
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jin S. Im,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Dinler Amaral Antunes,
University of Houston, United States
Ling Xu,
Jinan University, China

*CORRESPONDENCE

Houda Alachkar

alachkar@usc.edu

RECEIVED 07 June 2023

ACCEPTED 07 September 2023

PUBLISHED 19 October 2023

CITATION

Pospiech M, Tamizharasan M, Wei Y-C,
Kumar AMS, Lou M, Milstein J and
Alachkar H (2023) Features of the TCR
repertoire associate with patients' clinical
and molecular characteristics in acute
myeloid leukemia.
Front. Immunol. 14:1236514.
doi: 10.3389/fimmu.2023.1236514

COPYRIGHT

© 2023 Pospiech, Tamizharasan, Wei,
Kumar, Lou, Milstein and Alachkar. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 19 October 2023

DOI 10.3389/fimmu.2023.1236514
Features of the TCR repertoire
associate with patients' clinical
and molecular characteristics in
acute myeloid leukemia
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Advaith Maya Sanjeev Kumar1,2, Mimi Lou1, Joshua Milstein3

and Houda Alachkar1,4*

1Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los
Angeles, CA, United States, 2Department of Computer Science, University of Southern California, Los
Angeles, CA, United States, 3Department of Population and Public Health Sciences, Keck School of
Medicine, University of Southern California, Los Angeles, CA, United States, 4Norris Comprehensive
Cancer Center, University of Southern California, Los Angeles, CA, United States
Background: Allogeneic hematopoietic stem cell transplant remains the most

effective strategy for patients with high-risk acute myeloid leukemia (AML).

Leukemia-specific neoantigens presented by the major histocompatibility

complexes (MHCs) are recognized by the T cell receptors (TCR) triggering the

graft-versus-leukemia effect. A unique TCR signature is generated by a complex

V(D)J rearrangement process to form TCR capable of binding to the peptide-

MHC. The generated TCR repertoire undergoes dynamic changes with disease

progression and treatment.

Method: Here we applied two different computational tools (TRUST4 and

MIXCR) to extract the TCR sequences from RNA-seq data from The Cancer

Genome Atlas (TCGA) and examine the association between features of the TCR

repertoire in adult patients with AML and their clinical and molecular

characteristics.

Results: We found that only ~30% of identified TCR CDR3s were shared by the two

computational tools. Yet, patterns of TCR associations with patients’ clinical and

molecular characteristics based on data obtained from either tool were similar. The

numbers of unique TCR clones were highly correlatedwith patients’white blood cell

counts, bone marrow blast percentage, and peripheral blood blast percentage.

Multivariable regressions of TCRA and TCRB median normalized number of unique

clones with mutational status of AML patients using TRUST4 showed significant

association of TCRA or TCRB with WT1 mutations, WBC count, %BM blast, and sex

(adjusted in TCRB model). We observed a correlation between TCRA/B number of

unique clones and the expression of T cells inhibitory signal genes (TIGIT, LAG3,

CTLA-4) and foxp3, but not IL2RA, CD69 and TNFRSF9 suggestive of exhausted T

cell phenotypes in AML.
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Conclusion: Benchmarking of computational tools is needed to increase the

accuracy of the identified clones. The utilization of RNA-seq data enables

identification of highly abundant TCRs and correlating these clones with

patients’ clinical and molecular characteristics. This study further supports the

value of high-resolution TCR-Seq analyses to characterize the TCR repertoire in

patients.
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Introduction

Acute myeloid leukemia (AML) is a life-threatening hematologic

malignancy characterized by the accumulation of highly proliferative

and poorly differentiated myeloid cells in the blood and the bone

marrow (1). It commonly affects older people with a median age at

diagnosis of 68 years and a five year overall survival rate lower than 30%

(1). Allogeneic hematopoietic stem cell transplant (allo-HSCT) remains

the most effective therapeutic strategy for high-risk AML patients likely

due to the graft versus leukemia (GvL) effect, in which donor T cells

recognize and target leukemic clones (2, 3). In addition to driving

disease development and progression, mutations in the leukemic cells

(1, 4) present ideal leukemia specific neoantigens when presented by the

major histocompatibility complexes (MHCs) and then recognized by

the T cell receptors (TCR) triggering the GvL effect (1, 5). A unique TCR

signature is generated by a complex rearrangement process of an array

of variable (V), diversity (D), and joining (J) exons to select one of each

that will recombine into a functional receptor with complementary

determining regions 3 (CDR3) responsible for the interaction between

the TCR and the peptide-MHC (6–8). The generated TCR repertoire

undergoes dynamic changes with the onset and progression of disease
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and the course of treatment (9). Specific features of the TCR repertoire

such as the TCR diversity and clonal expansion were found to correlate

with a patients' clinical characteristics, disease status and clinical

outcome (10–15).

In AML, an increase in TCR expanded clones following PD-1

blockade therapy was observed in responders’ patients (11).

Furthermore, TCR diversity was lower in patients with graft versus

host disease (GVHD) and in relapsed patients among those who

received allo-HSCT (14). Diversity of the TCR repertoires undergoes

significant skewing post-allo-HSCT with an increased clonal expansion

compared with healthy subjects (16). Considering the clinical and

biological relevance of the TCR repertoire, computational methods to

extract the TCR sequences from widely available public RNA-seq data

have increasingly become available (17, 18). Among these

computational tools, TRUST was recently developed and applied to

analyze public TCR/BCR repertoire from The Cancer Genome Atlas

(TCGA) cancer data and in pediatric and adult AML (10, 19). Infants

with AML had significantly higher TCR CDR3s per kilo TCR reads

(CPK) compared with children or adult patients (10). The study also

reported an association between CBFB-MYH11 mutation and lower

TCRB CPK value in pediatric patients with AML (10).

Here we applied two computational methods (the updated version

of TRUST (TRUST4) andMIXCR on the LAML-TCGA RNA-seq data

to profile TCR repertoires across a cohort of 151 patients with AML to

investigate the TCR repertoire in peripheral blood (PB) samples in

relationship with patients’ clinical andmolecular characteristics to better

understand the role of TCR repertoire and its impact on disease

progression and outcome. Our study serves as an independent

unbiased approach to apply two commonly used computational tools

to analyze TCR clones from RNA-seq dataset in AML. This research

provides valuable insights into the identified TCR clones from RNA-seq

data and calls for the need of refinement and optimization of

computational methodologies in this evolving field.
Materials and methods

TCGA repository data

We downloaded the clinical data from AML samples of 151

patients with complete clinical and RNA-seq data of peripheral
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blood at the time of leukemia diagnosis from The Cancer Genome

Atlas (TCGA) repository from cbioportal (4, 20). Patient molecular

and RNA-seq data were downloaded from TCGA-LAML project on

the National Cancer Institute Genomic Data Commons (NCI GDC,

https://portal.gdc.cancer.gov) portal (21). The patients were

diagnosed and treated following National Comprehensive Cancer

Network (NCCN) guidelines as reported in the original publication

(4). Patients' clinical characteristics including age at diagnosis, sex,

prior treatment, white blood cell count (WBC), bone marrow (BM)

blast percentage, PB blast percentage, transplant status, disease free

survival (DFS) and overall survival (OS) were obtained and

included in the analysis along with molecular characteristics such

as karyotype, cytogenetics, molecular and cytogenetic risk.

