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Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period

of time been perceived as a defining feature of tumor metabolism. The

redirection of glucose utilization towards increased production of lactate by

cancer cells enables their rapid proliferation, unceasing growth, and longevity. At

the same time, it serves as a significant contributor to acidification of the tumor

microenvironment, which, in turn, imposes substantial constraints on infiltrating

immune cells. Here, we delve into the influence of tumor-derived lactic acid on

innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given

the abundance of ILCs in barrier tissues such as the skin, we provide insights

aimed at translating this knowledge into therapies that may specifically target

skin cancer.
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Introduction

Lactic acid was identified in 1780 by Carl Wilhelm Scheele who isolated it from sour milk

and based on its origin coined the name “Mjölksyra” or “acid of milk” (1). In aqueous

solutions with a physiological pH, the hydrophobic acid converts almost entirely into its

conjugate base - lactate. In 1856, Louis Pasteur rediscovered lactate as a fermentation product

generated by microorganisms (2). While microorganisms also produce other fermentation

metabolites, lactate stands out as the predominant product of fermentation in mammals (3).

The production of lactate escalates when the demand for ATP and oxygen surpasses the

available supply, which commonly happens during periods of intense exercise (4).

Lactate is produced through the transformation of pyruvate, the end product of

glycolysis, by the enzyme lactate dehydrogenase (LDH). Under normal aerobic conditions,

pyruvate drives ATP production by oxidative phosphorylation. However, when oxygen

availability is limited, pyruvate is converted to lactate as a means to replenish NAD+ and

sustain glycolysis. Interestingly, even in the presence of sufficient oxygen, certain prokaryotic

and eukaryotic cells choose to convert pyruvate into lactate. Otto Warburg initially described

this metabolic process (known as the eponymous Warburg effect) in tumor cells, which

produced lactate and released it extracellularly (5, 6). Several factors drive the Warburg effect,
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including the activation of growth factor signaling pathways driven

by oncogenes. For example, the PI3K/AKT/mTOR pathway increases

glucose uptake and glycolysis in cancer cells (7). The upregulation of

glucose transporters, such as GLUT1, facilitates the efficient uptake of

glucose. On the other hand, monocarboxylate transporters (MCTs),

specifically MCT1 and MCT4, facilitate the release of lactate into the

extracellular space (8). These transporters enable the simultaneous

movement of monocarboxylate ions such as lactate and protons

across the plasma membrane, allowing bidirectional transport. While

systemic lactate concentrations are tightly regulated at approximately

1-2 mM, certain conditions including cancer can result in

significantly higher levels (9, 10). In addition, the concentrations of

lactate beyond physiological ranges have the potential to impact

cellular function. For example, lactic acid has been found to inhibit

the differentiation of human dendritic cells (DCs) (11). Furthermore,

lactic acid suppresses the production of cytokines by T cells and

impedes their proliferation (12). Tumor lactic acidosis also restrains

the tumor immunosurveillance carried out by T cells (13). In

contrast, macrophages, following the stimulation with lactic acid,

acquire a protumorigenic alternatively activated phenotype (14).

Innate lymphoid cells (ILCs) represent the first line of defense.

However, the precise impact of tumor-derived lactic acid on ILCs is

incompletely understood. In this regard, we present a summary of

recent findings regarding the influence of lactic acid on ILCs and

examine potential therapeutic approaches. We place particular

emphasis on the relevance of ILCs in skin cancer, considering

their abundance in barrier tissues such as the skin (15).
ILCs and melanoma

Innate lymphoid cells (ILC) comprise a family of recently

discovered lymphocytes, which exhibit multifaceted functions.

Based on the expression of distinctive cytokines and transcription

factors they have been categorized into five subsets, namely natural

killer (NK) cells, group 1 ILCs (ILC1s), ILC2s, ILC3s, and lymphoid

tissue inducer (LTi) cells (16). NK cells differentiate with the

assistance of the transcription factor eomesodermin (Eomes) and

produce cytotoxic mediators such as perforin and granzymes in

mice, while in humans they can also produce granulysin (17, 18).

ILC1s are regulated by the T-box transcription factor T-bet

independently of Eomes and produce interferon (IFN)-g (18).

