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Widespread and dynamic
expression of granzyme C by
skin-resident antiviral T cells
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Nathânia Dábilla3, Patrick T. Dolan3 and Heather D. Hickman1*

1Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National
Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda,
MD, United States, 2School of Nursing, Duke University, Durham, NC, United States, 3Quantitative
Virology and Evolution Unit, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, United States
After recognition of cognate antigen (Ag), effector CD8+ T cells secrete serine

proteases called granzymes in conjunction with perforin, allowing granzymes to

enter and kill target cells. While the roles for some granzymes during antiviral

immune responses are well characterized, the function of others, such as

granzyme C and its human ortholog granzyme H, is still unclear. Granzyme C is

constitutively expressed by mature, cytolytic innate lymphoid 1 cells (ILC1s).

Whether other antiviral effector cells also produce granzyme C and whether it is

continually expressed or responsive to the environment is unknown. To explore

this, we analyzed granzyme C expression in different murine skin-resident antiviral

lymphocytes. At steady-state, dendritic epidermal T cells (DETCs) expressed

granzyme C while dermal gd T cells did not. CD8+ tissue-resident memory T

cells (TRM) generated in response to cutaneous viral infection with the poxvirus

vaccinia virus (VACV) also expressed granzyme C. Both DETCs and virus-specific

CD8+ TRM upregulated granzyme C upon local VACV infection. Continual Ag

exposurewas not required formaintained TRM expression of granzymeC, although

re-encounter with cognate Ag boosted expression. Additionally, IL-15 treatment

increased granzyme C expression in both DETCs and TRM. Together, our data

demonstrate that granzyme C is widely expressed by antiviral T cells in the skin and

that expression is responsive to both environmental stimuli and TCR engagement.

These data suggest that granzyme C may have functions other than killing in

tissue-resident lymphocytes.
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Introduction

Granzymes are a family of serine proteases that are expressed by both innate and

adaptive cytotoxic lymphocytes (1–3). There are 11 granzymes in mice (A-G, K-N) and 5

granzymes in human (A, B, H, K, M). Granzymes A and B have been the most extensively

studied of the family, primarily in the context of killing infected or neoplastic cells (4).
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However, there are several family members, including granzyme C

in mice and granzyme H in humans, with currently unknown

function(s) (5).

Granzymes are expressed by different innate and adaptive

immune cells, with unique cellular populations expressing

different granzymes. Granzymes A and B are highly expressed by

cytotoxic effector cells, including T cells and natural killer (NK) cells

(6). Murine CD8+ T cells can also express Granzyme K, which has

been associated with inflammatory aging (7). Human CD8+ T cells

produce granzyme K in inflamed tissues (8). Human NK cells have

been demonstrated to translate high levels of granzymes H andM in

certain conditions (9, 10). Mouse CD4+ and CD8+ T cells synthesize

granzyme C primarily in vitro or in the context of mixed

lymphocyte reactions (2, 11, 12). Recently, mouse granzyme C

was shown to be constitutively expressed by cytolytic group 1 innate

lymphoid cells (ILC1s) in the liver and salivary gland (13). Thus, the

unique tissue environments and cellular functions of lymphocytes

support the differential expression of granzyme family members.

Mechanistically, granzymes have been shown to function

primarily during cytolysis. Cytotoxic lymphocytes recognizing

cognate Ag form an immune synapse and directionally secrete

granzymes toward target cells along with the pore-forming protein

perforin (14). Perforin/granzyme secretion is critical for the control

of some viral infections, including ectromelia virus (mousepox) and

lymphocytic choriomeningitis virus (LCMV) (15, 16). However,

numerous studies have now demonstrated that granzymes possess

non-canonical activities as well (6, 17). For example, CD8+ T cells

and NK cells use granzyme B independently from perforin to

extravasate into the tissues and traffic to sites of infection in vivo

(18). Granzyme B can degrade extracellular matrix proteins and

may affect various physiological processes such as basement

membrane degradation, collagen disorganization, and wound

healing (18–20). Additionally, granzyme A can reach high levels

in human serum during infection with human immunodeficiency

virus (HIV), Epstein-Barr virus (EBV), and Chikungunya virus

(CHIKV) (6). Exogenously produced granzyme K can induce

inflammation in non-lymphoid cells such as fibroblasts and

activate endothelial cells (7, 21). Thus, granzymes can remodel

the tissue environment through their protease activity.