Molecular and cytogenetic risk classifications were assigned in

accordance with NCCN guidelines (www.nccn.org). The most

common AML somatic mutations: DNMT3, FLT3, NPM1, TET2,

RUNX1, IDH1/2, TP53, CEBPA, NRAS, WT1 were also evaluated.
Reconstructing the TCR repertoire
from RNA-seq

Extraction and alignment of the TCR repertoire from RNA-seq

data were performed using the TRUST4 tool (22) and MIXCR

3.0.13 tool (23) using default parameters. TRUST4 aligns raw

sequencing reads to the reference V, D, J and C genes of T cell

receptors from the ImmunoGeneTics (IMGT) database (24). The

algorithm performs de novo assembly by aligning the candidate read

to existing contigs and builds an index for all k-mers and extends

the seed to identify alignments. TRUST4 uses IMGT to determine

CDR3 coordinates after determination of V and J genes, in the final

stage of analysis.

MIXCR initially aligns raw sequencing reads to reference V, D, J

and C genes of T- cell receptors from fastq files using default

parameters to generate *.vdjca file. Clonotypes are built from

alignments by extracting the clonal sequence specified by

assembling features parameter which by default is CDR3. Only

good quality nucleotides are utilized to build core clonotypes with

each being characterized by clonal sequence and a number of

records associated with this clonotype. Initially, MIXCR

assembles alignments that only partially cover CDR3 region. If V

and/or J segments are determined, but CDR3 edges lack nucleotides

MIXCR extends command imputes those from the germline.

Alignments are then assembled into clonotypes, and errors are

corrected. Final output text files include corresponding alignments,

nucleotide and amino acid sequences of the gene region, clone

count, and clone fraction.
Analysis of immune repertoire sequencing

VDJtools 1.2.1 (25) was used to analyze the sequencing data V

segment usage and clonotype sharing (the default parameters were

used). To generate heatmaps of V segment usage for TRUST4 and

MIXCR, we have converted output files to VDJtools format and

utilized CalcSegmentUsage functionality that calculates V and J
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segment usage with assigned frequency of associated reads for each

V/J exons present in the sample. MIXCR output contained 447

clones that were matched to multiple T cell receptor alpha V

(TRAV) segments and 830 with multiple T cell receptor beta V

(TRBV) segments. To resolve this, we filtered multiple V gene

assignments where only the gene with the highest score for a certain

clone was kept. Clones with multiple V exons having equal scores

have been filtered out. Further, we used the OverlapPair function to

perform a comprehensive analysis of clonotype sharing between

MIXCR and TRUST.
Identification of antigen specific
TCR repertoires

VDJdb (26) was used to determine target epitopes to which the

candidate TCR is predicted to bind based on a database consisting

of the results of published T-cell specificity assays coupling antigen

specificities with TCR sequences.
TCR clone clusters identification

To identify T cell receptor beta (TCRB) clusters characterized

by high probability of sharing antigen specificity we applied

GLIPH2 (grouping of lymphocyte interaction by paratope

hotspots version 2) (27) to cluster TRUST4 and MIXCR TCRB

clones from all patients. Significant clonal groups determined by

GLIPH2 were selected based on local motif-based similarity. The

confidence of determined clusters was evaluated by Fisher’s exact

test, which checks for the enrichment of unique CDR3s in said

cluster compared to the reference naive CD4+ and CD8+ as

provided by GLIPH2 (27).

The sequence logos were generated in R using ggseqlogo (28).

The relative size of each aa symbol is proportional to its frequency

in the dataset, while the total height of aa symbols indicates the

information content of the position in bits.
Data analysis

Since the low reads corresponding to the TCR impact the

accuracy of diversity estimates, such as Shannon Diversity Index

or Simpson’s Index, which are commonly used in TCR repertoire

analysis, we used a normalized unique clone count as an

approximate metric of TCR diversity as described by previous

study (10). The unique clone count represents the number of

unique TCR-CDR3 sequences that are identified within a sample.

To account for differences between samples based on variability in

the number of the sequencing reads and differences in the T cell

content we normalized the number of unique clones by dividing it

by the total number of RNA-seq reads specific to each sample and

additionally dividing by one minus PB blast percentage (10). This

normalization ensures that samples with higher sequencing depth

are not overrepresented in the analysis, which can introduce bias.

Higher values of this metric suggest greater diversity of the TCR
frontiersin.org
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repertoire, while lower values suggest a more limited diversity. The

exceptions are the analyses that included PB blast percentage as a

variable, here the normalized numbers of unique clones were

determined by dividing unique clone counts by the total number

of RNA-seq reads specific for each sample without further

normalization by the PB blasts percentage. Patients were excluded

from all analyses when no TCR clones were detected for both T cell

receptor alpha (TCRA) or TCRB or when missing full clinical or

mutational data. Patients that did not have information about PB

blast percentage at diagnosis were excluded from the normalized

number of unique clone count analyses. The number of samples

included for each analysis is included in the figure legends.

The Top 10 TRAV or TRBV genes were identified by VDJtools

as the TRAV or TRBV genes with the highest average frequency

within the cohort of patients with AML. We also defined the

public CDR3 as CDR3 clones that are present in more than

one patient.
Statistical analysis

The TCRA/TCRB unique clone counts and normalized unique

counts were compared according to patients' clinical and molecular

characteristics using Kruskal Wallis with Dunn’s post-hoc (when

comparing more than two groups) tests or parametric two-sample T

test or ANOVA (when comparing more than two groups) were

applied when the data followed a normal distribution tested by

Shapiro-Wilk test. The type of the statistical test performed is

provided in each of the figure legends. Overall survival was

defined in the original TCGA study as the time between diagnosis

and death due to any reason (4). Estimated probabilities of overall

survival were calculated according to the Kaplan-Meier method and

paired log-rank test evaluated differences between patients

belonging to each quartile of the normalized unique TCRA and

TCRB counts were evaluated using the paired log-rank test with

Bonferroni correction where appropriate. Pearson correlation

coefficients were calculated to assess associations between TCRA/

TCRB and clinical and molecular characteristics. Statistical

significance was determined on unadjusted p value with false

discovery rate (FDR) correction which was performed by the

Benjamini-Hochberg procedure for multiple comparisons and the

q value within the text and figure legends was provided where

appropriate. For the univariate and multivariable analyses, the log

transformation was performed on the value of unique TCR clones

normalized to the number of total sequencing reads. The statistical

significance was considered when the p values both from MIXCR

and TRUST4 were lower than 0.05 based on the intersection-union

test. We identified a list of important variables via analyses of

univariate regressions with p<0.2. The forward selection for the

regression model building with Schwarz Information Criterion

(SBC) was performed to select the significant variables for

inclusion into the final regression model. The intersection-union

principle was applied where appropriate. Data analyses were

implemented in the Pandas 1.42 package in python or GraphPad

Prism 9.0 and SAS v9.4. Figures were generated using GraphPad

Prism 9.0, Seaborn package in python and VDJ tools.
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Results

