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Medical University of Gdansk, Poland

*CORRESPONDENCE

Mohammad Afzal Khan

mohammad.khan@som.umaryland.edu

RECEIVED 06 June 2023

ACCEPTED 11 September 2023
PUBLISHED 25 September 2023

CITATION

Khan MA, Lau CL and Krupnick AS (2023)
Monitoring regulatory T cells as a
prognostic marker in lung transplantation.
Front. Immunol. 14:1235889.
doi: 10.3389/fimmu.2023.1235889

COPYRIGHT

© 2023 Khan, Lau and Krupnick. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 25 September 2023

DOI 10.3389/fimmu.2023.1235889
Monitoring regulatory T cells
as a prognostic marker in
lung transplantation

Mohammad Afzal Khan*, Christine L. Lau
and Alexander Sasha Krupnick

School of Medicine, University of Maryland, Baltimore, MD, United States
Lung transplantation is the major surgical procedure, which restores normal lung

functioning and provides years of life for patients suffering from major lung

diseases. Lung transplant recipients are at high risk of primary graft dysfunction,

and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis

obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells

and clinical studies have demonstrated that Treg levels are altered in transplanted

lung during BOS progression as compared to normal lung. Here, we discuss

levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung

functions during CLAD progression in clinical lung transplant recipients. The

review will also discuss Treg mediated immune tolerance, tissue repair, and

therapeutic strategies for achieving in-vivo Treg expansion, which will be a

potential therapeutic option to reduce inflammation-mediated graft injuries,

taper the toxic side effects of ongoing immunosuppressants, and improve lung

transplant survival rates.
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Introduction

Lung transplantation is a life-saving surgical procedure for patients with end-stage lung

diseases. Unfortunately, this treatment strategy is limited by the occurrence of CLAD

which occurs when the patient’s immune system relentlessly attacks the transplanted

organ, disrupts the microvascular flow, and ultimately leads to irreversible small airway

fibrosis. CLAD is a major cause of mortality in the first ten years and there are no current

immunosuppressive regimens that can sufficiently rescue the restoration of functional

microvascular flow during rejection (Figure 1) (1, 2). For recipients, lung transplantation

has led to improved quality of life and longevity but outcomes among transplant recipients

are quite heterogeneous with under 60% transplant survival at 5 years and under 20%

transplant survival at 10 years post-transplantation (3, 4). This concept of regulation is

likely not the result of actions of a particular cellular subset, but rather the collective effect

of signaling between Tregs, antigen presenting cells (APC), and metabolites which have
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additional regulatory logistics such as the release of IL-10 or TGF-b,
and a balance between Th17(IL-6, CXCL10) –Tregs (CCL22, IL-10)

may foresee the risk of CLAD progression (5, 6). Once the

mechanisms underlying regulation are better delineated, perhaps

these processes can be augmented in all lung transplant recipients as

part of a broader novel immunologic approach to transplantation.
Immunotolerance phase

The immune system guards the host against a broad range of

foreign pathogenic microorganisms and tissue antigens, which

involve an organized display of cellular and molecular

interactions to counter-attack foreign entities through discrete

recognition of antigenic peptides and thereby establish a powerful

effector response, and long-term immunologic memory (7).

However, this effector response remains tightly regulated, but

critical tissue injuries and organ malfunctions of the host may

develop during abnormal immune reactions, which involve

autoimmunity, hyper-responsiveness, and organ rejections (8–12).

Although, this is a very critical issue and a major challenge to drug

discovery programs to establish a constant phase of immunological

tolerance to avoid injuries to the host tissues, and thus key cellular

and molecular signaling of immunological self-tolerance will

highlight the crucial immune checkpoints to regulate powerful

immune responses to transplant recipients. Treg is one of the

essential immune cells, which suppress immune responses,

maintain self-immunotolerance, and contribute vitally to tissue

and vascular repair (13, 14). Treg can inhibit the proliferation of

T cells via direct cell-cell contact, through granzyme B and perforin-

mediated; or through reducing costimulatory signals and inhibiting

antigen presentation (15, 16). Tregs routinely play a major role in

maintaining immunological tolerance to self-antigens and suppress

immune responses injurious to the transplant recipients (17–20).
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Functionally mature T cell subsets-Tregs in the thymus are a

unique CD4+ T-cell subpopulation, which in mice is characterized

by the surface expression of CD25, nuclear expression of FOXP3,

and secrete IL-10, TGF-b to suppress heightened immune

responses, and also trigger inducible Treg expansion (21–23).