In addition to granzyme C function, the regulation of its

expression is also unknown. Some ILC1s constitutively produce

granzyme C in vivo (13). ILC1s do not express the rearranged Ag

receptors of adaptive lymphocytes, suggesting that factors other

than Ag recognition might drive granzyme C production.

Granzyme C expression may be developmentally hard-wired in

some cells, or it may occur in response to changes in the local

environment. Here, we sought to understand 1) whether ILC1s are

the only tissue-resident lymphocytes that express granzyme C and

2) what factors regulate granzyme C expression. To do this, we

analyzed granzyme C expression in different T cell populations

present in the mouse skin: activated effector CD8+ T cells, tissue-

resident memory (TRM) CD8
+ T cells, and gd T cells. Although the

level and frequency of granzyme C expression varied, a percentage

of each skin-resident T cell population expressed granzyme C.

Interestingly, skin-resident gd T cells and CD8+ ab TRM

expressed granzyme C at steady-state and upregulated granzyme
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C following primary or secondary infection. Exposure to cognate Ag

in the absence of virus-driven inflammation also increased

granzyme C expression in CD8+ ab TRM. However, a proportion

of CD8+ ab T cells maintained granzyme C expression in the skin

in an Ag-independent manner. Furthermore, IL-15 administration

led to granzyme C upregulation in skin-resident T cells. Thus, the

local tissue environment also modulates granzyme C expression in

antiviral T cells. These results provide insight into the regulation of

expression of granzyme C during antiviral immune responses and

suggest a more ubiquitous function for granzyme C than the killing

of virus-infected cells.
Results

Gamma-delta T cells express granzyme C
in the epidermis at steady-state

Gamma-delta T cells seed tissues perinatally and can protect

against murine poxvirus infection (22, 23). In the skin, Vg5+

dendritic epidermal T cells (DETCs) and Vg4+/Vg6+ gd T cells

occupy the epidermis and dermis, respectively (24, 25). We first

analyzed granzyme C expression in both populations using flow

cytometry of single-cell suspensions of dissociated skin from wild-

type C57BL/6 mice (Figures 1A–D). Prior to tissue harvest, we

injected a CD45.2-specific antibody (Ab) intravenously (IV) to

identify and exclude cells circulating in the vasculature from

analysis, as previously described (26). We first gated on CD45.2

IV-, CD45+, CD3+ lymphocytes and used Vg5 TCR staining to

identify TCR gd+ DETCs (with dermal gd T cells being Vg5 TCR−)

(Figure 1A). At steady-state in naïve, specific pathogen-free C57BL/

6 mice, from 15 to 35% of DETCs expressed granzyme C

(Figure 1B). Conversely, we did not observe significant

frequencies or numbers of granzyme C-expressing dermal gd T

cells (Figures 1B, C). Likewise, DETCs expressed significantly

higher levels of granzyme C per cell than the few positive dermal

gd T cells, determined by the mean fluorescent intensity (MFI) of

intracellular granzyme C staining (Figure 1D). As tissue-resident

cells can be perturbed by the enzymatic digestion needed to liberate

them for flow cytometry (27), we also examined gd T cells using

confocal microscopy of frozen cross-sections of the ear skin

(Figure 1E). Confocal images corroborated our flow cytometry

findings, with a subset of DETCs expressing granzyme C in the

epidermis. Interestingly, we often detected granzyme C localized to

the dendritic cellular extensions between epidermal keratinocytes

(Figure 1E). Thus, even naïve, specific-pathogen free mice have

granzyme C-expressing skin-resident lymphocytes.
Gamma-delta T cells increase granzyme C
expression during VACV skin infection

