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People who use drugs show no
increase in pre-existing T-cell
cross-reactivity toward SARS-
CoV-2 but develop a normal
polyfunctional T-cell response
after standard mRNA vaccination
Murat Gainullin1,2,3†, Lorenzo Federico1,3†, Julie Røkke Osen1,3,
Viktoriia Chaban1,3, Hassen Kared1,3, Amin Alirezaylavasani1,3,
Fridtjof Lund-Johansen3,4,5, Gull Wildendahl6,
Jon-Aksel Jacobsen6, Hina Sarwar Anjum6, Richard Stratford2,
Simen Tennøe2, Brandon Malone2, Trevor Clancy2,
John T. Vaage3,5, Kathleen Henriksen6,7, Linda Wüsthoff8,9*†

and Ludvig A. Munthe1,3*†
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Oslo, Norway, 2NEC OncoImmunity AS, Oslo, Norway, 3Department of Immunology, Oslo University
Hospital, Oslo, Norway, 4ImmunoLingo Convergence Center, Institute of Clinical Medicine, University
of Oslo, Oslo, Norway, 5Institute of Clinical Medicine, University of Oslo, Oslo, Norway, 6Agency for
Social and Welfare Services, Oslo, Norway, 7Student Health Services, University of Oslo, Oslo, Norway,
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People who use drugs (PWUD) are at a high risk of contracting and developing

severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to

their lifestyle, comorbidities, and the detrimental effects of opioids on cellular

immunity. However, there is limited research on vaccine responses in PWUD,

particularly regarding the role that T cells play in the immune response to severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that

before vaccination, PWUD did not exhibit an increased frequency of preexisting

cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that

opioids have on T-cell immunity, standard vaccination can elicit robust

polyfunctional CD4+ and CD8+ T-cell responses that were similar to those

found in controls. Our findings indicate that vaccination stimulates an effective

immune response in PWUD and highlight targeted vaccination as an essential

public health instrument for the control of COVID-19 and other infectious

diseases in this group of high-risk patients.
KEYWORDS

people who use drugs, SARS-CoV-2 vaccination, T cell responses, T cell subsets, T cell
functionality, antiviral immunity, opioids and immune responses
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1 Introduction

People who use drugs (PWUD) are at increased risk to be

infected with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) and present with severe coronavirus disease 2019

(COVID-19) due to possible immunosuppressive effects linked to

their lifestyle (1, 2), higher rates of comorbidities (3, 4), and reduced

average life span (5–10). Several studies expressed concerns

regarding the potential of severe infection and greater mortality

risks following SARS-CoV-2 infection in this group (11–21).

Indeed, PWUD were at greater risk of being diagnosed with

COVID-19, had a more severe course of the disease, and had

greater COVID-19-related mortality (12, 22–25). Notably, the

unfavorable immunological correlates of this high-risk group

could be the result of direct and indirect effects of opioids on

both innate and adaptive immune responses. An example of this is

the suppressive effects that opioids have on antiviral T-cell

responses, release of pro-inflammatory mediators, and antigen

presentation (26–30).

Before vaccination, it became clear that a subset of the general

population developed asymptomatic COVID-19 and that the

responses in such settings could depend on T-cell cross-reactivity

toward seasonal human coronaviruses (HCoVs) (31, 32). Thus, it

was possible that the higher rate of community-acquired infections

in PWUD may have increased T-cell immunity to seasonal HCoV

and consequently augmented cross-reactive T-cell immunity

toward SARS-CoV-2.

The importance of cellular immunity for a rapid and efficient

resolution of COVID-19 has been emphasized in previous reports

(33, 34). T cells are necessary for protection against severe COVID-

19 before patients develop protective antibody responses (35) and

for rapid viral clearance in patients who lack antibodies (36).

Protective T-cell response in COVID-19 patients relies on

appropriate T-cell phenotypes, and multiple correlates of

protection have been extensively described in the literature (33,

34, 36, 37).

To date, T-cell immune response to vaccination has not been

fully evaluated in PWUD: it is expected that the risk of co-

morbidities and ongoing infections and the level of systemic

inflammation and opioid use may contribute to reduced vaccine-

specific T-cell activation in these individuals. We and others have

shown that PWUD seroconvert after standard vaccination (38, 39),

but whether PWUD can mount a vaccine-specific T-cell response

remains to be determined. The clarification of this aspect of the

immune response to SARS-CoV-2 vaccine is particularly important,

as deranged T-cell immunity has been previously described in

PWUD (26–30).