Unlike mouse, Human Treg population is highly heterogeneous,

and different markers including CD3, CD4, CD25, and FOXP3 have

been minimally required to define human Treg cells (24). Besides,

staining for Ki67 and CD45RA showed to provide additional

information on the activation status of Tregs (25). Demethylation

of FOXP3 determines stable FOXP3 expression in clinical

transplants, which has been widely recognized as an essential

transcription factor in Tregs (26, 27). During an alloimmune

inflammation, Hypoxia Inducible Factor 1 Subunit Alpha (HIF-

1a) expression upregulates Th17 cells while downregulates Tregs

through the binding to FOXP3 (28, 29). IL-2 plays an important

role in stabilizing FOXP3 gene expression, and a high expression of

the IL-2 recep tor cor r e spond d ic t a t e the e ff e c t i v e

immunosuppressive functions of Tregs (30). In response to IL-2

receptor signaling, Janus kinases (JAKs) initiate phosphorylation of

Signal transducer and activator of transcription 5 (STAT5) and an

activated STAT5 binds to the FOXP3 promoter and conserved non-

coding sequence 2 (CNS2), signaling Treg activation (31). In

addition, IL-6 induces CNS2 methylation to suppress FOXP3

expression, and IL-21 activates STAT3 to suppress FOXP3

expression, whereas TNF-a dephosphorylates & restores Treg

function (32, 33) (Figure 2).
Immunosuppression

An immunosuppressive regimen remains essential for lung

transplantation success, and a wide variety of immunosuppressive

agents, as well as combinations of them, are available for use after lung
FIGURE 1

Demonstrates an inflammatory response in normal vs obstructed bronchioles after lung transplantation.
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transplantation, giving patients more personal choice (34, 35).

Although these drugs are effective, their side effects can be

severe, reducing a patient’s life expectancy. Consequently, new

immunosuppressive therapies are required that promote immune

tolerance without the side effects currently observed. An effective

immunosuppression can be achieved by combining various signaling

pathways that work through the immunomodulation functions of

various immune cells, and the selective inhibition of effector and

memory T cells through these pathways could theoretically be

used to decrease the amount of immunosuppressive drugs and

promote the induction of tolerance (36). In addition, Treg-based

immunomodulation may reduce the toxic effects associated with

current immunosuppressive treatments (37–39). The utilization of

this approach could be a game-changer when it comes to managing

transplanted patients, improving outcomes, and reducing toxic

treatments. The current immunosuppressive agents used in clinics

modulate Treg activity through a variety of signaling pathways (40).

Such agents are effective in controlling inflammatory conditions;
Frontiers in Immunology 03
however, their use is associated with several adverse effects. An

immunosuppressive drug commonly used in transplantation is

calcineurin inhibitors (CNIs), mammalian Target of Rapamycin

inhibitors (mTOR), corticosteroids, mycophenolate preparations,

anti-thymocyte globulin (ATG), anti-CD25 antibody, anti-CD52

antibody, Lymphocyte function-associated antigen-3 (LFA-3) fusion

protein antibody, anti-IL-6R antibody, anti-CD28 antibody, and

Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) antibody (36,

41, 42). In general, immunosuppression affects immune cells of the

graft, thereby playing a crucial role in tissue repair, fibrosis progression,

and lung function following lung transplantation (Table 1).
Tregs and tissue repair

The cytokines and growth factors play important roles in cell

proliferation, migration, and matrix synthesis, which make them

critical to fundamental homeostatic and pathophysiological
FIGURE 2

Demonstrates the immunosuppressive effects of FOXP3+ regulatory T cells on tissue and vascular repair.
TABLE 1 Various Immunosuppressants drugs and Treg levels during transplantation.