Estimation of TCR clones from RNA-seq
TCGA data of patients with AML

We analyzed the RNA-seq data from the TCGA dataset using

both TRUST4 and MIXCR to identify TCR clones in patients with

AML. The observed total numbers of aligned TCR reads for all

samples were 8093 and 8253 for TCRA and TCRB, respectively by

TRUST4; and 3541 and 1968 for TCRA and TCRB, respectively by

MIXCR (Table 1). On average 55.5 ± 78.2 reads were aligned to

TCRA and 56.6 ± 77.0 to TCRB by TRUST4 and 23.9 ± 26.9 reads

were aligned to TCRA and 13.3 ± 16.7 to TCRB by MIXCR, per

patient (Table 1). The identified TCR clones included most of the

functional V and J exons (45 TRAV and 53 TRBV, 56 TRAJ and 13

TRBJ using TRUST 4, Figures S1A, B; and 48 TRAV and 36 TRBV,

52 TRAJ and 14 TRBJ, Figures S1C, D using MIXCR) indicating a

reasonable RNA-seq read coverage of TCR genes. The top 10 TRAV

which accounted for 46.04% of the TCRA repertoire in TRUST4

(Figure 1A) and 42.61% in MIXCR (Figure 1B), shared the
TABLE 1 Comparison of MIXCR and TRUST4 analysis output.

TRUST4 MIXCR

Total number of TCR
reads
TCRA
TCRB

8093
8253

3541
1968

Total number of reads
per patient
TCRA (M ± SD, range)
TCRB (M ± SD, range)

55.5 ± 78.2, 1-506
56.6 ± 77.0, 1-360

23.9 ± 26.9, 1-162
13.3 ± 16.7, 1-88

Reads per clone
TCRA (M ± SD, range)
TCRB (M ± SD, range)

2.2 ± 4.0, 1-78
2.0 ± 4.6, 1-102

1.2 ± 0.9, 1-18
1.2 ± 0.8, 1-11

Identified V segments
TRAV
TRBV

45
53

48
36

Number of unique
clones per patient
TCRA (M ± SD, range)
TCRB (M ± SD, range)

24.8 ± 28.6, 0-191
27.4 ± 33.4, 0-190

18.9 ± 21.6, 0-134
10.8 ± 13.2, 0-69

CDR3nt length
TCRA (M ± SD)
TCRB (M ± SD)

38.9 ± 6.1
41.6 ± 5.6

40.3 ± 5.2
40.6 ± 4.6

CDR3aa length
TCRA (M ± SD)
TCRB

12.9 ± 2.0
13.9 ± 1.9

13.5 ± 1.8
13.5 ± 1.5

Frequency per clone
TCRA (M ± SD, range)
TCRB (M ± SD, range)

0.04 ± 0.06, 0.002-1
0.03 ± 0.07, 0.003-1

0.05 ± 0.08, 0.006-1
0.07 ± 0.13, 0.011-1

Total number of
unique CDR3s
TCRA
TCRB

3450
3986

2747
1584

Top 10 TRV genes
TRAV (%)
TRBV (%)

46.04
45.56

42.61
40.28
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following: TRAV12-2, TRAV13-1, TRAV1-2, TRAV29DV5,

TRAV19, TRAV38-2DV8, TRAV21, and TRAV12-1. The Top 10

TRBV genes accounting for 45.56% of TCRB repertoire in TRUST4

(Figure 1C) and 40.28% in MIXCR (Figure 1D) shared the following

five TRBV between TRUST4 and MIXCR: TRBV20-1, TRBV19,

TRBV27, TRBV29-1, and TRBV5-1.

The number of detected unique clone counts per sample ranged

from 0 to 191 for TCRA and 0 to 190 for TCRB by TRUST4

(Figures 1E, F), and 0 and 134 TCRA and 0 and 69 TCRB by

MIXCR (Figures 1G, H) and most samples (>85%) had ≤50

identified clones. The average number of unique clones per

patient was 24.8 ± 28.6 and 27.4 ± 33.4 for TCRA and TCRB,

respectively (TRUST4), and 18.9 ± 21.6 and 10.8 ± 13.2 for TCRA

and TCRB, respectively, (MIXCR). We identified a total of 3450

unique TCRA CDR3s and 3986 unique TCRB CDR3s by TRUST4

(Table 1), while 2747 unique TCRA CDR3s and 1584 unique TCRB

CDR3s were identified by MIXCR (Table 1). Only 1389 TCRA

(28.9% of total number of CDR3s) and 1327 TCRB CDR3s (31.3%

of total number of CDR3s) were shared by the two computational

tools (Figures 1I, J).
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The CDR3 length of TCRA was shorter in clones extracted

using TRUST4 than clones extracted with MIXCR (38.9 ± 6.1 nt or

12.9 ± 2.0 aa vs 40.3 ± 5.2 nt or 13.5 ± 1.8 aa). While the opposite

was observed for TCRB (41.6 ± 5.6 nt or 13.9 ± 1.9 aa from TRUST4

vs. 40.6 ± 4.6 or 13.5 ± 1.5 aa for MIXCR) (Figures 1K, L).

We found a strong correlation of the frequencies of the shared

CDR3s between TRUST4 and MIXCR for TCRA (r=0.513, p<0.001,

Figure 1M) and TCRB (r=0.345, p<0.001, Figure 1N). In addition, both

TRUST4 and MIXCR data showed a strong correlation between the

numbers of unique clones for TCRA and TCRB per patient (r=0.944, p

<0.001 for TRUST4, r=0.941, p <0.001 for MIXCR, Figures 1O, P).
Identification of public CDR3 clones

We searched the complete TCR repertoire in the whole cohort

to identify the CDR3 clones from TRUST4 that were shared by

more than one individual, called public CDR3, based on sharing

identical nucleotide and amino acid sequences. We found that the

top 3 public TCRA clones have the following CDR3 amino acid
B C D

E F G H

I J K L

M N O P

A

FIGURE 1

Comparison of identified clonotypes between MIXCR and TRUST4. TRAV segment usage by TRUST4 (A) and MIXCR (B). TRBV segment usage by
TRUST4 (C) and MIXCR (D). Distribution of the unique TCRA clone (E) and TCRB (F) clone count using TRUST4. Distribution of the unique TCRA
clone (G) and TCRB clone (H) count using MIXCR. Overlap of identified TCRA (I) and TCRB (J) CDR3s between MIXCR and TRUST4. CDR3nt (K) and
CDR3aa (L) length comparison between TRUST4 and MIXCR. Scatterplot of top 20 TCRA (M) and TCRB (N) clonotype overlap between MIXCR and
TRUST. Main graph consists of a scatterplot of overlapping clonotypes abundances and their linear regression. Each point represents the geometric
mean of the clonotype frequency in both samples. Both axes are representing log10 of clonotype frequencies in each of the samples. Marginal
histograms show the overlapping (red) and total (gray) clonotype abundance distributions weighted by clonotype abundance. Correlation between
TCRA and TCRB in TRUST4 (O) and MIXCR (P).
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sequences CVFSGGYNKLIF, CDNNNDMRF, and CASGGSYIPTF

(Figure 2A). For TCRB CDR3, the top 3 public CDR3 clones were

CANTGELFF, CATNEKLFF, and CANYGYTF (Figure 2B). The

CDR3 length was found to be shorter for the public CDR3 clones

compared with the private CDR3 clones (TCRA: 12 vs 13, p<0.001;

TCRB: 13 vs 14, p=0.005, Figure 2C).

