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Regulatory T cells (Tregs) are essential mediators of tolerancemitigating aberrant

immune responses. While naturally occurring Treg (nTreg) development and

function are directed by epigenetic events, induced Treg (iTreg) identity and

mechanisms of action remain elusive. Mirroring the epigenetic circuits of nTregs,

we and others have used hypomethylation agents (HAs) to ex vivo convert T cells

into iTregs (HA-iTregs) and further showed that the suppressive properties of the

HA-iTregs are predominantly confined in an emergent population, which de

novo expresses the immunomodulatory molecule HLA-G, consequently

providing a surface marker for isolation of the suppressive HA-iTreg

compartment (G+ cells). We isolated the HA-induced G+ cells and their G−

counterparts and employed high-throughput RNA-sequencing (RNA-seq)

analyses to uncover the G+-specific transcriptomic changes guiding T cells

toward a regulatory trajectory upon their exposure to HA. We found a distinct

transcriptional upregulation of G+ cells accompanied by enrichment of immune-

response–related pathways. Although single-cell RNA-seq profiling revealed

regulatory G+ cells to have molecular features akin to nTregs, when assessed

in conjunction with the comparative transcriptomic analysis and profiling of

secreted cytokines against the non-suppressive G− cells, FOXP3 and other T-

helper signatures appear to play a minor role in their suppressive phenotype. We

found an ectopic expression of IDO-1 and CCL17/22 in G+ cells, denoting that in

vitro exposure of T cells to HA may well unlock myeloid suppressor genes. This

report provides transcriptional data shaping the molecular identity of a highly

purified and potent HA-iTreg population and hints toward ectopic myeloid-

specific molecular mechanisms mediating HA-iTreg function.
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Introduction

Regulatory T cells (Tregs) are essential mediators of immunological

tolerance mitigating deviant or overt immune responses as illustrated

by in vitro and in vivo studies and early phase clinical trials (1). Tregs

can be encountered as naturally occurring cells in vivo (nTregs) or

may be in vitro induced upon modulation of conventional T cells

(iTregs) (2–5). While nTreg development and function are

meticulously directed and orchestrated by epigenetic events ensuring

specific and stable demethylation status of key genes, including the

Forkhead Box P3 (FOXP3) transcriptional factor, iTregs identity and

mechanisms of action remain largely ambiguous and probably highly

dependent on the inherent variability of their generation protocol (3,

4, 6, 7). Seeking to mimic the epigenetic circuits of nTregs, several

groups including ours have used hypomethylation agents (HAs) to ex

vivo convert murine or human T cells into iTregs (HA-iTregs) (5, 8,

9). In an attempt to identify the exact molecular mechanism guiding

the function of such murine HA-iTregs, Choi et al. elegantly

demonstrated that their in vitro and in vivo suppressive abilities

occur independently of FOXP3 (9). Human leukocyte antigen G

(HLA-G) molecule is a well-known immunomodulatory molecule

that shields the “semi-allogeneic” fetus from maternal immune

rejection during pregnancy and is epigenetically repressed

succeeding prenatal life (10). Naturally occurring HLA-G+ T cells

are encountered in low percentages in human peripheral blood as part

of the physiological repertoire of suppressor, distinct from nTregs, T

cells and can putatively expand when needed to preserve immune

tolerance (11–13). In our previous work, we hypothesized that HLA-G

has an operative role in the suppressive action of HA-iTregs (5, 11).

Indeed, by using the HA decitabine (Dec), we robustly and

consistently produced human HA-iTregs with in vitro and in vivo

suppressive activity that have now entered a phase I–II clinical trial

against Graft-versus-Host disease (EudraCT 2021-006367-26), and

showed that their suppressive function is mediated to a large extent

but not exclusively by the HLA-Gmolecule (5, 14, 15). HA-induced de

novo expression of HLA-G on T cells remains functionally stable upon

removal of the HA as well as in pro-inflammatory environment (5).