Immunosuppressants Target pathways Tregs

1 Calcineurin inhibitors ↓ Calcineurin & NFAT, FOXP3 ↓

CTLA4-Ig Blocks CD28 signaling ↓

anti-IL-2R Blocks IL-2 receptor signaling ↓

2 mTOR inhibitors ↓ mTORc1 ↑

histone deacetylases inhibitor ↓ Histone deacetylases and 1FOXP3 ↑

Low-dose IL-2 ↑ IL-2R signaling on Tregs. ↑

Rabbit anti-thymocyte globulin T cells markers. ↑

Anti-IL-6R prevents IL-6/IL-6R binding ↑

3 Complement inhibitors Blocks C5 cleavage -

Steroids ↓ pro-inflammatory cytokines -

Antiproliferative agents Inhibit purine synthesis -
front
↓ (Downregulation); ↑ Upregulation; - (No effects).
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processes such as wound healing, inflammation, tissue repair and

fibrosis (43). Depending on the cytokine and its role, it may be

appropriate to either enhance (recombinant cytokine, gene transfer)

or inhibit (cytokine or receptor antibodies, soluble receptors, signal

transduction inhibitors, antisense) the cytokine to achieve the

desired outcome. Consequently, cytokines, which are central to

this constellation of events for coordinating multiple cell types, have

become targets for therapeutic intervention to modulate the wound

healing process, which is crucial to transplant survival. In wound

healing, several immune cells participate in the process, including

platelets, neutrophils, macrophages, fibroblasts, lymphocytes,

epithelial and endothelial cells. However, Tregs, as well as their

associated regulatory mediators, help to protect the tissue from

inflammation (44–48). During hemostasis, platelets release

transforming growth factor-b1 (TGF-b1), Platelet-derived growth

factor (PDGF), fibroblast growth factor (FGF-2), and Vascular

endothelial growth factor (VEGF) to recruit neutrophils and

macrophages, while neutrophils release reactive oxygen species

(ROS), nitric oxide (NO), proteases, VEGF, and IL-17 to destroy

pathogens (49–51). Besides, NK cells secrete IFN-g, TNF-a and also

release perforins and granzymes that are cytotoxic to infected cells

(52). Moreover, neutrophils release TNF-a, IL-1b, IL-6, and MCP-

1, which attract monocytes and dendritic cells and activate T cells

that cause Th1 pro-inflammatory responses (53). In the

inflammatory phase of acute wound healing, macrophages secrete

IL-1, VEGF, FGF-2, TNF- a, IL-6, IFN-g, TGF-b, and PDGF, which
promote the proliferation of fibroblasts, keratinocytes, and

epithelial cells, whereas in the remodeling phase IL-4, IL-10, and

IL-13 induce the transition of M1 to M2 macrophages (50, 53).

Besides, other cells, such as mesenchymal stem cells (MSCs) and

fibroblasts, secrete Tumor necrosis factor- (TNF) stimulated gene-6

(TSG-6), which promotes wound healing by limiting macrophage

activation, inflammation, and fibrosis (54, 55). M2 macrophages

generally inhibit inflammation and promote tissue repair through

IL-10 and TGF-b, which stimulate extra cellular matrix (ECM)

synthesis, angiogenesis, and fibroblast proliferation (44). During

inflammation, lymphocytes are also recruited to the wound and

release IFN- g, TGF-b, IL-10, IL-2, IL-17, and IL-22 (56). Later,

angiogenesis replaces damaged vessels with granulation tissue, in

which epidermal cells, fibroblasts, vascular endothelial cells, and

macrophages produce b-FGF, TGF-b, and VEGF to bolster

angiogenesis (57). VEGF induces angiogenesis through adenosine,

which in turn stimulates hypoxia-induced proliferation, therefore

A2A receptors, is now considered a potent regulator of the early

stages of tissue repair caused due to overactivation of various

inflammatory mediators (9, 58–60). Tregs promote tissue repair

through various regulatory cytokines, which include IL-10, TGF-b,
IL-33, IL-35 and amphiregulin (61–63) (Figure 2). IL-10, an anti-

inflammatory cytokine, favors tissue repair, and regulate FOXP3

(64). IL-10 is a potent antifibrotic, reparative, as well as vasculo-

protective cytokine that assists in the repair of tissue following a

sporadic alloimmune response during transplantation (46, 65–71).

The anti-inflammatory properties of IL-10 help to suppress the

production of pro-inflammatory cytokines such as IFN- g, IL-2, IL-
Frontiers in Immunology 04
3, and TNF- a by Th1 cells, mast cells, NK cells, endothelial cells,

eosinophils, and macrophages (72–78).