Further we aligned TCR sequences against VDJdb records to

assess TCR antigen specific CDR3s in patients with AML. We found

epitopes belonging to YFV, CMV, SARS-CoV-2, HIV-1, EBV,

Influenza and HCV shared between TCRA and TCRB repertoires

and less common DENV3/4 and DENV1 epitopes present in TCRB

repertoire (Figures 2D, E).
Frontiers in Immunology 06
We clustered the TCRB clonotypes with high probability of

having shared antigen specificities in TCRB repertoires from all

patients with AML using GLIPH2. We found HLYE and VENT

motifs to be shared by MIXCR and TRUST4 data (Figures 2F, G),

while LREV and DGTT were uniquely identified from TRUST4,

and PRSN and KGGY were only identified from MIXCR when

CD4+ reference was used. When CD8+ was used as a reference we

identified HLYE motifs shared between the two tools while DGTT

and MRN were additionally identified from TRUST4 and KGGY

and TVQEmotifs were identified fromMIXCR data (Figures 2H, I).

Further search for TCR CDR3s containing these common motifs

using VDJdb revealed that TVQE and PRSN are present in CDR3s
B C

D E

F

G

H

I

A

FIGURE 2

Analysis of common motifs and TCRs with known antigen specificities. Top 3 public TCRA (A) and TCRB (B), each dot represents one patient,
CDR3aa length comparison between public and private TCR clones (C). Frequencies of TCRB with known antigen specificities (D). Frequencies of
TCRB with known antigen specificities (E). TRUST4 TCRB motifs identified by GLIPH2 based on CD4+ reference (F). MIXCR TCRB motifs identified by
GLIPH2 based on CD4+ reference (G). TRUST4 TCRB motifs identified by GLIPH2 based on CD8+ reference (H). MIXCR TCRB motifs identified by
GLIPH2 based on CD8+ reference (I). The relative size of each aa symbol is proportional to its frequency in the dataset, while the total height of aa
symbols indicates the probability of the specific aa in the position in bits. White gaps present in the logos represent common deletions and/or
insertions in the position.
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associated with Influenza A, HLYE with HCV, while others are all

found in CDR3s associated with CMV among other viral epitopes.
The number of unique TCR clones is
correlated with patients’
clinical characteristics

The absolute number of unique clones is not a good TCR

measure since it is influenced by the sequencing depth and T cell

content across samples. Therefore, we mainly focused on the

normalized number of unique clones, in which the number of

unique clones was divided by sequencing reads and 1-PB, except in

analyses where PB was included in as a variable, the numbers of

unique clones were normalized by sequencing reads only.

To assess whether features of the TCR repertoire are associated

with a patients' clinical characteristics, we compared normalized

number of unique clones for TCRA and TCRB according to each

clinical parameter (Table S1).

The normalized number of unique clones was not significantly

different between younger and older patients (Figure 3A and Figure

S2A). We observed that female patients had a trend for a higher, yet

not statistically significant normalized number of unique TCR

compared with male patients (normalized number of unique

clones TRUST4: TCRA: 3.08x10-7 vs 2.46x10-7, p=0.02, q=0.08;

TCRB: 3.16x10-7 vs 2.39x10-7, p=0.14, q=0.31, Figure 3B; MIXCR:

TCRA 2.30x10-7 vs 2.09x10-7, p=0.11, q=0.26; TCRB: 1.31x10-7 vs

9.50 x10-8, p=0.05, q=0.16 Figure S2B). We observed no difference

in the normalized number of unique TCR clones between patients

according to whether they received prior treatment or not

(Figure 3C and Figure S2C).

When patients were dichotomized by median WBC, BM or PB

blast percentage, we found a trend towards a lower normalized

number of unique TCR clones in patients with WBC above or equal

to the median (TRUST4: TCRA: 2.68x10-7 vs 2.98x10-7, p=0.06,

TCRB: 2.29x10-7 vs 3.24x10-7, p=0.08, Figure 3D, MIXCR: TCRA:

2.04x10-7 vs 2.40x10-7, p=0.07; TCRB: 1.02x10-7 vs 1.14 x10-7,

p=0.28, Figure S2D) compared with patients with WBC lower

than the median. We observed a suggestive lower normalized

number of unique clones for TCRA (TRUST4: TCRA: 2.34x10-7

vs 3.23x10-7, p=0.06 Figure 3E, MIXCR: TCRA: 1.70x10-7 vs

2.40x10-7, p=0.24, Figure S2E) but not TCRB (Figure S3E and

S2E) in patients with above or equal to the median BM blast

percentage compared with patients that had lower than median

BM blast percentage at diagnosis, however those values did not

meet FDR error correction. A significantly lower normalized

number of unique TCR clones was observed in patients that had

higher or equal to the median PB blast percentage compared with

patients that had lower than median PB blast percentage (TRUST4:

TCRA: 1.11x10-7 vs 1.77x10-7, p<0.001; q=0.002 TCRB: 9.84x10-8 vs

1.70x10-7, p<0.001, q=0.004 Figure 3F, MIXCR: TCRA: 7.93x10-8 vs

1.33x10-7, p<0.001, q=0.002; TCRB: 4.09x10-8 vs 7.06x10-8, p<0.001,

q=0.002 Figure S2F).

To better understand this observed association between the

TCR repertoire with the disease specific characteristics, we assessed

the correlation between the number of unique TCR clones with
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disease specific patients' characteristics including WBC, BM blast

percentage, and PB blast percentage. As expected, we found a strong

negative correlation between the unique TCR clones and WBC

(p<0.001), BM blasts percentage (p<0.001), and PB blast percentage

(p<0.001) (Figures 3G-L and S2G-L).

No association was found between TCR features according to

karyotype, molecular risk, or cytogenetic risk. These data were

summarized in Table S1 and Figures 3M-O and S2M-O.

Normalized number of unique TCRA and TCRB clone counts

were significantly different among French-American-British

(FAB) classes (TRUST4: TCRA: p<0.001, TCRB: p=0.001,

Figure 3P; MIXCR: TCRA: p<0.001, TCRB: p<0.001, Figure S2P),

with the lowest normalized unique TCR clones observed for the M5

and the highest for the M1.