More importantly, we showed that the suppressive properties of the

HA-iTregs are strictly confined in the HLA-G–expressing cellular

compartment, henceforth, providing a surface marker for isolation of

the suppressive HA-iTregs (termed G+ cells).

Aiming to unveil the immunosuppressive mechanisms of HA-

iTregs and elucidate the epigenetic networks guiding T cells toward

a regulatory trajectory upon their exposure to HA, we employed

high-throughput analyses to uncover the G+-specific transcriptomic

changes. Interestingly, we link de novo expression of established

myeloid regulatory genes, such as indoleamine 2,3-dioxygenase 1

(IDO-1) with HA-iTregs emergence.
Materials and methods

Generation of HA-induced iTregs

Peripheral blood mononuclear cells (PBMCs) were obtained

from healthy volunteers under informed consent and approval from
Frontiers in Immunology 02
the local ethics committee (Protocol Number: 5832). T cells were

isolated by negative magnetic cell selection (MACS Pan-T Cell

Isolation Kit II Human MiltenyiBiotec, Germany) except for the

flow cytometry-based validation experiments where CD4+-selected

T cells were used as starting material (RosetteSep Human CD4+ T-

cell enrichment cocktail, StemCell Technologies, Canada), then

activated for 3 days in the presence of anti-CD3/CD28 beads

(Dynabeads Human T-Activator CD3/CD28, Gibco) at a 1:1

bead:cell ratio and subsequently incubated in the presence of

50U/mL human recombinant IL-2 (rhIL-2 PeproTech or Miltenyi

Biotec) with 5 mM or 7.5 mM Dec (Sigma-Aldrich, Germany) for

three additional days. Control T cells were treated with phosphate-

buffered saline (PBS) solution and further denoted as PBS-

treated controls.
Flow cytometry and cell sorting

Flow cytometry was performed on BDFACS Canto II Flow

Cytometer (BD Biosciences, USA) and data analysis was performed

on FlowJo v10. Cell sorting was performed using BDFACSAria III

(BD Biosciences) by gating on single viable HLA-G+CD4+ and

HLA-G−CD4+ cells reaching a purity of sorted cell populations over

95%. The following monoclonal anti-human antibodies were used:

HLA-G-PE (clone MEM- G9, Sigma-Aldrich), CD4 FITC/PerCP/

APC-Cy7 (clone RPA-T4, BD Biosciences or BioLegend) and CD3-

FITC (clone UCHT-1, BD Biosciences), IDO-1-Alexa Fluor 647

(clone V50-1886, BD Biosciences), CD45RA-PE-Cy7 (clone HI100,

BioLegend), CD62L-V450 (clone DREG-56, BD Biosciences),

CD25-PE (clone M-A251, BioLegend), CD127-PerCP-Cy5.5

(clone HIL-7R-M21, BD Biosciences), and GITR-BV421 (clone

V27-580, BD Biosciences). Dead cell exclusion was performed

with Zombie Aqua/NIR Fixable viability dye (BioLegend) or Far-

Red Live/Dead Fixable dead cell stain kit (Invitrogen, USA).

Fixation was performed using BD Phosflow Fix Buffer (BD

Biosciences), and permeabilization using perm buffer (PBS, Triton

0.5%, and BSA 0.5%). Fluorescence minus one (FMO) control was

used to set the threshold of positivity for HLA-G, CD45RA, CD62L,

CD25, CD127, and GITR.
RNA sequencing and single-cell
RNA sequencing

Total RNA was isolated from five paired samples (G+/G−) using

the miRNeasy Micro kit (Qiagen, Germany), according to

manufacturer’s instructions and was used for bulk RNA-seq.