In addition to limiting collateral tissue damage caused by

uncontrolled immune responses, IL-10 helps maintain the

regulatory microenvironment by upregulating TSG-6, M2

macrophages, and, tolerogenic dendritic cells (DC-10), antigen-

specific T regulatory type 1 (Tr1), while suppressing Th1/Th17

effector immunity (65, 67, 68, 71, 73, 79, 80). Through the surface

expression of TSG-6, FOXJ1, Fascin-1, and b-catenin proteins, IL-

10 enhances microvascular supply, tissue oxygenation, and airway

epithelium regeneration in allografts, further supporting the

therapeutic benefits during wound healing and tissue repair (46,

65, 66, 81). The relationship between inflammation and fibrogenesis

has led to IL-10 being identified as a potential antifibrotic target as

well as a gatekeeper offibrotic/antifibrotic signaling, so immune and

cell-based therapies aiming to capitalize on IL-10 as a target could

be effective in treating lung transplanted patients suffering from

delayed would healing. These studies supported that IL-10 is vital

for regenerative functions, and associated with a proportional

increase in another anti-inflammatory protein TSG-6, and further

upregulation of CD4+FOXP3+ Tregs, which thereby support the

reestablishment of microvascular supply, tissue oxygenation, airway

epithelial repair, and suppression of collagen deposition in allografts

(17, 19, 46, 64, 82, 83). TSG-6 has been established to regulate pro-

inflammatory cytokines and augment tissue repair in various

animal models (84, 85) while suppressing inflammatory reactions

triggered by ischemia in the heart and thereby limiting the

destruction of cardiomyocytes (86). However, TSG-6 gene

inactivation has been associated with the upregulation of

inflammatory immune response, while over-expression of the

TSG-6 gene has been associated with the downregulation of

inflammatory responses (87–92). TSG-6 is a crucial regulatory

mediator secreted by fibroblasts, monocytes, and mesenchymal

stem cells to facilitate healing in an inflamed or metabolically

active tissue microenvironment (92). TSG-6 is rapidly

upregulated in response to inflammatory cytokines to protect

tissues from inflammation, and is also involved in anti-

inflammatory, antifibrotic, proangiogenic, and analgesic functions

during inflammation (93). TSG-6 can modulate matrix structure

and organization by upregulating several regulatory cells, such as

Tregs, M2 macrophages, Matrix metalloproteinases (MMPs), and

associated anti-inflammatory cytokines, thereby suppressing

proinflammatory cytokines (IL-1b, IL-6, and TNF-a) and

oxidative stress to prevent extensive tissue damage during

inflammation (84, 94–96). IL-10 enhances microvascular supply,

tissue oxygenation, and airway epithelium regeneration in allografts

through the surface expression of TSG-6, further supporting the

therapeutic benefits during wound healing and tissue repair (46, 65,

66, 81). The relationship between inflammation and fibrogenesis

has led to IL-10 being identified as a potential antifibrotic target as

well as a gatekeeper offibrotic/antifibrotic signaling, so immune and

cell-based therapies aiming to capitalize on IL-10 as a target could

be effective in treating lung transplanted patients suffering from

delayed would healing.
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Tregs monitoring in clinical
lung transplantation