Consistently univariate regressions of TRUST4 normalized to

read only number of unique TCR clones with clinical characteristics

of AML patients are summarized in Table 2 and showed that sex,

prior treatment, WBC, BM blast percentage and PB blast percentage

were individually associated with the normalized to reads only

number of TCR unique clones.
Association of the numbers of unique TCR
clones with AML mutations

We assessed the association between TCR features and patients’

mutational burden. We did not find differences between patients

with highly mutated disease compared with patients that have low

number of mutations (Figures 4A and S3A). No differences were

observed when only the most common mutations in AML

(DNMT3, FLT3, NPM1, TET2, RUNX1, IDH1/2, TP53, CEBPA,

NRAS, WT1) were considered. Patients were grouped according to

the number of different mutations they had into 0, 1, 2, 3 and 4, we

did not find significant differences between groups (Figures 4B

and S3B).

We also assessed the TCR features according to the mutational

status of each common mutation in AML. Among the most

common AML mutations we found that FLT3 and IDH1

mutations had a suggestive, yet not statistically significant

association with the normalized number of unique clones when

comparing medians between patients carrying wild type gene versus

the mutant (Table S2, Figures S4J, K and S5J, K).

Univariate regression of TCRA and TCRB median normalized

number of unique clones with mutational status of AML patients

using TRUST4 data showed significant differences in T-cell receptor

clones between mutant and wild-type groups for some genes in

AML patients. Specifically, significant differences were observed for

both TCRA and TCRB median values in FLT3 and TP53 mutant

groups, for TCRA median values in NPM1 and CEBPA mutant

groups and for TCRB median values in WT1. However, no

significant differences were observed for other mutations such as

DNMT3A, TET2, RUNX1, IDH2, IDH1, and NRAS (Table 3).

The univariate and multivariable regressions including both

clinical and molecular parameters were performed. We introduced

the model that included all significant features with TCRA and

TCRB as separate outcomes (Table 4). PB blast percentage was
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eliminated by the model selection procedure, due to a strong

correlation with WBC and BM blast percentage (Figure 4).

Interestingly we found WT1, WBC and BM blast percentage to be

negatively associated with TCRA and TCRB, while the associations
Frontiers in Immunology 08
that we found in the univariate analysis were lost for FLT3, NPM1

and TP53 which is likely due to their strong correlation with WBC

and BM blast percentage. Pearson correlation heatmap is presented

in Figure 4C and corresponding p values in Table S3.
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FIGURE 3

TCR unique clones are correlated with patients’ clinical characteristics. Association between normalized number of unique TCR clones and age
(A, n=141), sex (B, n=141), prior treatment (C, n=141), WBC (D, n=141), BM blast percentage at diagnosis (E, n=141), Percentage of PB blasts at
diagnosis (F, n=141, TCRA: q=0.002, TCRB: q=0.004). Pearson correlation between unique TCRA clone count and WBC (G), Percentage of BM blasts
at diagnosis (H) Percentage of PB blasts at diagnosis (I), TCRB and WBC (J) Percentage of BM blasts at diagnosis (K), Percentage of PB blasts at
diagnosis (L). Association between normalized number of unique clones and: Karyotype (M, n=138), Molecular Risk (N, n=138), Cytogenetic Risk (O,
n=138), FAB subtypes (P, n=140). Data were analyzed by unpaired t test on log(Y) transformed data or Kruskal-Wallis test with Dunn’s posy-hoc test
with p<0.05 showing significant difference between groups. FDR correction for multiple comparisons by the Benjamini-Hochberg procedure was
performed and considered significant when q value is <0.05, ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1236514
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pospiech et al. 10.3389/fimmu.2023.1236514
The numbers of unique TCR clones are
highly correlated with the expression of T
cell exhaustion markers

To better understand how the state of T cells in the context of

AML relates to the TCR repertoire, we analyzed associations

between unique number of TCRA or TCRB clonotypes and gene

expression of T cell markers. No correlation was found between

activation markers such as IL2RA, CD69 or TNFRSF9 and TCR

repertoire (Figures 5A, B). We observed a strong positive

correlation between T regulatory cell marker foxp3 and both

TCRA and TCRB (TRUST4, TCRA r=0.64, p<0.0001; TCRB

r=0.68, p<0.0001, Figures 5A, B). Furthermore, T cell inhibitory

signal genes such as TIGIT, LAG3 and CTLA4 also show positive
Frontiers in Immunology 09
correlation with the number of unique TCRA (TIGIT: r=0.78,

p<0.0001; LAG3: r=0.18, p=0.029; CTLA: r=0.72, p<0.0001,

Figure 5A) and TCRB clones (TIGIT: r=0.75, p<0.0001; LAG3:

r=0.25, p=0.003; CTLA4: r=0.74, p<0.0001; Figure 5B). No

correlation was identified for TCRA or TCRB with PDCD1 or

PRF1. However, expression of GZMB was also strongly correlated

with the number of unique TCRA and TCRB (TCRA: r= 0.48,

p<0.0001; TCRB: r=0.48, p <0.0001, Figures 5A, B).

Association between public clones and
overall survival

To determine whether TCR unique clones are associated with

the patients' clinical outcome, overall survivals were compared
TABLE 2 Univariate regression of TRUST4 normalized number of unique TCR clones with clinical characteristics of AML patients.

Characteristics TCRA clone
median (x10-7)

p TCRB clone
median (x10-7)

p

Age
Young (<60)
Old (≥60)

1.14, n=78
1.47, n=65

0.217
1.14, n=78
1.66, n=64

0.076

Sex
Male
Female

1.45, n=78
1.56, n=65

0.017 1.00, n=78
1.38, n=64

0.055

Prior treatment
Yes
No

0.81, n=34
1.46, n=109

0.008
0.82, n=33
1.56, n=109

0.005

WBC count
Above median
Below median

0.74, n=72
2.21, n=71

<0.0001
0.70, n=71
2.21, n=71

<0.0001

BM blast percentage
Above median
Below median

1.04, n=73
1.55, n=70

0.005
1.14, n=74
1.61, n=68

0.002

PB blast percentage
Above median
Below median

1.07, n=72
1.96, n=69

<0.0001
0.98, n=72
1.70, n=69

0.0005

Karyotype
Normal
Abnormal

1.45, n=59
1.23, n=81

0.981
1.47, n=59
1.14, n=80

0.803

Risk (Molecular)
Good
Intermediate
Poor

1.30, n=30
1.48, n=72
1.13, n=38

0.644
1.60, n=29
1.25, n=72
0.83, n=38

0.266

Risk (Cytogenetic)
Good
Intermediate
Poor

1.25, n=29
1.43, n=76
1.16, n=35

0.960
1.60, n=28
1.28, n=76
0.83, n=35

0.467

FAB
M0
M1
M2
M3
M4
M5
M6
M7

1.02, n=14
1.45, n=35
1.55, n=34
1.77, n=15
1.19, n=27
1.01, n=15
7.27, n=1
5.87, n=1

0.911
0.86, n=14
1.27, n=36
1.60, n=33
2.02, n=14
1.25, n=27
0.82, n=15
9.26, n=1
4.36, n=1

0.906
front
p values were assigned on log(Y) transformed data. Data were normalized to reads only.
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between patients that have higher and lower than median

normalized number of unique TCRA or TCRB. No significant

difference was observed for patients with higher than median

compared with patients with lower than median unique TCRA or

TCRB clone count or when comparing patients from each quartile

of unique TCRA or TCRB clone counts. Also, no differences were

observed when normalized unique TCRA or TCRB clone count was

used as a continuous variable in the survival analysis.