Here, we defined a priori T-cell immune response against a

large set of SARS-CoV-2 peptides using Peripheral blood

mononuclear cells (PBMC) collected in 2020 from non-exposed

seronegative PWUD who were still antigenically naive to SARS-

CoV-2. Then, we evaluated SARS-CoV-2 vaccine-generated

polyfunctional T-cell response in PBMC collected the following

year from another cohort of PWUD who received standard mRNA

vaccination. Our data show no evidence of pre-existing SARS-CoV-

2 cross-reactivity but indicate the existence of a robust
Frontiers in Immunology 02
polyfunctional T-cell response in PWUD after standard

mRNA vaccination.
2 Materials and methods

2.1 Study design and participants

From 19 November 2020 to 9 February 2021, pre-vaccination

blood was collected from a group of 19 people who use drugs

(PWUD). All except one patient were HIV seronegative, and seen

subjects received replacement therapy with methadone or

buprenorphine. None of the patients presented detectable levels

of anti-SARS-CoV-2 RBD or nucleocapsid IgG antibodies in the

serum and had no history of COVID-19 infection. The post-

vaccination cohort consisted of 25 PWUD donors. For this group,

blood collection was performed in November 2021, 10–30 weeks

after the participants had received their second dose of (mRNA)

vaccines Moderna/mRNA-1273 or Pfizer/BioNTech BNT162b2.

One of these donors received only one dose of mRNA vaccine

but was diagnosed with SARS-CoV-2 46 days before blood

sampling. One patient of this group had HIV and was on

antiretroviral therapy, whereas eight subjects from this group

belonged to the pre-vaccination cohort. Patients on medication-

assisted rehabilitation were predominantly prescribed methadone

or buprenorphine. See Supplementary Tables S1, S2 for a summary

of the clinical information and characteristics of all study

participants. In addition, we tested 12 cryopreserved PBMC

samples previously bio-banked from non-exposed seronegative

healthy donors (HD) and five samples collected from COVID-19

convalescent donors. A cohort of 21 healthy subjects who also

received two doses of mRNA vaccines was used as a control for

post-vaccination studies.
2.2 Ethics approval

This study and all biobanking procedures carried on at Oslo

University Hospital were approved by the Norwegian Regional

Ethics Committee (approval nos. 166545 and 135924) and the

Data Protection Officer at the Oslo municipality. Informed

consent was obtained from all participants.
2.3 Samples and PBMC isolation

PBMC and serum samples were collected at a single time point

for each patient (Supplementary Table S2).

PBMCs were isolated from the whole blood using either Cellular

Preparation Tubes (CPT) tubes (BD vacutainer, # 362782) or

Lymphoprep™ (Serumwerk Berburg, # 1858). CPT tubes were

spun at 1,600g for 25 min at RT and plasma collected and stored

at −20°C for future analysis. Lymphoprep™ isolation was

performed according to the manufacturer’s instructions. Briefly, a

1:1 mix of blood and PBS (35 mL) was layered onto 10–15 mL

Lymphoprep™ solution in a 50-mL Falcon tube. Tubes were then
frontiersin.org
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centrifuged for 25 min at 800g and PBMC collected, washed in PBS

(Gibco, # 10010-015), and spun three more times (400g, 7 min, 4°C)

before being counted and resuspended in Fetal bovine serum (FBS)

(Gibco, # 10270-106) complemented with 10% Dimethyl sulfoxide

(DMSO). After overnight pre-chilling at −80°C in Mr. Frosty

(Nalgene™, # 5100-0001), cells were transferred to liquid

nitrogen for long-term storage.
2.4 Serological analysis

IgG anti-RBD (BAU/mL) and IgG anti-nucleocapsid serum

antibodies were quantified using a multiplexed bead-based assay

as previously described (40).
2.5 Proliferation and IFNg release in T-cell
assays with single peptides

To test SARS-CoV-2-specific reactivity of T cells from pre-

vaccinated donors, PBMC from each patient were distributed on a

96-well round bottom cell culture plate at a concentration of 3×105

cells per well (~5×104 and ~1×105 CD8+ and CD4+ T cells,

respectively) and stimulated with a pool of SARS-CoV-2 peptides

(one peptide per well at 1.5 µg/mL: final volume = 200 µL per well; for

the list of the 9–10-mer peptides used in these studies, see

Supplementary Methods) (41, 42). At day 3, supernatants (SN)

were collected for cytokine analysis (ELISA), after which methyl-3H

thymidine (Hartmann Analytic GmbH, 0.02 mCi/mL) was added for

cell proliferation assessment. After a 5- to 6-day incubation period,

cells were harvested and counted using a PerkinElmer MicroBeta2

2450 Microplate Scintillation Counter. Proliferation data were

calculated by subtracting the background signal (unstimulated

cells). IFNg ELISA was performed on supernatants using the

following reagents: IFNg monoclonal antibody (2G1, Invitrogen),

Human IFNg ELISA Standard Recombinant Protein (eBioscience),

biotinylated IFNg monoclonal antibody (B133.5, Invitrogen),

horseradish peroxidase substrate TMB solution (Merck), and

Streptavidin-rHRP (Southern Biotech). Plates were read with a

Tecan multiplate reader. IFNg levels were calculated by subtracting

the background signal from unstimulated control wells or the average

signal from the six wells with peptides that gave the lowest response.
2.6 SARS-CoV-2 peptide pools used in
the study

