In this context, our findings explain the increase

(~ 30-fold) in the influenza virus-specific CD8 T cell response,

following MV130 treatment in patients with RRTI (5).

In this study, we trusted the detected T cell cross-reactivity

between MV130 and IAV on the predicted binding of shared

peptides to the same HLA alleles. However, binding of peptides

to MHC molecules is not enough to guarantee T cell reactivity in

vivo. Thus, it has been shown that peptides with high binding

affinity for MHC molecules in vitro can nonetheless be excluded

from T cell recognition in vivo, very likely due to a lack of

appropriate antigen processing (59). Hence, the actual realization

of the predicted T cell cross-reactivity from MV130 to IAV is

contingent on the appropriate processing of antigens. This

processing will involve, on the one hand, the uptake of bacteria

by antigen-presenting cells, processing of bacteria antigens and

presentation of peptide antigens by HLAmolecules to prime T cells.

On the other hand, it will require that IAV infected cells and/or

antigen-presenting cells that have captured IAV antigens do also

process the antigens and present the counterpart peptides by the

same HLA molecules. These antigen processing events were not

taken in consideration in this study because of their complexity and

because they are less predictable than binding to MHC molecules.

Thereby, in vivo studies are required to confirm the predicted T cell

cross-reactivity of MV130 to IAV. Given that there are cross-
Frontiers in Immunology 08
reactive CD8 T cell epitopes restricted by both human and mouse

MHC molecules (Table 4), mouse infectious disease models could

be used to identify cross-reactive immunity relevant to humans and

contribution to IAV protection.
3.4 Cross-reactive B cell epitopes between
MV130 and IAV could be neutralizing

Preexisting protective cross-reactive immunity to virus is more

often linked to T cells (21, 60). However, cross-reactive antibodies

between viruses and bacteria have been reported (61, 62) and we

have previously shown that the spike protein of SARS-CoV-2

includes potentially neutralizing B cell epitopes that are shared

with bacteria targeted by diphtheria-tetanus vaccines (33, 34).

Thereby, we investigated MV130 cross-reactive B cell epitopes

mapping on the ectodomains of IAV proteins that are known be

targeted by antibodies hampering viral entry. These proteins are

HA, NA and M2. We found 8 of such cross-reactive B cell epitopes

in HA, one in M2 and none in NA (Table 5). The average solvent

accessibility (ASA) of these cross-reactive B cell epitopes (details in

Methods) is greater than 25% (Table 4), indicating that they are

readily accessible to antibodies. Moreover, we verified that 5 of these

cross-reactive B cell epitopes coincide with experimentally

determined B cell epitopes deposited at IEDB, including

LLTEVETP, which matches a known B cell epitope in M2

annotated as neutralizing in IEDB (targeted by neutralizing

antibodies). M2 is a proton-selective transmembrane ion channel

located in the viral envelope required for the efficient release of the

IAV genome into host cells (63, 64). Interestingly, only the N-

terminal region of M2 (residues 1-22) surfaces the virion membrane

and it is in this precise region that lays LLTEVETP (residues 3-10).

This region is extremely conserved across all reported influenza A

viruses and hence cognate antibodies could provide heterotypic

influenza immunity. Although our approach did not yield any

cross-reactive T cell epitope in M2, CD4 and CD8 T cell epitopes

in M2 ectodomain have been reported that can mediate protective

immunity to IAV (65, 66). Whether these T cell epitopes could have

been predicted as cross-reactive using less stringent criteria of
A B

FIGURE 2

Antigen-size distribution of MV130 cross-reactive CD8 T cell epitopes in IAV. (A) Contribution to c2 -statics of each IAV antigen for the distribution
of cross-reactive epitopes according to the size of antigens (B) Representation of the number of observed (grey bars) and expected (black bars)
cross-reactive CD8 T cell epitopes in each IAV antigen. The number of residues of each antigen is shown in parenthesis adjacent to the antigen
name.
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similarity is something to consider. The main target of neutralizing

antibodies against IAV is however HA, as this protein dominates

the surface of IAV and facilitates viral entry into host cells (57).

Hence, we investigated the neutralizing potential of HA cross-

reactive B cell epitopes by mapping them on the 3D-structure of

HA and examining relevant structural information.

The mature HA includes 3 HA1 and 3 HA2 subunits –derived

from the same polypeptide chain – that fold into a trimeric structure

depicting a globular head domain and a stem domain (Figure 3A)

The globular domain is made of HA1 subunits and includes the

receptor binding domain (RBD), which attach sialic acid in various

membrane proteins, facilitating viral entry (67). This globular

domain, particularly the vicinity of the RBD, is hence the subject

of recognition by many neutralizing antibodies (68). Most of the

selected cross-reactive B cell epitopes map in the surface of the

globular domain, relatively close to the RBD (Figure 3A). Thus, one

could speculate that antibodies recognizing these B cell epitopes

could impede IAV attachment to host cells and block viral entry.