We also examined whether a particular top 3 shared CDR3

sequence is associated with overall survival. We found that patients

that carried the CANTGELFF TCRB CDR3 clone (N=16) had 55.4

months overall survival (OS) compared with 19 months for patients

that did not have it (N=129) (p=0.05, q=0.15) suggestive of a better

OS. No other top 3 shared CDR3s were associated with overall

survival. However public clones detected by TRUST4 were not

consistent with MIXCR suggestive of possible false-positive findings.
Discussion

Characteristics of the TCR repertoire such as diversity indices

or clonal expansion and/or composition reflect the antigen

specificity and T cell dynamic changes. Highly expanded clones

within tumors may contribute significantly to the antitumor

response as previously observed in different types of cancer (29).

Several tools that leverage the RNA-seq data to extract TCR

repertoire data have been developed (22, 23). RNA-seq data are

capable of profiling dominant clonotypes with high frequencies but
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will unlikely capture the diversity of the repertoire or identify the

less abundant clones. Li et al. developed TRUST (19), which then

was employed by the group on both pediatric and adult AML

samples to characterize T and B cell receptors (TCR and BCR)

repertoires (10). The study showed lower number of normalized

TCR CDR3 counts in infants (0-3 years old) and children (3-20

years old) when compared with healthy children, and in adults

(over 20 years old) with AML when compared with healthy adults.

Although the study has explored the association between TCR

repertoire characteristics and major common AML mutations and

clinical outcome, a comprehensive analysis of how TCR repertoire

features correlate with both clinical and molecular characteristics of

patients with AML remains to be fully elucidated. Here we applied

an updated version of TRUST (TRUST4), previously found to have

significantly improved computational efficiency and the number of

recovered CDR3s (30) along with another recently developed tool

(MIXCR) to compare their output and comprehensively examine

the TCR repertoires in the adult AML cohort and how their features

are associated with patients’ molecular and clinical characteristics

based on available RNA-seq database.

To ensure robustness of the analysis we applied two of the most

commonly used computational tools to extract TCR information from

RNA-seq data – TRUST4 and MIXCR. These tools were previously

benchmarked with other computational tools to extract TCR

information from RNA-seq data originating from the same samples

focusing on the characterization of T-cell rich and T cell poor tissues.

Both methods were found effective in capturing estimated repertoire

diversity in T-cell rich tissues particularly in samples with a limited
B

C

A

FIGURE 4

Association between normalized number of unique TCRA and TCRB clones and common AML mutations. Association between normalized number
of unique clones with count of all mutations (A, n=141), clinically relevant AML mutations (B, n=141), Pearson correlation between number of unique
TCR clones normalized to the total number of sequencing reads and patients clinical and molecular characteristics (C) Data were analyzed by
Kruskal Wallis test with Dunn’s post-hoc test with p<0.05 showing significant difference between groups, ns, not significant.
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number of hyperexpanded clones (31). However, the exact accuracy of

the alignment from TRUST4 and MIXCR remains unknown due to

the lack of a control framework of known TCR composition both

quantitatively and qualitatively for direct comparison and assessment.

This highlights the need to establish rigorous controls that can allow

for identification of potential disparities in alignment accuracy to

allow for instilling confidence in the reliability of T-cell receptor

analysis output. The average numbers of TCRA and TCRB reads from

RNA-seq were higher in TRUST4 output compared with MIXCR

output. Both tools have resulted in satisfactory coverage of TRAV and

TRBV genes capturing 65-75.5% of the V and 76-86% of the J known

genes. While TRUST4 has a similar number of TCRA and TCRB

reads on average, MIXCR has a higher number of reads for TCRA

than TCRB and less coverage across TRBV segment usage. Mapped

reads obtained from TRUST4 and MIXCR were used to estimate the

frequency of different TRAV and TRBV genes across a cohort of

patients with AML. Among the top 10 V genes identified in a previous

study on 29 cancer types from the TCGA data (19), TRUST4

identified six TRAV and six TRBV and MIXCR identified five of
Frontiers in Immunology 11
TRAV and seven of TRBV genes (19) in the AML cohort. Small

overlap between clonotypes identified by TRUST4 and MIXCR

suggest differences in the performance of the two computational

tools and highlights that study design needs to be carefully

considered when applying these tools on RNA-seq data. The

alignment algorithm is significantly different between TRUST4 and

MIXCR and detailed explanation of each alignment method is

reported in detail by their developers (17, 22, 23). Differences in V

gene assignment algorithms and CDR3 amino acid sequence start

points can lead to discrepancies in identified CDR3 sequences.

Additionally, variations in alignment methods and contig generation

can impact the number of aligned reads per patient. To ensure

confidence in the associations between TCR features and molecular/

clinical characteristics, we utilized the two computational tools. While

both tools showed similar patterns, only approximately 30% of the

identified CDR3 sequences were shared between them. This

discrepancy makes interpreting data containing specific sequences

and quantitative information of certain clones challenging, as the tools

assemble different clonotypes.
TABLE 3 Univariate regression of TCRA and TCRB median normalized number of unique clones with mutational status of AML patients using TRUST4.

GENE TCRA median
(x10-7)

P value TCRB median
(x10-7)

P value

DNMT3A
Mutant
WT

1.04, n=35
1.34, n=108

0.495
1.07, n=34
1.25, n=108

0.381

FLT3
Mutant
WT

0.70, n=43
1.55, n=100

0.004
0.73, n=42
1.29, n=100

0.020

NPM1
Mutant
WT

0.77, n=35
1.43, n=108

0.044
1.07, n=36
1.26, n=106

0.087

TET2
Mutant
WT

1.89, n=12
1.25, n=131

0.940
1.44, n=12
1.22, n=130

0.804

RUNX1
Mutant
WT

1.53, n=14
1.31, n=129

0.259
1.19, n=14
1.23, n=128

0.485

IDH2
Mutant
WT

1.49, n=16
1.20, n=127

0.942
1.43, n=16
1.22, n=126

0.749

TP53
Mutant
WT

3.23, n=11
1.24, n=132

0.010
3.05, n=11
1.14, n=131

0.011

CEBPA
Mutant
WT

0.35, n=12
1.34, n=131

0.018
0.46, n=11
1.24, n=131

0.073

IDH1
Mutant
WT

1.56, n=13
1.25, n=130

0.327
1.39, n=14
1.22, n=128

0.253

NRAS
Mutant
WT

0.47, n=5
1.33, n=138

0.828
0.52, n=6
1.24, n=136

0.843

WT1
Mutant
WT

0.72, n=9
1.35, n=134

0.080
0.57, n=9
1.24, n=133

0.043
fro
p values were assigned on log(Y) transformed data.
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We observed a slightly higher normalized number of unique

clones in female patients compared with males, an observation that

was seen in prior studies (19, 32). We also found that clinically

relevant characteristics such as WBC, BM blast percentage and PB

blast percentage negatively correlate with TCRA and TCRB unique

clone counts and therefore patients with higher than median white

blood cell count, percentage of bone marrow blasts and percentage

of PB blasts have been found to have lower normalized number of

unique clones. One possible explanation for this association is that

leukemic blasts may outcompete normal T cells, leading to a

reduction in the number of unique T cell clones in the sample.