Two collections of lyophilized 15-mer peptides with 11 amino

acid overlaps were used in this study: one (PepTivator® SARS-CoV-2

Prot_S; Militenyi, # 130-126-700) covered the immunodominant

regions (aa 304–338, 421–475, 492–519, 683–707, 741–770, 785–

802, and 885–1,273), and the other (PepTivator® SARS-CoV-2

Prot_S Complete; Miltenyi, # 130-127-953) covered the entire

length of the SARS-CoV-2 S glycoprotein (aa 5-1273; Protein

QHD43416.1, GenBank MN908947.3). The combination of these

two pools was named “Peptivator mix” and used to stimulate cells. In
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addition to the Peptivator mix, a collection of 101 9/10-mer spike and

non-spike peptides identified by the NEC Immune Profiler (NIP)

algorithm (43) was used to test CD8+ T-cell response. These epitopes

were selected as top binders for the most prevalent HLA types in

Norway, including HLA-A*01:01, HLA-A*02:01, HLA-A*03:01,

HLA-A*23:0, HLA-A*29:02 HLA-B*07:02, HLA-B*08:01, HLA-

B*15:01, HLA-B*15:02, HLA-B*40:01, HLA-B*44:02, HLA-C*03:03,

HLA-C*04:01, HLA-C*07:01, and HLA-C*07:02. Among these

peptides, 43 derived from the spike protein and 58 from non-spike

regions (see Supplementary Methods). Additionally, a pool of 23 9/

10-mer spike peptides (the NOI pool) validated in our laboratory (41,

42) was used to identify vaccine response. The list of peptides is

shown in Supplementary Methods.
2.7 Flow cytometry and T-cell activation-
induced marker assay

Quantification of T-cell activation was performed using the

activation-induced marker assay (AIM) as described (41, 44–46).

Briefly, stimulated PBMCs were washed in cold RPMI 1640

medium with GlutaMAX™ supplement and enriched in live cell

using the magnetic column protocol according to manufacturer

instructions (MACS MultiStand, # 130-042-303 with OctoMACS™

Separator). PBMCs (10 million cells per mL) were then distributed

on a 96-well round bottom cell culture plate (200 mL/well) in

TexMACS medium (Miltenyi, # 130-096-197) supplemented with

1 mmol/L Sodium Pyruvate (Gibco # 11360-039), 1 mmol/L MEM

NEAA (Gibco # 11140-035), 50 nmol/L 1-thioglycerol (Sigma-

Aldrich, # M1753), 12 mg/mL Gentamycin (VWR, # E737), and

20 U/mL IL-2 (R&D # AFL202). After 3 h incubation, cells were

washed and treated (1 h) with 15-mer or 9/10-mer peptide pools

(1.5 µg of peptide/mL in a final volume of 200 µL per well) in the

presence of anti-CD28/CD49d co-stimulatory antibodies (BD #

347690) at a final concentration of 1:200. At this time, BV711

anti-human CD107a antibody (Clone H4A3; BioLegend, # 328640)

was added for assessment of T-cell degranulation by flow. After an

additional 18 h incubation with Brefeldin A/Monensin cocktail

(GolgiStop 500X, Invitrogen # 00-4980-93), which improves assay

sensitivity (47), cells were washed once in 1× PBS containing 5%

FBS and 0.1% sodium azide, and then stained in the dark for 10 min

with 0.5 mL of Fixable Near IR Live/Dead viability stain (Molecular

Probes, # L34976) in a 10-mL final volume of cold PBS containing

5% FBS. Cells were then permeabilized at 4°C for 20 min in 100 mL
BD Cytofix/Cytoperm solution (BD # 554714) and washed two

times in 200 µL of 1× BD perm/wash solution (BD Biosciences

Fixation and Permeabilization kit; # 554714). They were then

stained in 20 µL of 1× BD perm/wash solution containing the

following fluorochrome-conjugated antibodies: AF488 anti-human

IL-2 (Clone MQ1-17H12; BioLegend, # 500314), PerCP-Cy5.5 anti-

human CD8 (Clone RPA-T8; BioLegend, # 301032), PE anti-human

CD137 (Clone 4B4-1; BioLegend, # 309804), PE-CF594 anti-

human Granzyme B (Clone GB11; BD # 562462), PE-Cy5 anti-

human (CD4 Clone RPA-T4; BD # 566925), PE-Cy7 anti-human

TNF (Clone MAb11; Invitrogen, # 25-7349-82), AF647 anti-human

IFNg (BioLegend, #502516), BV510 anti-human CD40L (Biolegend,
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#310830), BV605 anti-human CD3 (Clone SK7; BD # 563219), and

BV421 anti-human Perforin 1 (Clone dG9; BioLegend # 308122).