Illumina-compatible libraries were prepared according to

manufacturer’s instructions and next generation sequencing (NGS)

(paired-end and strand-specific) was performed on an Illumina

HiSeq2000. For scRNA-seq, approximately 16.000 sorted G+ cells

were loaded in a channel of a chromium controller (10× Genomics)

for generation of gel-bead-in-emulsions (Greek Research Infrastructure

for Personalized Medicine, pMedGR). The sequencing library was

prepared using Single Cell 3′ Reagent Kits v3.1 (10× Genomics) and

sequenced on an Illumina NextSeq2000.
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Bioinformatic analysis for both RNA-seq and scRNA-seq data is

described in detail in the Supplementary Data.
Real-time polymerase chain reaction

RNA was isolated from paired sorted G+ and G− cells using the

RNeasy Micro kit (Qiagen, Germany), cDNA was synthesized

(PrimeScript RT Reagent Kit, Takara) and TaqMan assays were

performed for HLA-G, IDO-1, CCL22, CCL17, and ABL1. The

reaction was performed on a BioRadCFX96, and each cDNA

sample was assayed in duplicate. Quantification was performed

using the DDCT method and relative expression was calculated

based on housekeeping gene (ABL1) expression.
Multiplex cytokine/chemokine
immunoassay and tryptophan/kynurenine
quantification

Paired sorted G+, G−, and PBS-treated controls were plated at 4

× 105/ml in 48-well plates in the presence of IL-2 (100 U/ml) and

were either left unstimulated or stimulated with anti-CD3/CD28

beads at a 1:1 bead:cell ratio for 48h. Cell-free supernatants were

harvested and stored at −80°C. For cytokine/chemokine

quantification, analysis was performed using the Bio-Plex Pro

Human Cytokine Th1/Th2 Assay (Bio-Rad, USA) and a custom

multiplex magnetic bead-based immunoassay (Protatonce, Ltd),

according to manufacturer’s instructions on a Bio-Plex 200

system (Bio-Rad). Tryptophan (Trp) and kynurenine (Kyn)

concentrations were assessed with the kynurenine/tryptophan

ratio ELISA pack (ImmuSmol), according to manufacturer’s

instructions, using the Infinite F50 system (Tecan, Switzerland).

All samples were run in duplicates.
Statistical analyses

Statistical analyses were performed using paired two-tailed

standard or ratio t-tests using Prism software (GraphPad Software

Inc.). P values of less than 0.05 were considered significant.
Results

G+ cells represent a transcriptionally
distinct population enriched in immune
response pathways

We produced HA-iTregs by exposing human peripheral T cells

to Dec in vitro (n = 5) and subsequently sorted the suppressive

CD4+HLAG+ (G+) cells and their CD4+HLA-G− (G−) counterparts

to perform comparative transcriptome analysis (Figure 1A). A total

of 394 genes were identified to be differentially expressed in G+ cells

as compared to G− cells [DEGs, |log2(fold change)| > 0.5 and q <

0.05]. Most of the DEGs (n = 358) in G+ cells were found to be
Frontiers in Immunology 03
upregulated, which may be either an intrinsic characteristic of these

isolated cells or may indicate a more pronounced hypomethylation-

induced gene activation in this population (Figure 1B). The

principal components analysis (PCA) depicted that G+ cells are

characterized by a distinct gene expression profile that is clearly

separate from their G− counterparts (Figure 1C). We next

conducted in silico analysis to identify pathways involved in the

transcriptionally distinct HA-induced G+ population. Among the

highest enrichments in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways, the Gene Ontology (GO) molecular

function annotations and the REACTOME data repository, several

pathways involved in immune responses were uncovered

(Figure 1D). In particular, chemokine/cytokine receptor

interactions and chemokine signaling pathways appear to play a

pivotal role in the transcriptional identity of G+ suppressive cells.

We additionally found numerous pathways related to or containing

HLA genes to be enriched in the G+ cells (Figure 1E). This is not

unexpected since HLA-G expression was used to purify the G+

compartment. Surprisingly, the HLA-G gene was not identified as

an upregulated DEG in the G+ cells RNA-seq analysis [HLA-G log2
(fold change) = 0.3, p = 0.019, q = 0.087, Supplementary Figure

S1A], which runs somewhat conflicting to our experimental design.