However, numerous clinical studies have been investigating

various biomarkers of CLAD to further improve diagnosis, and to

characterize early biological processes that lead to the progression of

CLAD. Presence of Tregs post lung transplantation have been

documented both in peripheral blood and Bronchoalveolar lavage

(BAL) samples with varying frequencies, which affected several

clinical variables (97, 98). There is little information available about

the long-term evolution of peripheral Tregs after lung

transplantation. The aim of this review is to discuss the Treg long-

term kinetics in lung transplant recipients and their relationship with

several clinical variables. As reported, patients with chronic rejection

had a significantly lower abundance of peripheral Tregs, while

patients without chronic rejection had a significantly higher level of

peripheral Tregs (99). Furthermore, these peripheral Tregs were

capable of suppressing T cell proliferation and releasing IL-10 in

vitro (100). In an investigation of peripheral blood mononuclear cells

from lung transplant patients, Bharat and colleagues showed that

chronic rejection was associated with a decrease in peripheral Tregs

and CD4+ T cells producing IL-10. In addition, Tregs were found to

induce these IL-10+ T cells in vitro (101). In a prospective study, the

Hannover group reported the results that Tregs were associated with

freedom from chronic lung allograft dysfunction at both early and

late time points after transplantation (102). In a study conducted 3

weeks after transplantation, the CD4+CD25highCD127Lo Treg

phenotype was found to inhibit chronic lung allograft dysfunction

(102). Moreover, peripheral blood monocyte-derived dendritic cells

of lung transplant patients without BOS expressed higher levels of

(indolamine oxidase) IDO than those with BOS. It may be of even

greater importance to point out that these IDO-expressing dendritic

cells were capable of expanding regulatory T cells (103). Clinical

studies also investigated the BAL and concluded that Treg abundance

varied considerably between individuals with acute rejection and

those without, and conflicting associations were identified (97, 104).

It has been found, however, that decreased Treg counts in the BAL

specimens are associated with BOS in a very small percentage of

patients (99).

An analysis of the long-term peripheral kinetics of Tregs was

performed by Piloni et al. to determine the association between

Tregs and different clinical variables following lung transplantation

(98). In previous studies, peripheral Tregs were found to be an

important regulatory subset of lung transplant recipients. A recent

study confirmed the role of Tregs in lung graft acceptance and

rejection. There was a significant decline in peripheral Treg counts

in CLAD patients, which demonstrated a significant correlation

between the degree of this decrease and the severity of BOS (98).

Lung transplants (with BOS) had significantly lower peripheral

Tregs than clinically stable lung recipients, and peripheral Tregs

early after Lung transplantations are responsible for a protective

effect against CLAD, which is associated with a drop in Tregs, TIL-10

cells, and an upregulation of TIFN-g cells in Lung transplant patients

(98, 101, 105). In clinical lung transplantation, the assessment of

Tregs has emerged first as a tool to predict the progression of CLAD

(100, 106–108), FOXP3 activation, and subsequent increase in IL-
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10 production has been reported in patients with stable lung

functions compared to CLAD patients (103). Besides, stable

patients also showed increased expression of IDO, which converts

tryptophan-kynurenine, and this IDO activity has been

therapeutically associated with tolerance in part through direct

inhibition of T cell proliferation (109). Conversely, high plasma

levels of kynurenine-tryptophan—reflecting high IDO expression—

were reported in BOS patients compared to stable patients (110).

Other clinical studies also demonstrated T cell subsets within the

lung and reported that patients with acute rejection had lower CD3+

cells that expressed FOXP3 compared to non-rejectors (97, 104, 111,

112). At present, most clinical settings still use Donor-specific

antibodies (DSA) as an only biomarker in clinical testing. A

prospective cohort study of 138 patients performed Tregs analyses

from peripheral blood before the transplant procedure and up to the

two-year after transplantation. Treg (CD4+CD25high) data

demonstrated that 23% of total recruited patients reflected CLAD

symptoms within the two-year after transplantation, but there was no

statistical difference was reported between the CLAD-free and CLAD

developing patients. However, there was significant increase in the

population of CD127low, FOXP3+, IL-2+ and CD152+ cells were

recorded in the CLAD-free group within three-weeks post-lung

transplantation. These findings suggested that increasing levels of

CD25highCD127low, CD25highFOXP3+, and CD25highIL-2+ of CD4+ T

cell phenotypes with three-weeks after lung transplantation were

recognized as a protective mechanism against the progression of

CLAD (102).

Another clinical study reported a decrease in peripheral blood

Tregs (CD4+CD25high) in BOS patients compared to patients with

stable lung function (100). A subsequent study also demonstrated

that drop in Treg (CD4+CD25highCD127−) counts was directly

correlated with an increased risk to CLAD progression, and

frequency of Treg population was associated with the severity of

BOS progression (98). Other clinical studies further demonstrated

an increase in Tregs (CD3+CD4+CD25highCD69−) in peripheral

blood and BAL compared to those in stable lung transplant

recipients. This study concluded that stable and evolutive

obstructive bronchitis (OB) were dominated by a Treg, Th1, and

Th2 activation, however, compared to evolutive OB, Treg and Th2

cells predominated in stable OB conditions, which speculate that

Treg could offset the Th activation seen in evolving OB and

participate in maintenance of airway obstruction (113).