Antibody concentrations were used according to manufacturer

instructions. After a 30-min incubation in the dark, cell pellets

were washed once in PBS, resuspended, and acquired on an Attune

NxT Flow Cytometer (Thermo Fisher). Further replicate assays

were performed similarly, but with a simplified staining panel (see

Supplementary Methods).
2.8 T-cell response analysis

Responding T cells were identified using the “OR” Boolean

gating (FlowJo’s Boolean analysis tools) that were found within

regions double positive for the following marker pairs: CD137+

CD154+, CD154+ IFNg +, CD154+ IL-2+, CD154+ TNF+, TNF+

CD107a+, TNF+ GZMB+, TNF+ IFNg+, or TNF+ Perforin+ (for

gating strategy, see Supplementary Figure S2). Unstimulated

background was subtracted to identify the frequency of specific

activated T cells. Further in-depth functional profiling of SARS-

CoV-2-specific T cells was performed using FlowJo’s Boolean

analysis tools (AND, OR, and NOT), and data were presented

with the Simplified Presentation of Incredible Complex Evaluations

(SPICE) 6.1 software. Generated data were used to visualize

antigen-specific T-cell polyfunctionality (48, 49), where activated

cells expressed combinations of CD137, CD154, IFNg, IL-2, and
TNF (for the CD4+ Th cell subset) and CD107a, GZMB, IFNg,
Perforin, and TNF (for the CD8+ CTL cell subset). The frequency of

all possible permutations above unstimulated background was

calculated for responding specific T cells. For CTL, we performed

the analysis on IFNg+ or TNF+ cells (as subsets of CTL

constitutively express GZMB and Perforin). Median frequencies

of each population for each cohort were represented in a SPICE pie

chart. A permutation test from the SPICE software was used to

compare the distribution of cell populations for each pair of pie

charts. Values of p < 0.05 were considered statistically significant. A

detailed list of the possible permutations of polyfunctional

populations can be found in Supplementary Table S3.
2.9 Statistical analysis

Statistical analyses were performed using GraphPad Prism

V.9.3.1 (GraphPad software). Two-tailed Mann–Whitney U test,

Spearman’s rank correlation coefficient, Principal Component

Analysis (PCA) plots loading, and Pearson correlation matrix

plots were used as indicated.
3 Results

3.1 T-cell responses to SARS-CoV-2
peptides in unexposed PWUD donors

In 2020, public health concerns during the height of the

COVID-19 pandemic led us to collect blood samples to
Frontiers in Immunology 04
investigate humoral responses in PWUD. We found that only 4

of 99 PWUD developed an IgG anti-RBD response in the months

before vaccines were available (not shown), a rate that was similar to

what we have found in the general population (39). Of the 36

PWUD donors who participated in the current study, 28 used illegal

or prescribed opioids, 19 were in the pre-vaccination group, and 25

were in the post-vaccination group. Both pre- and post-vaccination

samples were available for eight donors, one of whom received only

one dose of vaccine but was diagnosed with SARS-CoV-2 46 days

before blood was sampled (see Materials and Methods,

Supplementary Tables S1, S2). We first tested T-cell responses in

unexposed PWUD and healthy donors (HD) who were not

vaccinated and were seronegative for anti-RBD and anti-

nucleocapsid antibodies. In these groups, a response would likely

be the result of cross-reactivity of T cells generated from prior

exposure to endemic seasonal HCoV. We tested T-cell response to

single peptides derived from spike (N = 43) or non-spike proteins

(ORF1ab, ORF3A, Envelope; N = 57) in three sub-cohorts: PWUD

(N = 19), HD (N = 12), and, as positive controls, COVID-19Wuhan

convalescent patients (N = 5; see Materials and methods and

Supplementary Methods for peptide list). Overall, we found that

proliferation (Figure 1) and IFNg secretion (Supplementary Figure

S1A) were both significantly increased in convalescent donors and

that although the proliferative response was similar between PWUD

and HD donors, PWUD showed a slight decrease in IFNg secretion
(Figure 1, Supplementary Figure S1A). In all the cohorts, the level of

the proliferative response and IFNg secretion was comparable

notwithstanding the type of stimulus (spike vs. non-spike

peptides; Figure 1B, Supplementary Figure 1B). As expected,

donors in the PWUD and HD cohorts presented with variable

degrees of proliferative and secretory response (Figure 1C,

Supplementary Figure 1C), but there was no significant difference

between groups (Figure 1D; 621 vs. 746.5 CPM median values, p =

0.98 and Supplementary Figure S1D; 13.2 vs. 22.8 pg/mL median

values, p = 0.42) indicating that PWUD do not possess T-cell cross-

reactivity generated from potential prior exposures to endemic

seasonal HCoV.
3.2 Vaccine-generated CD4 Th cell
response in PWUD

In 2021, as vaccine rollout continued, we managed to secure

follow-up blood samples from 25 PWUD donors (Supplementary

Tables S1, S2). Due to difficulties in recalling donors for sampling,

blood was drawn between 67 and 208 days after the second dose

(D2) and not after the optimal 30-day interval. A similar approach

was thus employed to gather blood samples from healthy donors in

2022, but due to the surge of Omicron, the likelihood of

breakthrough infection (BTI) and hybrid immunity in this

control cohort was significantly increased. Indeed, four of these

controls experienced breakthrough infection before collection. To

assess vaccine-induced T-cell activation, we challenged PBMC with

commercially available 15-mer spike peptide megapool mixes

(Peptivator mix; see Materials and methods) and measured by

flow cytometry the increase in the frequency of T-cell populations
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that were double positive for different combinations of selected