Similarly, a higher WBC count may indicate a more aggressive

disease with a higher burden of leukemic blasts, which in turn may

result in a lower number of T cells and therefore fewer unique T cell

clones. Skewed TCR repertoire may be related to a response to

myeloblast microenvironment, however it was previously suggested

that while T cells may recognize cancer cells, effective antitumor

response is impaired.

Previous studies found a strong positive association between the

normalized number of unique clones and the number of

nonsynonymous mutations in 29 cancer types from TCGA

including cancers with high mutational burden (19). This is

possible due to higher number of neoantigens being presented for

the T cells (19). We did not observe such association when the

number of the most common AMLmutations and unique TCRA or

TCRB clones were considered. Previous study using TCGA dataset

investigated five genes of high clinical significance (FLT3, NPM1,

KIT, CEBPA and WT1), along with three gene fusions (RUNX1-
Frontiers in Immunology 12
RUNX1T1, CBFB-MYH11, and PML-RARA). Only CBFB-MYH11

was found to be associated with significantly lower TCRB CPK

value in pediatric patients with AML, similar but not significant

trend was found in infant and adult patients with AML (10). We

found that certain mutations, such as FLT3 and NPM1 were

associated with a decreased normalized number of unique T cell

clones while TP53 was associated with increased normalized

number of unique TCR clones. However, these associations were

lost when considering the WBC, BM blasts and PB blasts. This is

likely due to the fact that these mutations are known to be

associated with these clinical features (33–38). Mutations in WT1

however were associated with the TCR repertoire when adjusting by

other clinical characteristics. It was previously shown that WT1-

specific T cells can be generated to target leukemia cells with limited

effect on normal progenitor cells (39). Similarly, WT1-specific CD8

T cells were found to be induced in azacitadine and donor

lymphocyte infusion treatment contributing to graft versus

leukemia effect in MDS and AML patients (40). The presence of

WT1-specific CD8 T cells was previously suggested to contribute to

maintenance of complete remission (41). Vaccination with peptides

derived from WT-1 induce immune responses resulting in an

improved clinical outcome (42).

Specific features of the TCR repertoire such as the TCR diversity

and clonal expansion were found to correlate with patients’ clinical

characteristics, disease status and clinical outcome in various

cancers (10, 43–45). Diversity of the TCR repertoire was found to

be inversely correlated with age in patients with breast cancer (46).

Lower diversity indices were observed in advanced disease stages
BA

FIGURE 5

Associations between TCR repertoire and T cell markers. Pearson correlation between gene expression of T cell markers and number of unique
TCRA (A) and TCRB (B) clones. Correlation with p<0.0001 is marked by “*” next to the gene name.
TABLE 4 Multivariable regressions of TCRA and TCRB median normalized number of unique clones with mutational status and patient characteristics
of AML patients using TRUST4.

Characteristics TCRA median
(x10-7) Log-Transformed

TCRB median
(x10-7) Log-Transformed

Parameter
Estimate ± SE

P value for
each factor

F test P value of
F test

Parameter
Estimate ± SE

P value for
each factor

F test P value of
F test

WT1
Sex
WBC count
BM blast percentage

-0.589 ± 0.296
0.371 ± 0.144
-0.012 ± 0.002
-0.013 ± 0.004

0.04
0.01

<0.0001
0.0009

19.05 <0.0001
-0.697 ± 0.322
0.264 ± 0.158
-0.011 ± 0.002
-0.014 ± 0.004

0.03
0.09

<0.0001
0.001

13.73 <0.0001
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(46) and upon anti-CTLA-4 therapy in melanoma patients (47).

Higher usage of TRBV20.1 was reported in the HER2- patients

during complete pathological remission while TRBV30 was higher

in HER2+ patients responding to trastuzumab (46). Tumor-

infiltrating T cell repertoire was more diverse compared with

normal pancreatic tissue in pancreatic ductal adenocarcinoma

suggesting recognition of tumor derived antigens (48). Higher

TCR diversity was found to be correlated with better progression

free interval in a few cancer types (49).

Our analysis found no statistically significant difference in

overall survival between patients with a lower versus higher than

median normalized number of unique clones for both TCRA and

TCRB. However, we observed that patients that had CANTGELFF

within the identified TCRB clones by TRUST4 tended to have better

but not statistically significant overall survival compared with those

without such CDR3. According to the TCRdb database the

CANTGELFF was previously found in patients with breast

cancer, urothelial cancer, healthy subjects and in patients with

CMV infection among others (50). However, this finding was not

corroborated by the results obtained from MIXCR. Additionally,

MIXCR failed to detect public clonotypes shared by more than 3

patients. Consequently, we believe that while both MIXCR and

TRUST4 are suitable for analyzing associations between TCR

diversity estimates and molecular/clinical patient characteristics,

they may not be the most appropriate tools when the analysis

involves the identification and quantification of specific CDR3

sequences. To validate our findings, confirmation through TCR

targeted sequencing in an independent AML dataset and functional

studies are necessary. The observed discrepancy underscores the

need for appropriate benchmarking of current algorithms against a

known ground truth - a library of TCR receptors with known

composition. Regrettably, such a control library is not yet available,

hindering the use of RNA-seq data for both quantitative and

qualitative analyses in this context.

While the focus of our study was on the association between

TCR repertoire and clinical and molecular features in AML

patients, the identification of viral epitopes in our analysis is an

interesting finding that may have implications for the

understanding of the role of viral epitopes in AML patients.