Gamma-delta T cells upregulate IFN-g, granzymes A and B, and

perforin during viral infection or in response to PAMPs (28–30). To

understand the kinetics of granzyme C expression by DETCs and

dermal gd T cells during VACV infection, we first characterized the
frontiersin.org
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gd T cell response in the skin. We infected C57BL/6 mice with

VACV-SIINFEKL (expressing a minigene containing residues 257-

264 of ovalbumin) in the ear pinna using a bifurcated needle as

previously described (31–33). We used VACV as a viral infection

model because this virus infects cells in both the epidermis and

dermis where DETCs and dermal gd T cells reside, respectively

(Figure S1). We analyzed the single-cell suspensions generated from

VACV-infected ears at 0-, 1-, 3-, and 5- days post-infection (dpi)

(Figures S1C–G). Flow cytometry results revealed that the

frequency of DETCs and dermal gd T cells amongst total

leukocytes in the skin decreased significantly at 5 dpi (Figures

S1D–E). Nevertheless, the total number of DETCs and dermal gd T
cells was significantly higher at 5 dpi (Figures S1F–G). Thus, both

DETCs and dermal gd T cells in the skin expand in number during

VACV infection but constitute a smaller frequency of CD45+ CD3+

lymphocytes as new T cells are recruited into the skin.

We next analyzed granzyme C expression in both gd T cell

populations after infection (Figures 2A–F). We observed the highest

average frequency of granzyme C+ DETCs on 5 dpi (~36%

compared to ~27% in naïve tissue) (Figure 2C). In contrast, the
Frontiers in Immunology 03
highest frequency of granzyme C+ dermal gd T cells was observed

on 1 dpi (5.4 ± 0.81% compared to 3.05 ± 0.71% in naïve tissue)

(Figure 2D). DETCs expressed more granzyme C per cell than

dermal gd T cells, with the highest granzyme C MFI on 5 dpi

(Figure 2E). Dermal gd T cells did not increase granzyme C

expression levels by MFI during VACV infection (Figure 2F).

These data show that epidermal DETCs are the only cutaneous gd
T cell population to upregulate granzyme C during local

VACV infection.

We also analyzed the frequencies and numbers of endogenous

TCR ab CD8+ T cells that had entered the skin at the same

timepoints post-VACV infection (Figures S2A–F). At 5 dpi a

significant number of CD8+ T cells, defined as CD45.2 IV-,

CD45+, CD3+, Vg5−, TCR gd−, CD8b+, TCRb+, were recruited to

the infected skin (Figures S2A–C). Few CD8+ T cells expressed

granzyme C at this timepoint and the frequency of expression was

not increased by infection (Figures S2D–F). Together, these data

show that epidermal DETCs specifically respond to cutaneous

poxvirus infection with enhanced granzyme C production during

the first 5 days post-infection.
B C D

E

A

FIGURE 1

Gamma-delta T cells express granzyme C in the epidermis at steady-state. (A) Flow cytometry plots of cutaneous T cells isolated from sex- and age-
matched naïve specific-pathogen free C57BL/6 mice. Cells were gated on CD45+ CD45.2 IV- CD3+. DETCs were gated on CD45+ CD45.2 IV- CD3+

TCRgd+ Vg5+. Dermal gd T cells were gated on CD45+ CD45.2 IV- CD3+ TCRgd+ Vg5−. (B–D) Percentages, numbers, and mean florescence
intensities (MFI) of granzyme C in gd T cells. Dots represent individual ears. Error bars show the SEM. Results are representative of 3 experiments with
3 mice/group. Statistics = Mann-Whitney tests. (E) Confocal images of frozen cross-sections of uninfected ear skin from naïve specific-pathogen
free C57BL/6 mice. Boxed area is magnified in panels to the right. Scale bars represent 20 mm (left panel), 5 mm (middle panel), and 5 mm (right
panel). Images are representative of at least 3 images taken from 3 mice.
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Tissue-resident memory CD8+ T
cells express granzyme C in the
skin at steady-state