activation-induced markers (AIMs). Gating strategy and AIMs used

in the study are reported in Supplementary Figure S2. We assessed

the magnitude of spike-specific responses by determining the

frequencies of cells that were double positive over background for

one or more of the following marker pairs by “OR” Boolean gating:

CD137+ CD154+, CD154+IFNg+, CD154+ IL-2+, CD154+ TNF+,

TNF+ CD107a+, TNF+ GZMB+, TNF+ IFNg+, or TNF+Perforin+

(see Supplementary Figure S2 for gates). Frequencies of responding
Frontiers in Immunology 05
spike-specific cells showed that the level of response in PWUD and

HD donors was not significantly different (Figure 2A). As sampling

time was variable after vaccination in PWUD, we also visualized T-

cell responses vs. time post-vaccination, but found no significant

correlations in PWUD or HD (Figure 2B). HD controls were chosen

to resemble PWUD in terms of time since vaccination, but after

sampling, four were found to have had breakthrough infection

(BTI) with Omicron VOC (as they were positive for IgG anti-

Nucleocapsid) (Figures 2A, B). Furthermore, when marker
A B

C D

FIGURE 1

Proliferation of T cells in response to SARS-CoV-2 peptides in unvaccinated, non-infected individuals in the pre-vaccination era. (A) 3H Thymidine
incorporation in PBMC isolated from PWUD (N=19), and HD (N = 12) donors. Samples were collected in 2020, when donors were no vaccinated,
had no previous history of COVID-19, and were negative for IgG anti-RBD and IgG anti-nucleocapsid. Cells from each patient were stimulated with
a pool of SARS-CoV-2 peptides (the complete list of the 101 peptides and HLA restriction is shown in Supplementary Data). Each datapoint
represents the response to the stimulation with one peptide. The responses are pooled together for each cohort. Conval., Wuhan COVID-19
convalescent donors (N = 5); CPM, radioactivity counts per minute. Medians and significant differences are shown. Mann–Whitney U test, ****p <
0.0001. (B) 3H Thymidine incorporation data from (A) are shown with peptides regrouped according to protein of origin (Spike vs. non-Spike). Spike
peptides (from Spike protein; N = 43) and non-Spike peptides (from ORF1ab, ORF3A, and Envelope proteins; n = 57). Not significant; Mann–Whitney
U test, p > 0.05. (C) Response breakdown by donor. Response to each peptide from (A) are shown for each donor of the PWUD (top) and HD
(bottom) cohort. (D) Median response to peptide stimulation is shown for each donor. Not significant; Mann–Whitney U test, p > 0.05. See also
Supplementary Figure S1 for the corresponding IFNg response.
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combinations were taken separately, we observed that the cytotoxic

response in PWUD (frequency increase in TNF+ GZMB+ events)

was higher in PWUD than in HD, but that for other AIM

combinations, such as those that included the expression of
Frontiers in Immunology 06
CD154 and TNF/IFNg co-expression, the response was higher in

HD. Moreover, these results did not appear to be influenced by the

four donors with BTI in the control group (Supplementary Figure

S3). Representation by Principal Component Analysis (PCA)
A

C
D

E
F

B

FIGURE 2

Spike-specific CD4 Th cell responses in vaccinated donors. Response of CD4 Th cells (% response – background frequency) quantified by flow
cytometry after 18 h stimulation with the Peptivator mix. (A) Frequency of responder cells gated by Boolean analysis (OR) within the double positive
regions (see Supplementary Figure S2) is shown for each patient (PWUD vs. HD); Mann–Whitney U test; p > 0.05, not significant (ns). BTI,
breakthrough infection. (B) Data from (A) are plotted in function of time after vaccination for both PWUD (left) and HD (right) donors. The correlative
trend was not significant. (C) PCA analysis and loading plot dimensions for PWUD and HD donors. (D) T-cell polyfunctionality in PWUD (left) and HD
(right) donors quantified as % of CD137+ CD4 Th cells expressing different marker combinations. (E) Violin plots of data from (D) are shown; Mann–
Whitney U test, p > 0.05 for all comparisons; ns. (F) Boolean analysis of the polyfunctional responses of CD4 Th cells visualized for PWUD and HD
donors using SPICE 6. Pie charts represent the median frequency of T-cell-expressing combinations of the indicated markers after 18 h overnight
stimulation with the Peptivator mix: the arcs indicate the proportion of cells that express CD137 (red), CD154 (yellow), IFNg (green), IL-2 (light blue),
and TNF (blue). The results for PWUD and HD donors are shown on the right and on the left, respectively. A detailed list of the permutations
represented by the pie segments can be found in Supplementary Table S3. BTI, breakthrough infection.
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showed substantial overlap between cohorts and confirmed that,