Association of CMV infection with AML relapse after allogeneic

hematopoietic stem cell transplant (HCT) has been previously

identified along with an increase of multifunctional CMV-specific

T cells (51, 52). Also, CMV reactivation is a frequent complication

after HCT. Even though previous studies have not found

association of EBV with the pathogenesis of AML, it has been

suggested that it is a secondary event related to compromised

immune systems in AML (53). No significant associations were

found for HCV, however, it was found to be increased in 8% of

patients with AML (54). It is important to note that our epitope

analysis approach has some limitations, including the potential for

false positives and the inability to distinguish between TCR clones

that are specific to the viral epitope versus those that are cross-

reactive with other antigens. For example, we identified SARS-CoV-

2 related epitopes even though the patient samples are pre-

pandemic, however, it is now known that cross-reactive epitopes

were present in individuals before the SARS-CoV-2 pandemic (55).
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It was also previously reported that T cells could cross-react with

both CMV and SARS-CoV-2 in SARS-CoV-2 unexposed

individuals. Functional studies have shown non-naive spike and

non-spike specific T cells in the blood of pre-pandemic individuals

with several HLA backgrounds (56–58). Interpretation of antigen-

specificity predictions indicating virus-related targets is based on

clustering analysis to identify similar specific TCR sequence in a

reference dataset. While this database lacks AML-specific TCRs,

RNA-seq is only able to capture the most abundant clones due to its

shallow nature indicating that these clones were expanded within

these patients; therefore it would be suggested that virus-specific

memory T cells were leveraged for anti-AML response through T-

cell cross-reactivity. Virus specific T cells were previously shown to

populate repertoire of human healthy tissues and tumors where

they can be leveraged to trigger cytotoxicity in the tumor (59, 60).

To confirm whether the virus-specific memory T cells identified in

AML patients present an anti-AML response through T-cell cross

reactivity versus just background dominance of those TCR clones,

functional studies and deep TCR sequencing would be needed. Also,

further validation studies would be needed to confirm the clinical

relevance of the identified viral epitopes in AML patients.

One limitation of our study is the reliance on bulk RNA-seq

data, which unfortunately lacks information on the pairing between

TCRA and TCRB. Consequently, this hinders our ability to fully

predict the functional receptor responsible for antigen binding.

Although single-cell sequencing is the most informative and

suitable approach for confidently pairing TCRA and TCRB,

previous research has demonstrated that the beta chain of the

CDR3 sequence holds the most significant influence on antigen

specificity (61).

Public TCRs were previously described in infectious diseases,

cancer and autoimmune disease and were found to associate with

clinical outcome (62–67). Consistently with previous studies we

found that public CDR3s have shorter amino acid length (68). It

was previously demonstrated that shorter CDR3 length is related to

smaller number of N-insertions including CDR3s specific to viral

epitopes such as CMV and EBV (69). In our study we identified

CANTGELFF CDR3 which resulted from the recombination of

either TRBV12-3, TRBV2, TRBV28, TRBV30, TRBV3-1, TRBV5-5,

TRBV5-7, TRBV6-6, TRBV7-2 or TRBV9 with TRBJ2-2 in patients

with a better overall survival. However, this finding was not

reproduced using MIXCR and can possibly be a false-positive.

Further analysis recognizing public TCRs in patients with AML

might be beneficial to recognize leukemia specific TCRs.

AML is characterized by increased prevalence of immuno

suppressive phenotype leading to impaired immune response

(70–74). Single cell RNA-seq analysis suggested altered T

regulatory cells as feature of newly diagnosed AML patients (11).

In agreement with the previous studies we observed strong positive

correlation between foxp3 expression and the number of unique

TCRA and TCRB. Studies on AML animal models suggest impaired

T cell function with features of exhaustion or antigen-specific T cell

tolerance (75–77). Anergy is then developed through lack of co-

stimulatory signals with excessive stimulation of the TCR and high

levels of inhibitory signals such as PD-1, CTLA4, TIGIT, LAG3 (78).

Consistently we found that inhibitory signals such as TIGIT and
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CTLA-4 were found to be positively correlated with unique number

of TCR clones. Interestingly PDCD1 was found not to be associated

with TCR repertoire. Further high positive correlation of GZMB,

but not PRF1 with the number of unique TCRA and TCRB was

observed suggesting association between cytotoxic T cells and TCR

repertoire. Observed correlations suggest more exhausted T cell

profile in characterized patients with AML consistently with

previous research (11). Although exhausted CD8 T cells can still

identify antigens through TCR, they do not effectively respond to

the antigen (79). Lack of correlation with perforin and correlations

with co-inhibitory receptors but not activation markers further

supports dysfunctional immune microenvironment within patients

with AML.

Several limitations of this study are present. AML is a

heterogeneous hematological malignancy; the relatively small

sample size might not fully reflect all aspects of this disease.

Secondly, RNA-seq data provides a shallow estimation of the

TCR repertoire, as very limited number of clones and low

number of reads corresponding to the most abundant clones, and

the broader TCR repertoire cannot be captured. Low number of

reads does not allow for calculation of features of TCR repertoire

such as diversity indices or detection of rare clonotypes therefore we

used normalized unique clone count as an approximate metric for

TCR diversity. While we analyzed public clonotypes there is a

chance we missed some individuals also sharing the same

clonotypes shared in this population due to low coverage.

Associations made between TCR repertoire features and clinical

and molecular characteristics are mainly based on abundant clones

which are more expanded in comparison to not detected rare

clonotypes; therefore full representation of the repertoire is not

accessible. If certain antigen specific clonotypes related to certain

mutations are less abundant they might not be detected here which

would affect the mutational data analysis. Furthermore 447 out of

2820 TCRA clones and 830 out of 1603 TCRB clones MIXCR were

assigned to multiple TRAV or TRBV genes possibly due to the short

read length. The small percentage of overlap between clones

identified by TRUST4 and MIXCR further highlights the need for

benchmarking studies that validate these computational methods.

Furthermore, although we identified top 10 TRAV and TRBV exons,

only single cell sequencing would be able to determine which clones

are paired to form a functional TCR receptor consisting of alpha

and beta chains.

Despite the limitations of low coverage associated with the use

of RNA-seq data to extract TCR sequence information and the

small sample size, we were able to report statistically significant

associations between the TCR repertoire and clinical and molecular

features in patients with AML. Our findings highlight the

importance of analyzing the TCR repertoire in AML to better

understand the adaptive immune response against leukemic cells

and the impact of the disease on the immune repertoire and the

later on the clinical outcome.

Our study revealed unexpectedly poor reproducibility of

detected CDR3 clones between the two software packages. This

finding is important because it highlights the need for caution when

interpreting results obtained using different software tools such as
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those focusing on the specific expanded clones or the V segment

utilizations. Nevertheless, for the type of correlative analyses we

performed, the two packages performed very similarly and showed

the same patterns of associations observed between the TCR

repertoire and clinical and molecular features were consistent.

This consistency supports the robustness of our findings and

suggests that the associations we reported are likely to be

biologically relevant.

While the utilization of RNA-seq data enables the identification

of highly abundant clonotypes in patient samples, it is important to

acknowledge the limitations associated with the low coverage of this

approach. The study’s findings further highlight the need for TCR-

Seq analyses to provide the depth needed to characterize the TCR

repertoire in patients with AML accurately. Further, the poor

reproducibility in terms of identified CDR3 clones between

MIXCR and TRUST4 highlight the need of development of a

control of known composition to serve as a biological calibrator

for accurate qualitative and quantitative TCR analyses. Future

studies using TCR-seq analyses could provide a more

comprehensive understanding of the immune response to AML

and the potential for TCR-based therapies to improve

patient outcomes.
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