We next analyzed CD8+ TRM in the skin, another epidermal

lymphocyte population with notable antiviral activity (34, 35). We

infected mice with VACV-SIINFEKL and allowed for the

endogenous polyclonal VACV-specific CD8+ T cell response to

develop and TRM to form (36). On 28 dpi or greater, we harvested

skin, generated single-cell suspensions via enzymatic digestion, and

analyzed the frequency of granzyme C expressing T cells using flow

cytometry (Figures 3A–F). We first gated on CD45+, CD45.2 IV-,

CD8b+ cells. Both CD103 and CD69 are commonly used as tissue

residency markers to identify TRM in the skin (37). Therefore, we

classified CD8+ T cells in the skin based on CD103 and CD69

expression and analyzed granzyme C expression in each population

(Figures 3B–F). CD69+ CD103+ TRM had the highest frequency of

granzyme C expression at approximately 54% of the population. Cells

that did not express either CD69 or CD103 had the lowest frequency

of granzyme C expression at 11.8 ± 1.5%.We also analyzed granzyme

C expression in CD62L+ CD44+ central memory T cells in the

cervical lymph node and spleen. These non-tissue-resident memory

CD8+ T cells scantly expressed granzyme C (Figures S3A–C).

Furthermore, circulating CD62L+ CD44- naïve, CD62L+ CD44+

central memory, and CD62L- CD44+ effector memory CD8+ T cell

subsets expressed little granzyme C (Figures S3D–F).

As before, we verified granzyme C expression using confocal

imaging. For these experiments, we first transferred 1 x 104 dsRed-
Frontiers in Immunology 04
expressing OT-I TCR transgenic CD8+ T cells (recognizing Kb-

SIINFEKL) into Cd8a-/- mice (deficient in CD8+ ab T cells) to

allow easy microscopic visualization of TRM cells in the skin. In

contrast to DETCs, we detected OT-I CD8+ T cells that expressed

granzyme C in both the dermis and epidermis at 28 dpi

(Figure 3G). We next quantified granzyme C expression in

dermal and epidermal OT-I TRM using confocal microscopy

(Figure S4A). Both dermal and epidermal cells expressed similar

levels of granzyme C based on the quantified intensity of

granzyme C fluorescence per cell (Figures S4B–C).

To complement our confocal and flow cytometric analyses of

granzyme C protein expression, we performed single-cell RNAseq

on OT-I CD8+ TRM isolated from the skin (Figure S5). At the

mRNA level, approximately 12% of Cd3e+ cells also expressed

detectable message for granzyme C. OT-I CD8+ T cells expressing

Gzmc also co-expressed Cd69 and Itgae (CD103), consistent with

our flow cytometry data. Other additional transcripts that were

highly co-expressed with Gzmc included Gzmb, Il2rb, Ifng, and

Prf1 (perforin).

Together these data show that granzyme C is expressed by

resting CD8+ TRM in mouse skin.
OT-I CD8+ TRM upregulate granzyme C
during secondary VACV infection

We next examined whether VACV-specific TRM would, like

DETCs, upregulate granzyme C during VACV infection, or whether
B

C D E F

A

FIGURE 2

Gamma-delta T cells maintain granzyme C expression during VACV skin infection. (A) Diagram of experimental design. Ear pinna of sex- and age-
matched C57BL/6 mice were infected epicutaneously with VACV-SIINFEKL. (B) Flow cytometry plots of cutaneous gd T cells isolated from ear pinna
of C57BL/6 mice at 1-, 3- 5-dpi with VACV-SIINFEKL. DETCs were gated on CD45+ CD45.2 IV- CD3+ TCRgd+ Vg5+. Dermal gd T cells were gated on
CD45+ CD45.2 IV- CD3+ TCRgd+ Vg5-. (C–F) Percentages and MFIs of granzyme C in gd T cells at indicated dpi. MFIs were determined from the
entire population (not granzyme C+ cells). Dots represent individual ears. Error bars show SEM. Statistics = Kruskal-Wallis tests. Data are pooled from
3 experiments with 3 mice/timepoint.
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this was a specific feature of gd T cells. For these experiments, we

continued analyses of CD103+ CD69+ VACV-specific CD8+ TRM in

the skin (37). On 28 dpi or greater, we reinfected the ear pinna of

mice with the same VACV that was used for initial infection and

analyzed T cells on day 2 post-reinfection (Figures 4A–C).