ILC2s, governed by the transcription factor GATA binding

protein 3 (GATA3) generate type 2 cytokines, including

interleukin (IL)-4, IL-5, and IL-13 (18, 19). ILC3s, on the other

hand, rely on the transcription factor RAR-related orphan receptor

gamma t (RORgt) and produce cytokines such as IL-17A and IL-22.

It is important to note, however, that ILC progenitors (ILCPs)

represent ILC3s in human peripheral blood, which indicates their

lack of maturity (18, 20). Last in order, LTi cells, which contribute to

the development of lymphoid tissues during fetal stages, produce

lymphotoxin (LT), a member of the TNF cytokine family (18).

Emerging body of evidence underscores the influence of

environmental stimuli on the function of ILCs (15). ILCs possess

receptors that allow them to survey the surroundings and mount

responses against threats to tissue integrity. Rather than relying on
Frontiers in Immunology 02
antigens like T and B cells, ILCs swiftly respond to stress signals such

as an array of cytokines released by epithelial and myeloid cells (15).

ILC1s, similar to NK cells, rely on IL-15 during their development.

Additionally, IL-12, IL-18, and IL-15 serve as activators for both

ILC1s and NK cells (18, 21). Monocytes and activated DCs contribute

to the secretion of IL-12 and IL-18, whereas activated monocytes,

macrophages, and various non-hematopoietic cells, including

epithelial and fibroblast cell lines produce IL-15 (14). On the other

hand, ILC2s predominantly respond to IL-33, IL-25, and thymic

stromal lymphopoietin (TSLP), either individually or in conjunction

with IL-33 (19). These cytokines stem from diverse cell types such as

epithelial and endothelial cells, smooth muscle cells, fibroblasts,

macrophages, and activated DCs (18). IL-25 production arises from

activated Th2 cells, macrophages, eosinophils, basophils, mast cells,

tuft cells, as well as fibroblasts, epithelial and endothelial cells.

Meanwhile, TSLP expression primarily characterizes skin epithelial

cells (18). Finally, the activation of ILC3s and LTi cells hinges on IL-

1b and IL-23, both of which are generated by activated DCs and

macrophages (18).

ILCs predominantly reside in barrier tissues. While the

conventional NK (cNK) cells are primarily found circulating in

the blood, specific non-lymphoid tissues, including the skin, also

harbor subsets of tissue-resident NK (trNK) cells (22). Whereas

cNK cells are positive for T-bet and Eomes, trNK cells are negative

for Eomes but express T-bet (23). The participation of NK cells in

antitumor immunity is undeniable. Their prevalence in the

bloodstream correlates with reduced metastatic potential in

various human cancers, including melanoma (24, 25). However,

our comprehension of the role and function of the remaining ILC

subsets in skin malignancies is still at an early stage. Further

confounding the issue is the plastic potential of ILCs (26, 27).

However, recent findings suggest that ILCs play a significant role in

the regulation of melanoma, the most aggressive form of skin cancer

traditionally associated with immune responses primarily mediated

by adaptive immunity (reviewed in (15)).

Melanoma develops from melanocytes, which are found in the

skin (i.e. the basal layer of the epidermis), eyes (i.e. the uveal tract)

and hair (i.e. the hair follicle). Although it is less common than basal

cell carcinoma (BCC) and squamous cell carcinoma (SCC) it is

responsible for the majority of deaths related to skin cancer,

partially due to its capacity to metastasize to distant organs.

Aerobic glycolysis plays a crucial role in providing the necessary

metabolic energy for melanoma cells to rapidly proliferate and

metastasize. Indeed, the expression of LDHA, which encodes a

subunit of LDH, correlates with shorter overall survival in

metastatic melanoma patients (13). This highlights the

significance of the association between the production of lactic

acid and patient survival.
Lactic acid and ILCs

Melanoma cells convert up to 80% of glucose to lactate (28, 29).