Similarly, another clinical study also reported the occurrence of

low CD4+FOXP3+ cells in BAL samples collected from who later

developed BOS (99). Besides, a higher level of regulatory

CCR7+CD3+CD4+CD25highFOXP3+CD45RA− T cells, which were

found protective against the progression of BOS reported in lung

transplant recipients (114).

In a recent investigation, CD15s was identified as a specific

marker of FOXP3+ effector Tregs, which suppress the immune

system. An accumulation of CD15s+11Tregs was reported in BAL

following lung transplantation, and a comparison was made

between the numbers of CD15s+Tregs in BAL and those in blood.

It was demonstrated that long-term lung transplant survivors

accumulate a subset of Tregs expressing CD15s in the BAL, but

not in the blood (115).
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Tregs mediated immunotherapy

Treg is a potential therapeutic option for the targeted induction

and preservation of immunotolerance (116), which is accomplished

by the removal of alloreactive T effector cells, or by polarizing

alloreactive effector T cells-Tregs ratio in favor of Tregs to suppress

alloreactive T effector cells, and subdue graft associated injuries (17,

117, 118). Most of the current immunosuppressive options are

inadequate to control early damage to microcirculation resulting in

poor long-term outcomes, and therefore both preclinical and

clinical data hold great promise to improve long-term outcomes

post-transplantation. Several studies have shown the

immunosuppressive and therapeutic efficacy of Tregs in various

preclinical disease models to treat transplant-related complications

(17–19, 66). The direct and indirect therapeutic benefits of Tregs

have been investigated in clinical and preclinical studies (17, 18,

119), which echoed that Treg-mediated immunosuppression has

been a promising area of cell-based immunotherapy for solid organ

transplants (26, 37, 120, 121). Clinical studies adopting Treg

mediated immunotherapy in various diseases including type 1

diabetes in children (37), and living donor liver and kidney

transplantation have shown that selective augmentation of Tregs

can be an effective strategy for promoting transplantation (122).

Transplantation is the last option to rescue end-stage organ failure,

which is heavily dependent on the immunosuppressive (IS)

medications to protect the graft against alloimmune injury. The IS

drugs are non-specific, and therefore cause global immunosuppression

and chronic toxicity. It is widely demonstrated that Tregs modulate

alloimmune responsiveness and immunosuppress through both TCR-

dependent and TCR-independent mechanisms, therefore play a vital

role in maintaining immunotolerance. Treg-mediated therapy to be a

promising option to taper the magnitude of immunosuppression in

transplanted patients for a better long-term graft survival. There is an

overwhelming preclinical data in various mouse models of

transplantation have demonstrated the efficacy and safety of using

Tregs in transplantation settings (11, 38, 123–127). Besides, recent

clinical trials using Treg-based therapies in solid organ transplantation

also offer the potential of an improved therapeutic efficacy. Although,

Tregs are a promising option but the success of Treg based therapy is

marred by various limitations. Several cell surface markers have been

tested to isolate high purity Tregs from both peripheral/cord

blood, selected Tregs should retain their phenotype: of

CD4+CD127lowCD25+FOXP3+CD62LhiCCR7+ T expressing

phenotype for an effective therapeutic candidate. Besides, these

phenotype Tregs also display high and sustained FOXP3 and Helios

expression and expanded cells should be able to suppress adult

peripheral blood T cell proliferation in co-culture assays, retain their

purity >95% & viability >90%. In most clinical trials of solid organ

transplantation, varying doses of mainly polyclonal Tregs (0.5M-7M)

have been tested successfully without any side effects (128). The clinical

efficacy and safety of Treg mediated immunotherapy has been

successfully tested in liver and kidney transplantation, but not yet in

lung transplantation (39, 129). However, ex vivo delivery of regulatory

T cells for control of alloimmune priming in the donor lung has been

tested under pretransplant conditions, which concluded that pre-
Frontiers in Immunology 06
transplant Treg administration can inhibit alloimmunity within the