This finding may be related to the shared homology of HLA-G with

other DEGs of the HLA family resulting in a high overlap between

HLA-G and the other HLA genes or may be due to the variability in

HLA-G transcripts between experiments, which may have

undermined the statistical power to detect a significant effect on

the DEG analysis (Supplementary Figures 1A, B). On the contrary,

RT-PCR confirmed that HLA-G is truly overexpressed on G+ cells

(n = 5, median fold change-MdFC vs. G− cells 34.66, p = 0.0002)

(Supplementary Figure S1C). Collectively, we show that HA-

induced G+ cell emergence is closely accompanied by a unique

and cohesive transcriptional upregulation of genes involved in

immune response pathways.
The G+-specific transcriptome resembles
nTreg signatures with an expendable role
for FOXP3

We then examined whether G+ cells follow a specific trajectory

toward categorical T-helper (Th) effector (Th1, Th2, and Th17) or

FOXP3+ nTreg subsets. Compared to G− cells, transcriptome

analysis and cytokine secretion profiling at baseline and

stimulated conditions did not reveal a polarization of G+ cells

toward any trajectory (Supplementary Figures 2A, B).

Intriguingly, FOXP3 was not found to be differentially expressed

in the suppressive G+ cells[log2(fold change) = 0.26, p = 0.0067 and

q = 0.056] suggesting a dispensable role in the G+ phenotype. Since

our targeted comparison between the G+ and G− compartments

does not allow the removal of confounding bias introduced by the

HA effects on T-cell fate, we performed single-cell RNA sequencing

(scRNA-seq) analysis on isolated G+ cells to decipher the

underlying heterogeneity of the transcriptional programs of G+

cells in an unsupervised manner. Clustering analysis revealed six

clusters (Figure 2A). Two clusters were clearly demarcated from the
frontiersin.org
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rest as a result of the differential expression of a plethora of cell

cycle–related genes resulting in a high G2/M gene signature score

(Supplementary Figure S2C). Cluster annotation using potential

marker genes with known cell marker genes from a reference

database (CellMatch) allocated four of the clusters to be strongly

associated with nTreg cell signatures including FOXP3, IL2RA, and

Glucocorticoid-Induced TNFR-related protein-GITR/TNFRSF18

(Regulatory T cell 1–4), while the other two clusters were marked

as naïve T cells (Naïve T cell 1–2) (Figure 2A, Supplementary Figure

S2C, and Supplementary Table S1). To validate this in silico scRNA-

seq analysis, we performed flow cytometric analyses (n = 4) and

showed that G+ cells are predominantly early differentiated naïve or

central memory cells (Figure 2B) and bear a CD25highCD127low/-

GITR+ immunophenotype, akin to that of thymic nTregs currently

used in clinical practice (Figure 2C) (16). By performing in silico

RNA velocity analysis, we could also uncover a connection between

the naïve and regulatory clusters revealing that Regulatory T cell 2

and 3 clusters lie directly downstream of Naïve T cell 2 and 1

clusters, respectively, in the differentiation trajectory of G+ cells

(Figure 2D). Finally, we interrogated our bulk RNA-seq data using

the scRNA-seq–derived signature by applying the SCDC

deconvolution algorithm and we found a differential composition

of regulatory and naïve signatures between G+ and G− populations,

with the G+ fraction to be enriched for regulatory clusters
Frontiers in Immunology 04
(Figures 2E, F). Taken together, although scRNA-seq profiling

revealed that regulatory G+ cells have molecular features akin to

nTregs, when this is assessed in conjunction with the comparative

transcriptomic analysis and cytokine profiling against the non-

suppressive G− cells, these nTregs signatures seem to play a

minor role in the G+ identity, thus hinting toward alternate

molecular mechanisms instigating the G+ suppressive phenotype.
G+-specific transcriptome uncovers
ectopic expression of myeloid-specific
suppressive genes