with the exception of a few PWUD patients who showed enhanced

cytotoxic response (increased upregulation in perforin, granzyme B,

and CD107a), CD4 Th cell responses in PWUD were similar to the

response of the healthy subjects (Figure 2C). Further analysis

revealed that the pattern of Th cell polyfunctionality in PWUD

was not significantly different from the one observed in HD

(Figure 2D). More specifically, we found that among all vaccine-

specific, activated (CD137+) Th cells, the fraction of events that

were double or triple positive for TNF, IFNg, and/or IL-2+ were not
significantly different between PWUD and HD (Figure 2E; 33%

18%, 12%, and 17% vs. 25%, 25%, 13%, and 14% median frequency

values for TNF+ IFNg+, TNF+ IFNg+ IL-2+, and TNF+ IFNg− IL-2+

populations in PWUD and HD, respectively; Mann–Whitney U

test, p > 0.05). A similar analysis of activated CD154+ Th cells

produced similar results (data not shown). These data were further

confirmed by Pearson correlation analysis, which showed that the

correlation patterns among different expression markers measured

in the two cohorts were similar (Supplementary Figure S4A). A

comprehensive representation of the polyfunctional response is

shown for both cohorts in Figure 2F, where we employed the

SPICE tool to visualize and compare frequencies of single, double,

triple, and quadruple positive cells within the activated CD4 Th cell

compartment (seeMaterials and methods). This analysis confirmed

the polyfunctional nature of the response in PWUD and showed

that although the frequency of some vaccine-specific T-cell

populations was lower in PWUD, the pattern of CD4 Th cell

polyfunctionality was not significantly different from the one

observed in healthy controls.
3.3 Vaccine-generated CD8 CTL T-cell
response in PWUD

To investigate the response of CD8+ cytotoxic T lymphocytes

(CTL), we stimulated the cells with the Peptivator mix or a pool of

23 9/10-mer spike peptides (the NOI pool) that were predicted by

the NEC Immune profiler AI tool (see Supplementary Methods for

peptide list) (43) and experimentally validated (41). We determined

the frequency of spike-specific T cells after stimulation with either

the Peptivator mix or the NOI pool by measuring CD8 CTL cell

responses using the Boolean “Or” gating on the same double

positive regions defined for the analysis of the Th cell subset. We

found that the frequency of spike-specific CD8 CTL in PWUD and

HD donors was not significantly different (Figure 3A), remained

stable with time (Figure 3B), and was characterized by similar

response patterns (Figure 3C). Likewise, the pattern of CD8 CTL

cell polyfunctionality in PWUD was not significantly different from

the one observed in healthy controls (Figure 3D), an observation

further confirmed by Pearson correlation analysis (Supplementary

Figure S4B), which showed overall similarity between cohorts in

terms of immunophenotypic response. A more in-depth analysis of

polyfunctionality revealed that among spike-specific (TNF+) CTL

cells, the fraction of events that were double or triple positive for

some markers, including IFNg, CD107, IL-2, and/or GZMB, was

similar to the HD group (Figure 3E; 1.8%, 2.0%, 0%, and 47% vs.
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5.7%, 6.9%, 0%, and 33% median frequency values for IFNg+

CD107a+, IL-2+, IL-2+ GZMB+, and GZMB+ populations in

PWUD and HD, respectively), but other T-cell populations, such

as IFNg+ TNF+ CTL cells, appeared to be more frequent in HD

(Figure 3E; 9.9% vs. 21% Mann–Whitney U test, ***p = 0.001).

Conversely, the fraction of degranulating cells expressing TNF

(TNF+ CD107a+ CD8 CTL cells) increased significantly in

PWUD (Figure 3E; 9.6% vs. 5.9%; Mann–Whitney U test, *p <

0.05). Nevertheless, when we analyzed all permutations using the

multiparameter SPICE visualization, we found that the

polyfunctional response of the CD8 CTL cell fraction was not

significantly different from HD and thus broadly preserved in

PWUD (Figure 3F). Altogether, these data indicate that PWUD

have a normal response to vaccination, but the frequency of some

subpopulations differed from the healthy controls. Next, to further

investigate the characteristics of the antigenic response to the

vaccine in PWUD, we performed a direct comparison of the CD8

CTL cell response to the stimulation with 15-mer and 9/10-mer

peptide pools (Peptivator mix vs. NOI pool). Biplots of T-cell

responses based on the frequency of cell populations expressing

different marker combinations revealed a high degree of linearity

and a substantial overlap between the two cohorts in terms of

response (Figure 4). These results were replicated in a subgroup of

donor using a simplified AIM assay (Supplementary Methods and

data not shown).
3.4 Correlation between T-cell reactivity
and IgG anti-RBD levels in PWUD