Secondary infection increased both the frequency and expression

level (MFI) of granzyme C in TRM compared to TRM frommice only

infected once (Figures 4D–F). Secondary infection also increased

the frequency and expression level of granzyme B- and IFN-g
-producing TRM (Figures 4G–J). Together, these data demonstrate

that CD8+ TRM upregulate granzyme C (along with known effector

molecules) during re-exposure to VACV.
Frontiers in Immunology 05
OT-I CD8+ TRM maintain granzyme C
expression in an Ag-independent manner

Although our data thus far suggested that granzyme C can be

upregulated in some antiviral T cells during viral infection, it was

unclear whether this was a response to recognition of cognate Ag

or inflammation induced by infection. To test whether Ag sensing

in the tissue was needed for increased granzyme C expression, we

again transferred 1 x 104 naïve OT-I CD8+ T cells into Cd8a-/-

mice. We then infected one ear with VACV-NP-S-eGFP

(expressing a fusion protein consisting of the nucleoprotein

from influenza virus, the SIINFEKL OT-I CD8+ T cell
B

C
D

E F

G

A

FIGURE 3

VACV-specific CD8+ T cells express granzyme C in the skin. (A) Diagram of VACV-SIINFEKL infection model to establish CD8+ TRM in the ear pinna
of age- and sex- matched C57BL/6 mice. Mice were infected using a bifurcated needle in the ear pinna with VACV-SIINFEKL. TRM were allowed to
develop for at least 28 dpi. (B) Flow cytometry plots of cutaneous CD8+ T cells. Cells were gated on CD45+ CD45.2 IV- CD8b+. (C) Flow cytometry
plots showing cutaneous granzyme C+ CD8+ T cells. CD8+ T cells were gated into four quadrants as shown based on the differential expression of
CD103 and CD69. (D) Total number of CD8+ T cells based on differential expression of CD103 and CD69. Dots represent individual ears. Error bars
show SEM. Statistics = Kruskal-Wallis tests. Results are representative of 3 independent experiments with 3 mice/group. (E, F) As in (D) but
percentages and numbers of granzyme C+ CD8+ T cells based on the differential expression of CD103 and CD69. (G) Confocal images of frozen
cross-sections of ear skin of Cd8a−/− mice that received 1 x 104 dsRed OT-I CD8+ T cells prior to epicutaneous infection with VACV-NP-S-eGFP
(containing SIINFEKL). Images were acquired at 28 dpi. Boxed areas are magnified in panels to the right. Scale bars represent 30 mm (left panel), 10
mm (middle panel), and 10 mm (right panel). Images are representative of at least 5 images taken from 2 mice.
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determinant, and eGFP) and the other ear with VACV-NP-eGFP

(an identical virus that lacks SIINFEKL) as previously described

(32) (Figure 5A). On 7-, 14-, 21-, and 28- dpi, we removed each

ear (keeping them separate), created single-cell suspensions, and

analyzed cells via flow cytometry (Figures 5B–F). The number of

OT-I CD8+ T cells per ear were similar between ears infected with

virus expressing or lacking cognate Ag on days 7 and 14 dpi

(Figure 5C). On 21 and 28 dpi, we noted a significant increase in

the number of OT-I CD8+ T cells in the ears infected with VACV-

NP-S-eGFP compared to the ears infected with VACV lacking

cognate Ag, consistent with previous reports (38) (Figure 5C).
Frontiers in Immunology 06
Granzyme C expression was detectable in OT-I CD8+ T cells in

the skin by 7 dpi and occurred in T cells present in ears lacking

cognate Ag expression (Figures 5D–F). Over time, granzyme C

expression was maintained in ears lacking cognate Ag expression,

although frequencies of granzyme C+ OT-I CD8+ T cells were

slightly higher in ears containing cognate Ag. Accordingly, there

were higher numbers of OT-I CD8+ T cells expressing granzyme

C in the ears containing cognate Ag at 21 and 28 dpi (Figure 5F).