This effect can be readily visualized for the cross-reactive B cell

epitope PKESSWPN (HA residues 120-127) (Figures 3A, B), since

this epitope is adjacent to the 130-loop (residues number 134-142)

which takes part of RBD (67). To a lesser extent, the stem domain

can also be the target of neutralizing antibodies, which generally

interfere with conformational changes required for IAV membrane

fusion (67, 68). Interestingly, one of the cross-reactive B cell

epitopes in the stem domain of HA is AIAGFIEG (Figures 3A,

C), which coincides with a known B cell epitope recognized by

neutralizing antibodies (Table 5) (69). Thereby, we can foresee that
Frontiers in Immunology 09
the neighboring cross-reactive B cell epitope QNAINGITNK could

also be neutralizing (Table 5 and Figure 3A).
4 Conclusion and limitations

Our findings indicate that MV130 is an enhanced source of

cross-reactive immunity to common respiratory viruses and in

particular to IAV, which result of combining distinct bacteria in

the same formulation. MV130 indeed present many potential cross-

reactive T cell epitopes with IAV that are restricted by a broad

spectrum of HLA molecules. Hence, MV130 could induce anti-IAV

T cell responses in individual regardless of their genetic

background. Likewise, MV130 encompasses many potential cross-

reactive B cell epitopes mapping in critical regions of IAV

membrane proteins, so that neutralizing antibodies may also be

induced. In sum, cross-reactive adaptive immunity surely

contributes, together with trained innate immunity, to the

heterologous antiviral immunity associated with MV130.

It is worth noting some limitations that could affect our results.

First, we relied heavily on sequence similarity to anticipate potential

cross-reactive epitopes. However, antigen receptors can recognize

diverse antigens and the structural bases for their promiscuity are ill

defined. Antigen recognition by T cell receptors can be particularly

subtle (70). Thus, while an individual T cell clone can cross-

reactively recognize many diverse peptides (71), a single amino

acid change in a TCR contact of a cognate peptide can greatly alter

T cell recognition (72). Secondly, we did not take in consideration
TABLE 5 Potential MV130-IAV cross-reactive B cell epitopes on ectodomains of HA and M2.

IAV (1)

ACN/ANTIGEN
MV130 (2)

ACN|BACTERIA|
ID (3)

(%) IAV PEP MV130 PEP B (4) ASA (5) (%) IEDB (6)

NP_040980
HA

WP_005693451.1|HIN| 80.0 QNAINGITNK QNAIAGLTNK 0.4 44.50
1180011

NP_040980
HA

YP_005224881.1|KPN| 87.5 AIAGFIEG AIAGQIEG 0.6 27.43
163243*

NP_040980
HA

YP_005229187.1|KPN| 87.5 LSRGFGSG LSRGFASG 0.4 25.80
538658

NP_040980
HA

WP_161375000.1|SEP| 87.5 GIITSNAS GAITSNAS 0.7 31.03
–

NP_040980
HA

YP_005220833.1|KPN| 87.5 LCRLKGIA LCRLFGIA 0.5 30.05
–

NP_040980
HA

WP_003659222.1|BCA| 87.5 REKVDGVK RQKVDGVK 0.7 50.02
–

NP_040980
HA

YP_005227766.1|KPN| 87.5 PKESSWPN PDESSWPN 2.0 59.89
–

NP_040980
HA

WP_002440219.1|SEP| 87.5 KKGKEVLV KKGKVVLV 0.4 32.76
151030

NP_040979
M2

YP_499789.1|SAU| 87.5 LLTEVETP LLTMVETP 0.4 82.20
59316*
fro
(1) Accession and antigen source of IAV peptide, (2) Accession of bacteria antigen from BLAST hit, (3) Percentage of identity between MV130 peptide hit to equivalent IAV peptide, (4) B cell
reactivity as predicted by Bepipred1.0, (5) Average solvent accessibility of IAV peptides computed after RSA values of peptides residues obtained from the relevant 3D-structures (HA: PDB 1RU7;
& M2: PDB 5DLM). (5) Accession of B cell epitope in IEDB coinciding with cross-reactive epitope (≥ 90% identity and ≥ 8 residues). * Epitopes annotated in IEDB as neutralizing (targeted by
neutralizing antibodies).
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antigen processing to predict potential cross-reactive T cell

epitopes, nor evaluated the solvent accessibility of linear B cell

epitopes in bacteria. These considerations along with the fact that

epitope prediction is not a precise science could limit the realization

of the predicted cross-reactivity between MV130 and IAV.

Therefore, it is important to stress the need for experimental

validation of the cross-reactive epitopes predicted in this work.
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FIGURE 3

Cross-reactive B cell epitopes between MV130 and HA. (A) Molecular surface of HA with ribbon structure underneath showing cross-reactive B cell
epitopes. HA1 and HA2 chains have been colored in blue and pink, respectively, and the RBD in yellow. Cross-reactive epitopes mapping in HA1 and
HA2 are colored in orange and deep purple, respectively. Globular and stem domains are labeled as well as the RBD. The regions circled and labeled
as B and C points to cross-reactive B cell epitopes PDESSWPN and AIAGQIEG, which are zoomed in the corresponding right panels. (B) Stick
rendering of cross-reactive B cell epitope PDESSWPN. (C) Detail of cross-reactive B cell epitope AIAGQIEG in stick rendering.
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