Strikingly, the RNA-seq comparison of G+ versus G− cells

showed that the top upregulated DEG in G+ cells were IDO-1

[log2(fold change) = 2.55, q = 0.028, Figure 1B], a finding which was

further validated through RT-PCR (n = 4, MdFC = 10.82)

(Supplementary Figure S1C). IDO-1 was also equally detected in

all clusters from the scRNA-seq dataset. IDO-1 is a potent,

epigenetically controlled, immunosuppressive molecule mostly

associated with myeloid cells and scarcely reported on lymphoid

cells (17, 18). This prompted us to further investigate this rather

ectopic IDO-1 gene upregulation in T cells by validating its protein

expression over both G− cells and paired cells not exposed to Dec
B C

D E

A

FIGURE 1

G+ cells represent a transcriptionally distinct population enriched in immune response pathways. (A) Representative plots of fluorescence-activated
cell sorting (FACS) strategy for G+ and G− T-cell isolation. Cells were gated on alive singlets with CD4+HLA-G+ (red gate) or CD4+HLA-G+ (gray gate)
phenotype, where the threshold of HLA-G positivity was set with a fluorescence minus one (FMO) control. (B) RNA sequencing of G+ T cells against
their G− counterparts (n = 5 paired samples). Volcano plot of differentially expressed genes (DEGs) in G+ T cells, including IDO-1, CCL17, and CCL22.
Vertical dotted lines represent |log2(fold change)= 0.5, and horizontal dotted lines represent q-value = 0.05. Red dots indicate upregulated DEGs,
blue dots indicate downregulated DEGs, while gray dots represent genes that do not meet the criteria for differential expression [log2(fold change) >
0.5 and q < 0.05]. (C) Principal components analysis (PCA) plotted using the two main principal components (PCA1-2), depicting the transcriptional
profile of the G+ population (red) entirely distinct from the G− counterpart (blue). (D) Dotplot of the pathway enrichment analysis showing pathways
highly enriched in DEGs plotted based on gene ratio (number of DEGs/total genes in the corresponding pathway) using an adjusted p-value
(p.adjust) threshold of 0.05. (E) Clustergram of pathway analysis depicting DEGs associated with enriched pathways of interest. Blue boxes indicate
DEGs present in the corresponding pathway whereas gray boxes indicate the absence of the DEG.
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(PBS-treated controls). Interestingly, we found a significantly high

expression of IDO-1 in G+ cells over both G− cells (n = 8, p = 0.001)

and PBS-treated controls (n = 5, p = 0.0145) (Figure 3A). IDO-1

mediates suppression by catabolizing the essential amino acid

Tryptophan (Trp) to the immunomodulatory Kynurenine (Kyn)

leading to T-cell anergy due to tryptophan starvation and to nTreg

induction by Kyn (19, 20). To find a possible functional significance

of transcriptional and protein IDO-1 expression in G+ cells we

measured these metabolites in culture supernatants and calculated

the Kyn/Trp ratio as a surrogate marker of IDO-1 enzymatic

activity. Indeed, Kyn was found to be highly and significantly

produced in G+ cells as compared to PBS-treated counterparts (n

= 3, p = 0.03), resulting in a trend toward an increased Kyn/Trp

ratio in the G+ cell cultures (p = 0.06) (Figure 3B). Intriguingly,

beyond IDO-1 we observed additional mediators of myeloid-driven

immune regulation, namely, C–Cmotif chemokine ligand (CCL) 17

and CCL22, to be among the top 15 upregulated DEGs on G+ cells

over G− cells [log2(fold change) > 1.5]. The transcriptional

overexpression of CCL17 and CCL22 chemokines in G+ cells was

validated by RT-PCR (n = 4, MdFC = 4.82, p = 0.014 and MdFC =

9.52, p = 0.003, respectively) (Supplementary Figure S1C).