An increased production of lactate and thus an increased acidity of

the tumor microenvironment contribute to the mechanism of

tumor escape from immunosurveillance mediated by cells of the
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immune system, including ILCs (30, 31). Indeed, it has been

revealed that lowering the pH from 6.8 to 6.0 leads to a

significant decrease in the cytotoxic activity of mouse NK cells as

reflected by lowered mRNA levels of granzyme B and perforin. In

addition, exposure of human NK cells to lactate decreases the

expression of the NKp46 activation receptor. Interestingly, the

inhibitory effect of lactate on the expression of natural
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cytotoxicity receptors has been considered gene-specific, as there

was no significant change in the level of NKp30, NKp44, and

NKG2D (32). Using mouse melanoma as a model, NK cells

exhibited higher expression of IFN-g and granzyme B in tumors

with reduced lactic acid production compared to control tumors

(Figure 1). Furthermore, lactic acid concentrations exceeding 20

mM induced apoptosis in NK cells in vitro, which might help
FIGURE 1

The Warburg effect and its impact on ILCs in the tumor microenvironment. The Warburg effect (or aerobic glycolysis) is characterized by a metabolic
reprogramming in which cancer cells rely on glycolysis regardless of the availability of oxygen. In this process, most of the pyruvate generated from
glucose undergoes glycolytic transformation, resulting in the production of lactate, protons, and ATP. Lactate and lactic acid contribute to
acidification of the tumor environment, thereby disrupting the function of immune cells, including innate lymphoid cells (ILCs). Consequently, NK
cells show reduced production of INF-g and granzyme B, as well as significantly diminished survival. In T-bet+NK1.1- ILC1-like cells, inhibition of
proliferation and INF-g secretion occurs accompanied by an increase in PD-1 expression and uptake of fatty acids. Negative effects are also observed
in Sca1+KLRG1+ ILC2 cells, including impaired proliferation, decreased secretion of IL-5, and reduced survival. The impact of elevated PD-1
expression in ILC2s has yet to be fully understood. T-bet, T-box transcription factor; Sca1, stem cell antigen-1; KLRG1, killer cell lectin-like receptor
subfamily G member 1; INF-g, interferon gamma; PD-1, programmed cell death receptor 1. Figure created with BioRender.com.
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explain the smaller proportion of NK cells observed in tumors with

higher lactate concentrations (13). Although not studied in the

context of cancer, hepatic trNK cells, in contrast to cNK cells, have

been found to undergo rapid apoptosis during murine

cytomegalovirus (MCMV) infection as a consequence of an

increased sensitivity to lactic acid, which highlights the distinctive

properties of the tissue-resident population of NK cells (33). It

remains to be determined whether tissue-resident NK cells in the

skin exhibit the same heightened responsiveness to lactic acid as

observed in the liver.

The acidification induced by lactic acid has also been found to

inhibit the activity of the transcription factor, nuclear factor of

activated T cells (NFAT), leading to decreased production of IFN-g
(13). This direct connection between lactate levels and NFAT

activity is significant since NFAT is responsible for coordinating

various activities not only in T cells but also in other immune cell

types, including ILCs (23). Indeed, recent studies have

demonstrated that leukotriene receptors activate NFAT in ILC2s

(34). ILC2s were first identified in adipose tissue and implicated in

the induction of an anti-inflammatory response (35). Recently,

increased lactate production by adipocytes has been found to

promote adipose tissue macrophage polarization to an

inflammatory state in the context of obesity (36, 37). Considering

the notion that some tumors grow in close proximity to adipose

tissue (e.g. melanoma) or spread to lymph nodes, which are

typically shrouded by adipocytes, the impact of lactate production

by adipocytes on ILC2s and its role on tumor growth remains to be

assessed (38–40). Nevertheless, ILC2s exposed in vitro to lactate

have been characterized by an inhibited cytokine production,

suppressed proliferation and decreased survival (Figure 1).

Importantly, ILC2s more effectively controlled the growth of

melanomas with reduced lactic acid production when compared

to control tumors following the treatment with IL-33 (41). It has

also been revealed that the blockade of programmed cell death

protein 1 (PD1) further enhances the tumoricidal capacity of ILC2s

induced by IL-33. In one study, PD1 inhibition increased TNF-a
production by ILC2s, leading to direct inhibition of metastatic

spread of intravenously administered melanoma cells (42).

Another study found that the blockade of PD1 enhanced the

tumoricidal potential of ILC2s specifically through the

recruitment of eosinophils via granulocyte-macrophage colony-

stimulating factor (GM-CSF) (43). The impact of lactic acid on

the expression of PD1 on ILC2s is yet to be determined, although it

has been shown that PD1 blockade is less effective in highly

glycolytic tumors (44). Nevertheless, tumor-derived lactate has

been found to enhance the expression of PD1 on a subset of ILCs

that are T-bet+NK1.1− within the tumor microenvironment

(Figure 1), which led to diminished signaling of mammalian

target of rapamycin (mTOR) together with elevated uptake of

fatty acids. Consistent with the metabolic alterations, PD1-

deficient T-bet+NK1.1− ILCs have been characterized by an

increased expression of IFN-g and granzyme B and K. In

addition, the presence of PD1-deficient T-bet+NK1.1− ILCs has
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been associated with inhibited growth of melanomas in mice (45).