As observed for the general population, serum IgG anti-RBD

level (BAU/mL) decayed with time after vaccination in PWUD

(Figure 5A). Furthermore, we found no significant correlation

between humoral and spike-specific CD4 Th cell response to the

Peptivator mix (Figure 5B). Similarly, the humoral response did not

correlate with CD8 CTL response, notwithstanding the type of

stimulation (Figure 5C).
4 Discussion

In this cross-sectional study, we investigated the T-cell response

to SARS-CoV-2 in unvaccinated, SARS-CoV-2 naive people who

use drugs (PWUD). Our findings revealed no significant increase in

pre-existing T-cell reactivity among PWUD compared to controls.

Post-vaccination, the frequency of spike-specific CD4 Th cells in

PWUD was comparable to the frequency observed in healthy

individuals, but there were some differences between the groups

in the frequency of specific cell subpopulations, some of which were

higher in the control group, while others, such as cell-expressing

cytotoxic markers, were upregulated in the PWUD cohort. Despite

these variations, our comprehensive polyfunctionality analysis of

spike-specific Th cells showed no significant differences from

healthy donor controls in terms of overall response. Similarly,

CD8+ cytotoxic T lymphocytes (CTL) in PWUD exhibited a

frequency of spike-specific responses that was not significantly
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different from controls. While some differences in CTL

subpopulations were noted, the polyfunctionality analysis

indicated only minor variations in response distribution, with no

significant disparities compared to healthy controls.
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Recent studies suggest that a two- or three-dose vaccination

regimen provides substantial protection against severe COVID-19 in

PWUD, a conclusion that aligns with our observations (38, 50), as the

phenotypic differences detected here do not appear to be
A

C
D

E F

B

FIGURE 3

Spike-specific CD8 CTL cell responses in vaccinated donors. Response of CD8 CTL cells (% response − background frequency) quantified by flow
cytometry after 18 h stimulation with the Peptivator mix (15-mer) or the NOI pool (9/10-mer). (A) Frequency of responder cells gated by Boolean
analysis (OR) within the double positive regions (see Supplementary Figure S2) for each patient (PWUD vs. HD) and stimulus type (Peptivator mix vs.
NOI pool); Mann–Whitney U test; p > 0.05, ns. BTI, breakthrough infection. (B) Data from (A) are plotted in function of the time after vaccination for
both PWUD (left) and HD (right) donors. The correlative trend was not significant. (C) PCA analysis and loading plot dimensions for PWUD and HD
donors. (D) T-cell polyfunctionality in PWUD (left) and HD (right) donors quantified as % of TNF+ CD8 CTL cells expressing different marker
combinations. (E) Violin plots of data from (D); significant differences are shown; Mann–Whitney U test, *p < 0.05, ***p < 0.0001. (F) Boolean
analysis of the polyfunctional responses of CD8 CTL cells visualized for PWUD and HD donors using SPICE 6. Pie charts represent the median
frequency of T-cell-expressing combinations of the indicated markers after stimulation with the Peptivator mix: the arcs indicate the proportion of
cells that express CD107 and GZMB (red), CD107 and Perforin (yellow), CD137 (green), IFNg (light blue), and TNF (blue). The results for PWUD and HD
donors are shown on the right and the left, respectively. A detailed list of the populations represented by the pie segments can be found in
Supplementary Table S3.
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consequential in terms of vaccine effectiveness against COVID-19

infection or long-term protection in these patients. Our data

corroborate these reports, indicating that PWUD exhibit a T-cell

response, including polyfunctional activity, comparable to that of

healthy controls, which potentially contributes to their protection

against severe COVID-19. It is important to note that PWUD are at
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high risk for a variety of infections including HIV, hepatitis C virus

(HCV), hepatitis B virus (HBV), hepatitis A virus (HAV), tetanus,

and syphilis (51). Moreover, since many lack stable living

arrangements and live outdoor, expose to harsh environments and

low temperatures, or are in crowded shelters, PWUD are at a greater

risk for secondary bacterial pneumonia (52), influenza, and COVID-
FIGURE 4

Spike-specific CD8 CTL cell polyfunctionality. Biplots of CD8 CTL cell responses in PWUD and HD donors after stimulation with the Peptivator mix
or the NOI pool. The frequencies of CD8 CTL cells that are double positive for CD137+ IFNg+, CD137+ TNF+, TNF+ CD107a+, TNF+ GZMB+, TNF+