Moreover, the scRNA-seq analysis revealed CCL17 transcripts to

be present within all the cluster, with Regulatory T cell 4 cluster

displaying the higher level of expression. When compared to G−

cells and PBS-treated controls, we found an increased baseline

secretion of CCL17 (n = 4, p < 0.05) from G+ cells and excessive
Frontiers in Immunology 05
amounts of CCL17 (n = 4, p < 0.001) and of CCL22 (n = 4, p <

0.001) upon stimulation in both G− and G+ supernatants over PBS-

treated cells (Figure 3C). Taken together, we report that in vitro

pharmacological hypomethylation of T cells unleashes

epigenetically repressed myeloid-specific suppressor genes, such

as IDO-1 and CCL17/22.
Discussion

In this study, we employed G+ cells as a model to unravel the

molecular underpinnings of the epigenetic reprogramming driving

suppressive function in HA-iTregs. Through transcriptome analysis

of the suppressive G+ cell against the non-suppressive G− cells we

show that even though pharmacological hypomethylation takes

place in a stochastic fashion, the G+ compartment is characterized

by a unique gene expression profile that is noticeably distinct from

their negative counterparts. These findings are in line with previous

work highlighting that isolated suppressive populations of murine

and human nTregs and in vitro-induced regulatory type 1 (Tr1)-

iTregs display a distinct gene expression profile that is clearly

separated from their biological counterparts and/or parental cells

(3, 4, 6, 7).

Moreover, we identified several pathways implicated in immune

responses to be enriched, with chemokines/cytokine receptor

interactions and chemokine signaling pathways to be highly
B CA

D E F

FIGURE 2

Single-cell RNA sequencing reveals G+ cells to be enriched in regulatory signatures. (A) Single-cell RNA-seq of G+ T cells (n = 15556 cells). Uniform
manifold approximation and projection (UMAP) plot showing clustering into regulatory (Regulatory T cells 1–4) and naïve subpopulations (Naïve T
cells 1–2) following cell annotation using the scCATCH algorithm. (B) Immunophenotypic validation of the early differentiated character of G+ cells
(n = 4) [N: naïve (CD62L+CD45RA+) median 75%, range 66%–77.2%, CM: central memory (CD62L+CD45RA−) median 18.45%, range 15.4%–24.9%,
EM: effector memory (CD62L−CD45RA−) median 3.04%, range 2.1%–4.72%, and TEMRA: terminal effector memory T cells expressing CD45RA
(CD62L−CD45RA+) median 4.43%, range 2.87%–4.82%]. (C) Immunophenotypic validation of the nTreg characteristics arising from the scRNA-seq
data in G+ cells. Representative histograms are shown from one out of four independent experiments. FMO controls (gray) are overlaid to G+ cells
(blue) as negative controls (n = 4). (D) In silico RNA velocity analysis, projected on UMAP plots, revealing that Regulatory T cell clusters lie
downstream of Naïve T-cell clusters in the differentiation trajectory of G+ cells. Arrows point toward the predicted course of cell differentiation
dynamics while arrow sizes indicate the strength of calculated directionality. (E) Deconvolution analysis depicting deconvoluted bulk RNA-seq data
of G+ and G- T cells using the scRNA-seq–derived dataset. (F) Enrichment of G+ T cells in Regulatory T-cell cluster signatures compared to G- cells
upon deconvolution of bulk RNA-seq data (n = 5, Mann–Whitney test, p = 0.0079). **p ≤ 0.01 and ns, not significant.
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represented, which is in agreement with transcriptomic analyses of

both isolated suppressive nTregs and iTregs populations (3, 21). We

also highlight inherent restrictions of in silico tools for accurate

HLA inference derived from NGS data that may have hampered

previous studies in identifying HLA-G as a key mediator and

subsequently marker for iTreg function and identity, respectively

(3, 4). Such tools focused solely on HLA genes routinely assessed for

clinical HLA typing (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1,

-DQB1, and -DRB1-5), thus excluding nonclassical HLA genes,

which share homology with genes in the HLA family such as HLA-

G, and more specific algorithms to tackle this issue are warranted

(22–24).