These data show that CD8+ T cells do not require cognate Ag

expression in the skin to produce granzyme C; however, cognate

Ag may bolster expression.
B

C

D
E F

G H

I J

A

FIGURE 4

TRM upregulate granzyme C during secondary VACV infection. (A) Diagram depicting primary and secondary infection with VACV. C57BL/6 mice
were epicutaneously infected in both ears with VACV-SIINFEKL. At least 28 days later, mice were reinfected epicutaneously with the same virus. Ears
were removed for analyses on day 2 after secondary infection. (B) Flow cytometry plots of cutaneous CD8+ T cells after primary or secondary
infection with VACV-SIINFEKL. Initial gating was on CD45+ CD45.2 IV- cells. (C) Total number of CD8+ TRM cells gated as CD45+ CD45.2 IV- CD8b+

CD103+ CD69+. Dots show individual ears. Error bars show SEM. Statistics = Mann-Whitney test. Results are representative of 1 experiment of 3 with
3 mice/group. (D) Flow cytometry plots showing staining for granzyme C (top panels), granzyme B (middle panels), and IFN-g (bottom panels) in
cutaneous CD8+ TRM during initial (left panels) or secondary (right panels) VACV infection and corresponding FMOs. (E–J) As in (C) but percentages
and MFIs of CD8+ TRM expressing granzymes C, B, and IFN-g.
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OT-I CD8+ TRM upregulate granzyme
C in response to both viral infection
and TCR engagement

Although cognate Ag was not needed for continued granzyme C

expression, we next queried whether TCR engagement during

secondary infection could upregulate granzyme C. As before, we

transferred 1 x 104 naïve OT-I CD8+ T cells into Cd8a-/- mice and

infected both ears with VACV-NP-S-eGFP (containing cognate Ag)

to establish OT-I CD8+ TRM in both ears under the same

conditions. Beyond 28 dpi, we reinfected one ear with VACV-

NP-S-eGFP and the other ear with VACV-NP-eGFP (lacking

cognate Ag) (Figure 6A). Flow cytometric analysis revealed no

statistical difference in the frequency of granzyme B and C

expressing CD8+ TRM in the skin during secondary infection in

the presence or absence of cognate Ag (Figures 6B–E). Granzyme A
Frontiers in Immunology 07
expression, however, trended toward increased expression in the

absence of cognate Ag (Figures 6B, C). Thus, viral infection alone

can drive the upregulation of granzyme C in CD8+ TRM.