lung allograft at early time points post-transplant (40).
Future research

The use of Treg-based immunotherapy to promote tolerance in

various solid organ transplantations has emerged as a promising

approach. The number, metabolism and function of Treg cells are

tightly regulated by numerous costimulatory signals and the

associated cytokine signaling (130). As a result, it keeps a delicate

balance between immunosuppression and excessive immune

activation or autoimmunity. Apart from polyclonal Tregs, there

are currently numerous new techniques that have been adopted to

make produce antigen specific Tregs in vitro, which are

therapeutically more effective than polyclonal Tregs. Besides,

Chimeric Antigen Receptor (CAR)-expressing Tregs and

engineered TCRs, and overexpression of FOXP3 platforms have

been introduced to produce antigen-specific Tregs, and preclinical

results recorded very encouraging results (131–133). Various

clinical trials remain compromised by an inability to manufacture

a sufficient Treg cell dose; therefore, it is essential to harness the

reparative and regulatory potential of Tregs in-vivo. In preclinical

studies, a variety of therapeutic options have been used to expand

Tregs in vivo, including costimulatory and coinhibitory signals,

such as abatacept/belatacept primary target CD28, CTLA4, PD-1,

ICOS, cytokine signaling, and CAR-Tregs (134–137). Blocking

CD28/CTLA4-B7 and CD40-CD154 is one of the most

extensively studied costimulation pathways using CTLA4-Ig and

MR1 (138–141). CTLA4-Ig, alone or in combination with TCR

ligation, exhibits therapeutic efficacy by conversing naive T cells

into FOXP3+ T cells and by expanding their numbers, thus favoring

graft survival (142). Several preclinical studies led to the

development of abatacept, which has now been approved for the

prevention of Graft-versus-host disease GvHD (143). IL-2 plays a

vital role in Treg generation, survival, stability, and function, and

signaling via the IL-2 receptor and activation of STAT5 signaling

pathways can be utilized to promote Treg expansion in vivo (144,

145). A number of mediators have been reported to stimulate Tregs,

which include TSG-6, TGF-b, IL-5, IL-9, IL-10, IL-27, IL-35 and IL-
33 to facilities immune tolerance and repair process (54, 146–151).

In addition to cytokines, some growth factors, especially TSG-6,

play crucial role in modulating Treg levels during tissue repair.

TSG-6 has been tested extensively in preclinical studies, which

demonstrated its positive effects on wound healing and tissue repair

(81, 84, 91, 152). Besides, the currently available preclinical data

indicates that TSG-6 can function as a potential antifibrotic and

angiogenic agent and can regulate pro-inflammatory cytokines and

enhance tissue repair in multiple animal models, while suppressing

inflammatory reactions induced by ischemia in a variety of disease

models (54, 65, 66, 91, 153). In addition to costimulatory and

cytokine signaling, CAR-Tregs have been investigated to generate

antigen-specific Tregs by expanding Tregs with APCs and specific

antigens or engineering them with T-cell receptors. TCR-

engineered Tregs are promising, but they are still MHC-restricted,
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limiting individual patient application (132, 133). The single-chain

variable fragment, extracellular hinge, transmembrane region, and

intracellular signaling domains are used in an MHC-independent

way to engineer Tregs with chimeric antigen receptor genes. In

animal models, CAR-Tregs have shown great potential for treating

different diseases, especially allograft rejection and various

autoimmune diseases (154, 155), and CAR-Tregs are a potential

choice of immunetolerance in clinical transplantation to achieve an

effective immunosuppression (154).

Clinical limitations

Several preclinical studies have suggested that Treg infusion after

lung transplantation may reduce acute and chronic rejection. In

humans, Treg therapy may be substantially limited by several

potential pitfalls. A crucial question remains, however, as to

whether Treg infusions following lung transplants are safe for

humans. Several early phase trials discussed above suggest that

there will be no adverse effects associated with Treg infusion after

lung transplantation, although no clinical trials have been initiated.

Despite these vital regulatory and reparative effects of Tregs in

preclinical and clinical transplantation, Treg therapy still faces

crucial challenges, which include how to calculate an effective dose,

antigen specificity, expansion, and large-scale production for future

clinical trials.
Conclusion

We conclude that Tregs are a vital part of the immune response

and play a major role in determining the transplant functioning in

clinical transplantations, and FOXP3+ Tregs may serve as a relevant

biomarker for predicting outcomes of transplantation.
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