By performing bulk and single-cell transcriptomic analysis

along with cytokine profiling, we show that regulatory G+ cells do

not follow a specific trajectory toward polarization while displaying

selected molecular and phenotypic features of nTregs. These

features, nonetheless, appear to play a secondary role in the G+

identity, since by comparing the G+ suppressive compartment

against their equally HA-treated G− counterparts, we show that

FOXP3 is not upregulated in G+ cells. However, this result does not

rule out that FOXP3 is upregulated upon HA treatment as shown by

others, but points toward the dispensable role of FOXP3 in the

suppressive function of Tregs (8, 9). Similarly, Choi et al. reported

that HA-iTregs derived from FOXP3 knockout mice maintained
Frontiers in Immunology 06
their suppressive abilities in vitro and in vivo (9), and Lam et al.

demonstrated that ablation of FOXP3 in mature nTregs was

associated with concurrent demethylated DNA patterns, albeit

retention of their suppressive function (21).

Our data hint toward previously unrecognized molecular

mechanisms prompting the suppressive HA-iTregs phenotype in

G+ cells. We report the transcriptional and protein expression of

enzymatically active IDO-1 and CCL17/22 by G+ cells, which are

both atypically expressed in T cells. IDO-1 is a potent regulatory

mediator mostly associated with myeloid and mesenchymal stromal

cells with implications in feto-maternal tolerance, tumor immune

escape, autoimmunity and alloimmune responses such as graft-

versus-host disease (18, 25–28). Interestingly, we could identify

limited literature on IDO-1 transcriptional expression in T-cells,

found to be induced either by IFNa2b or CTLA-4-Fc on CD4+ cells

(29, 30). Furthermore, a CCL17/22-rich milieu orchestrated by

myeloid cells leads to local nTreg chemoattraction, which has

been shown to enable tumor immune evasion, prevent

autoimmune diabetes and promote donor-specific tolerance (31–

34). Collectively, we show that in vitro exposure of T-cells to HA

may unlock myeloid-specific suppressor genes, but their level

compared to naturally expressing myeloid populations remains to

be answered. Since these molecules were found predominantly in

the suppressive G+ compartment, we postulate that they contribute
B

C

A

FIGURE 3

Validation of ectopically expressed myeloid-specific suppressive genes uncovered by G+-specific transcriptome. (Α) IDO-1 protein expression in G+

cells. Representative flow cytometry plots for intracellular IDO-1 detection (left) and collective data of IDO-1 Median Fluorescence Intensity (MdFI) in
G+ T-cells (blue) over G- T-cells (dark grey) (n=8, p=0.001) and PBS-treated controls (light grey) (n=5, p=0.014) (right). (B) Enzyme-Linked
Immunosorbent Assay (ELISA) for quantitative analysis of the Tryptophan (Trp) catabolite Kynurenine (Kyn) concentrations (left) and Kyn to Trp ratio
(Kyn/Trp) (right) depicting the enzymatic activity of IDO-1 by the means of increased Kyn and Kyn/Trp ratio in G+ cell culture supernatants. (C)
Luminex assay for quantitative assessment of chemokines in cell culture supernatants of G+, G- and PBS-treated control cells (n=4-5) at rest (left) or
after anti-CD3/CD28 stimulation (right) revealing the increased secretion of CCL17 and CCL22. *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001,
and ns: not significant.
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to the suppressive properties of HA-iTregs, something which must

be confirmed in future functional studies.

In summary, our study provides compelling evidence that the

G+ suppressive compartment of HA-iTregs possesses a unique

transcriptional profile with prominent regulatory signatures. Our

results add to the hitherto literature detaching iTreg function from

FOXP3 expression and hint toward novel molecular mechanisms

mediating HA-iTregs function, namely the ectopically expressed

myeloid-specific molecules IDO-1 and CCL17/22. In conclusion,

this report extends our understanding of the molecular features that

shape the transcriptional identity of HA-iTregs and provides

valuable transcriptional data of a highly purified and potent iTreg

population that can be compared with other Tregs (35).
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