IFNg+, TNF+ Perforin+, and CD137+ IL-2+ are presented for each donor from both groups. Spearman’s r correlation and p-values relative to the
PWUD cohort are shown.
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19 (11–25) infections. In this regard, it is important to consider that

in addition to lifestyle, the chronic abuse of opioids severely

compromises both innate and adaptive immune responses through

various pathways, signaling cascades, and cytokine networks, and

through direct effects on cells, which increase the risk of opportunistic

infections (26). Opioids suppress macrophage and T-cell responses

through a cascade of anti-inflammatory and anti-autocrine effects

that inhibit early pro-inflammatory events, enhance Treg function,

block CD4 Th cell proliferation, and downregulate MHC class II

expression/antigen presentation (26–29). Previous studies have

shown that some transcription factors, such as eomesodermin, play

an important role in cytotoxic CD4+ T-cell-mediated antiviral

immunity in the lungs of severe cases of COVID-19 (53), but the

function of these cells in the post-vaccination setting remained

unexplored. Our observation of greater cytotoxic marker

upregulation in vaccine-specific CD4 Th cells from PWUD donors

is therefore of interest and lends support to the recognized role that

cytotoxic CD4 Th cells play in antiviral immunity (54).

The serological response of PWUD to vaccines against several

pathogens is well documented and varies according to the pathogen.

For instance, although the humoral response to vaccination against

hepatitis virus, a major health issue for these patients (52), is

inadequate as the titers of neutralizing antibodies (NAbs) in

PWUD subjects are lower than the general population and
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boosting would be necessary to help generate protective immunity

(51, 55–57), a large body of literature describes vaccines against other

viral pathogens, such as HBV (51, 58) and influenza (59–61), as both

immunogenic and safe for the prevention of infection. Our data on

the humoral response to SARS-CoV-2 vaccination align with

previous observations for influenza and hepatitis B virus (HBV)

vaccinations, supporting the idea that people who use drugs (PWUD)

are capable of developing a protective humoral response against

SARS-CoV-2 (38). Furthermore, serum IgG anti-RBD levels in

PWUD decreased with time after vaccination but did not correlate

with CD4 Th cell response. This observation does not replicate what

we observed in other immunocompromised cohorts (42), possibly

because of the limited number of subjects analyzed. It is also

important to note that high-affinity antibody response may be

associated with specific Th cell subsets. For instance, it has been

shown that CXCR5+ T follicular helper (Tfh) cells are upregulated

during the acute phase of SARS-CoV-2 infection, and their frequency

directly correlates with IgG anti-spike antibodies (62–64).

Vaccine-induced CD8 CTL cells play a crucial role in the

adaptive response to viral infection, and it has been shown that

CTL are dysfunctional in severe cases of COVID-19 (65). Thus, the

characterization of these cells is particularly relevant in PWUD, as

opioids, such as methadone, can decrease effector memory CD8+ T

cells, without altering the expression of functional markers (30).
A B

C

FIGURE 5

IgG anti-RBD and spike-specific T-cell response after dose 2 in PWUD. (A) Scatter plot of serum IgG anti-RBD values (BAU/mL) in function of the
number of days post-vaccination (D2). Spearman’s r = −0449; p = 0.0258. (B, C) Scatter plot of serum IgG anti-RBD levels vs. T-cell response
defined as the frequency of vaccine-specific CD4 Th (A) and CD8 CTL (B) cells (increase over unstimulated background). T-cell response data
shown here are equivalent to the data shown in Figures 2A, 3A. Correlations were not significant.
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Our observation of the existence of a CTL polyfunctional response

in these patients supports the notion that vaccination helps

overcome dysfunction and underscore the importance of booster

vaccination in reducing potential severe COVID-19-related

outcomes in this high-risk population. Furthermore, our direct

comparison of changes in CD8 CTL cell activation markers after

stimulation with different peptide pools confirmed a substantial

equivalence between PWUD and healthy donors in terms of

reactivity. Indeed, the responses of CD8 CTL cells to stimulation

with 9–10 amino acid long peptides (NOI pool) was lower than the

response to the Peptivator mix (15-mer peptide pools) in some

donors from both cohorts, presumably because of an HLA

mismatch for some of the peptides that composed the pools. In

other donors, CTL response to the NOI pool was not recapitulated

by the Peptivator mix, an observation that may likely relate to the

fact that 15-mer but not 9/10-mer peptides require trimming for the

binding of MHC class I molecules.

In conclusion, we found that mRNA SARS-CoV-2 vaccination

stimulates robust polyfunctional T-cell immunity in PWUD despite

the reported inhibitory effects that opioids have on the immune

response and the detrimental lifestyle and comorbidities that

characterized this patient population. This study highlights the

need to prioritize booster vaccination to reduce the potential for

severe COVID-19-related outcomes and mitigate the spread of

infection, which remains a significant health and societal risk for

this particularly vulnerable group. Nonetheless, sample size remains

a limitation of the current study, and longitudinal follow-up studies

of larger cohorts or new vaccination trials will be required to help

substantiate our findings.
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