Although further studies are necessary to fully understand the

impact of tumor-derived lactate on ILCs, these findings pave the

way for exploring strategies aimed at regulating the lactate levels

within the tumor microenvironment.

Given the metabolic heterogeneity observed in solid tumors, it

should be noted, however, that cancer cells have also been found to

utilize lactate alongside glucose as a carbon source (46).

Additionally, metabolic interactions between cancer cells and

stromal cells have been observed. For example, cancer-associated

fibroblasts (CAFs) have been found to undergo aerobic glycolysis,

leading to lactate production, which has been subsequently taken up

and utilized by cancer cells to meet their energy requirements. This

phenomenon has been referred to as the “reverse Warburg

effect” (47).
Potential therapeutic approaches

The effectiveness of immunotherapies is often affected by the

metabolic reprogramming, which shapes the diversity of immune

cells that infiltrate the tumor microenvironment (48). The

correlation between an increased “prior to treatment” expression

level of LDH and poor outcome has been observed in melanoma

patients receiving immune checkpoint inhibitors targeting PD1

such as Nivolumab or Pembrolizumab (49–51). Therefore, the

possibility to regulate the lactate levels within the tumor

microenvironment will be crucial in harnessing the power of ILCs

to treat a variety of cancers, including melanoma.

One way to reduce the lactate levels in the tumor

microenvironment involves targeting enzymes responsible for

lactate production. LDH is known to facilitate the reversible

transformation of pyruvate into lactate (48). Active LDH

represents either homo- or heterotetrameric structure generated

through the association of distinct subunits, namely M and H,

which are encoded by specific genetic entities known as LDHA (M)

and LDHB (H), respectively. The nomenclature for these subunits

was assigned owing to their initial identification in the muscle (M)

and heart (H) tissue. The tetrameric structure of LDH gives rise to

five specific isoenzymes, demonstrating variations in the relative

abundance of LDHA and LDHB subunits as well as their

distribution across diverse tissues (52, 53). While various studies

have revealed that the suppression of LDHA gene expression

cripples tumor cell proliferation both in vitro and in vivo (54–57),

it has also been suggested that the complete inhibition of the tumor

growth can only be achieved through simultaneous disruption of

both LDHA and LDHB genes. For example, B16F10 melanoma cells

were still able to secrete substantial amounts of lactate following the

elimination of either LDHA or LDHB alone. Melanoma cells,

however, stopped proliferating under hypoxic conditions

following the simultaneous elimination of both LDHA and

LDHB. In contrast, the cells were able to grow under normoxic

conditions by reactivating oxidative phosphorylation, which
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resulted in a twofold decrease in the proliferation rate compared to

control cells. Additionally, GNE-140, which targets both LDHA and

LDHB, was sufficient to mimic the effect of the simultaneous

elimination of both isoforms in melanoma cells in terms of

inhibition of glycolysis and reactivation of oxidative

phosphorylation in WT cells (52).

Another strategy to reduce lactic acid levels in the tumor

microenvironment involves lactate oxidation to pyruvate with the

formation of hydrogen peroxide (H2O2) catalyzed by lactate oxidase

(LOX) (58). In this scenario, LOX is encapsulated using cationic

polyethyleneimine (PEI) and copper ions (Cu2+). The cationic PEI

component actively traps lactate, which is then degraded by an

encapsulated reservoir of LOX. In addition, Cu2+ ions serve as a

catalyst in the Fenton reaction, which decomposes H2O2 into

cytotoxic hydroxyl radicals (·OH) and alkalizing hydroxyl anions

(OH-). Importantly, excessive reactive oxygen species (ROS)

generated in the reaction have been found to induce

immunogenic cell death (59).

Alternative method to regulate the lactate levels in the tumor

microenvironment involves the use of synthetic D-lactate dimers

(60). Human cells predominantly produce L-lactate, which is

precipitated by D-lactate polymers, stereoisomers commonly

produced by the gut microbiome (61). It has previously been

reported that synthesized D-lactate polymers formed

stereocomplexes with L-lactate, leading to the depletion of plasma

levels of L-lactate. Importantly, D-lactate dimers (DLADs) have also

demonstrated toxicity towards human melanoma cells in vitro (60,

62). Moreover, the intratumoral administration of DLAD has been

found to inhibit the growth of human melanomas in

immunodeficient mice (60).

Transmembrane MCTs serve as another important target.

MCTs, play a key role in governing the lactate levels in the tumor

microenvironment. MCTs facilitate the efflux of lactate and protons

to the extracellular environment causing acidification of the tumor

milieu (63, 64). Inhibition of MCT-1 in melanoma cells has been

linked to decreased metastatic potential of mouse and human

melanomas. Additionally, it has been observed that the inhibition

of MCT-1 or MCT-4 induces oxidative stress through the

suppression of lactate export and reduction of glycolysis (65).

The inhibition of proteins responsible for distribution of ions

within the tumor microenvironment such as proton transporters

(i.e. carbonic anhydrase (CA)) and vacuolar-type membrane-

embedded protein complexes that operate as ATP hydrolysis-

driven proton pumps (V-ATPase) serve as a means to neutralize

acidic pH (66–68). An increased expression of carbonic anhydrase

IX (CAIX) has been found in mouse melanoma cells cultured in

acidified medium (pH 6.7 ± 0.1) when compared to standard

conditions (pH 7.4 ± 0.1) (69). The inhibition of CAIX, using

small molecule inhibitor SLC-0011, resulted in the suppression of

the extracellular acidification. Importantly, the inhibition of CAIX

in combination with immune-checkpoint inhibitors has been found

to enhance the response to anti-PD-1 and anti-CTLA-4 therapies as
Frontiers in Immunology 05
revealed using a mouse model of melanoma (70). The suppression

of V-ATPases in mouse and human melanoma cells, on the other

hand, has been achieved through the utilization of Myrtenal, a

monoterpene derived from plants. It has been found that Myrtenal

perturbed the electrochemical proton (H+) gradient across the

cellular membranes and induced apoptosis. In addition, it has

significantly attenuated the migratory and invasive capacities of

tumor cells in vitro and in vivo (71).

The impact of a commercially available alkalizing agents such as

Basenpulver® (BP) on tumor growth has also been assessed using a

mouse model of melanoma. Initially, it has been revealed that the

administration of BP significantly inhibited the proliferation of

mouse and human melanoma cells in vitro. In vivo, significantly

slower growth of melanomas has been observed following

prolonged BP supplementation of mice (72). Although more

research is needed, results from this study provide evidence that

targeting the pH of the tumor microenvironment might be achieved

through the systemic approach.

However, it is crucial to understand the limitations of the

aforementioned therapeutic strategies. The utilization of lactate as

a therapeutic target in clinical practice, to date, has been sporadic

(reviewed in (73)). Bluntly interfering with glycolysis, with the aim

of reducing lactic acid production in tumor cells, can inadvertently

harm normal cells and tissues, resulting in potential toxicities.

Tumor cells may also develop resistance to inhibitors of

glycolysis, fostering alternative metabolic adaptations that could

be more aggressive and difficult to treat. Therefore, it is paramount

to meticulously weigh the benefits of targeting lactic acid

production against the potential adverse effects caused by

meddling with vital cellular processes.
Discussion

The metabolic reprogramming enables cancer cells to meet the

demands of rapid tumor growth and progression. An increased

glycolysis leads to the accumulation of lactic acid in the tumor

microenvironment. This phenomenon can also modulate the

function of ILCs, ultimately affecting their response against

cancer. The specific interactions between lactate and ILCs have

only recently garnered attention. Several important questions

remain unanswered thus providing avenues for future research.

Firstly, what are the specific mechanisms by which lactic acid affects

the phenotypic and functional properties of ILCs, including their

cytotoxic capabilities? Secondly, how does lactic acidosis impact the

metabolic reprogramming of ILCs? Moreover, how does lactic

acidosis influence the crosstalk between ILCs and other immune

cell populations within the tumor microenvironment? Further

research is needed to understand these intricate relationships and

determine the context-dependent effects of lactic acidosis on tumor

progression and function of immune cells within the tumor

microenvironment. These studies will aid in developing targeted
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therapeutic strategies that exploit the metabolic vulnerabilities

of tumors and optimize immune responses for effective

cancer treatment.
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