In the converse experiment, we assessed whether cognate Ag alone

could drive upregulation of granzyme C (without virus-induced

inflammation). After the establishment of OT-I CD8+ TRM, we

injected SIINFEKL peptide intravenously and harvested the ear

pinna 6 hours post-injection (Figure 6F). Flow cytometric analyses

revealed significant upregulation of granzyme C+ OT-I CD8+ TRM

after peptide injection (Figures 6G–J). The frequency of granzyme B+

TRM also increased even more dramatically, while granzyme A

remained relatively unchanged. Together, these data suggest

granzyme C can be upregulated by both virally induced

inflammation or TCR stimulation in the absence of other

inflammatory stimuli. Furthermore, they reveal differential regulation

of specific granzyme expression in response to different stimulation.
B

C D

E F

A

FIGURE 5

CD8+ OT-I T cells recruited to the skin express granzyme C in an antigen-independent manner. (A) Experimental design. Cd8a−/− mice received 1 x
104 dsRed OT-I CD8+ T cells prior to epicutaneous infection in one ear with VACV-NP-S-eGFP (expressing the cognate Ag SIINFEKL) and the other
ear with VACV-NP-eGFP (no cognate Ag). Ears were harvested at various times post-infection to examine granzyme C expression in ears with or
without cognate Ag expression. (B) Flow cytometry plots of cutaneous dsRed OT-I CD8+ T cells at 7 dpi and 28 dpi isolated from separate ears
infected with VACV-NP-S-eGFP (with cognate Ag) or VACV-NP-eGFP (no cognate Ag). Cells initially gated as CD45+ CD45.2 IV-. (C) Numbers of
OT-I CD8+ T cells present in ears infected with VACV-NP-S-eGFP (with cognate Ag, green bars) or VACV-NP-eGFP (no cognate Ag, red bars) at 7-,
14-, 21-, and 28-dpi. OT-I CD8+ T cells were gated as CD45+ CD45.2 IV- dsRed+ CD8a+. Dots represent individual ears. Error bars show SEM.
Pooled data are shown from 2 independent timecourse experiments with 3 mice/group. Statistics = Kruskal-Wallis tests. (D) Flow cytometry plots of
dsRed OT-I CD8+ T cells at 28 dpi gated on granzyme C. (E, F) As in (C) but frequencies and numbers of granzyme C+ dsRed OT-I CD8+ T cells on
the indicated dpi.
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Skin-resident T cells upregulate granzyme
C in response to IL-15 administration

We next explored whether local cytokine changes could promote

granzyme C expression in the absence of cognate Ag recognition. The

cytokine IL-15 is induced during many acute viral infections and is

important for tissue-resident lymphocyte maintenance (39, 40). In

vitro, IL-15 upregulates granzyme C expression in isolated liver ILC1s

(13). We therefore explored whether in vivo treatment with IL-15

alone could induce granzyme C expression. We first assessed the

effect of IL-15 administration on DETCs. We intraperitoneally (IP)
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injected naïve wild-type C57BL/6 mice with exogenous IL-15 every

48 hr (three treatments) and harvested the ear pinna on day 7

(Figure 7A). Mice from the IL-15 treatment group had a higher

number but not frequency of DETCs compared to the vehicle control

(Figures 7B–D). DETCs in mice treated with IL-15 had an increased

frequency of granzyme C expression andMFI compared to DETCs in

mice receiving vehicle control (Figures 7E, F). IL-15 treatment also

increased the expression level (MFI) and frequency of dermal gd T

cells expressing granzyme C, though this remained low compared to

DETCs (Figure S6). Confocal imaging also revealed numerous

granzyme C+ DETCs in IL-15-treated mice (Figure 7G).
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FIGURE 6

OT-I CD8+ TRM can upregulate granzyme C in response to either viral infection or cognate Ag. (A) Experimental design. Cd8a−/− mice received 1 x
104 dsRed OT-I CD8+ T cells prior to epicutaneous infection in both ears with VACV-NP-S-eGFP (expressing the cognate Ag SIINFEKL) to establish
OT-I CD8+ TRM. At least 28 days later, mice were infected in one ear with VACV-NP-S-eGFP (expressing the cognate Ag SIINFEKL) and the other ear
with VACV-NP-eGFP (no cognate Ag). Ears were removed for analyses on day 2 after secondary infection. (B) Overlaid histograms showing
expression of granzymes A, B, and C along with corresponding FMOs in OT-I CD8+ TRM from ears expressing or lacking cognate antigen. OT-I CD8+

TRMs were gated as CD45.2 IV- CD45+ CD8b+ dsRed+ CD69+ CD103+. (C–E) Frequencies of granzyme A+ B+ or C+ OT-I CD8+ TRM from ears
infected with either VACV-NP-S-eGFP or VACV-NP-eGFP. Dots represent individual ears. Error bars = SEM. Statistics = Mann-Whitney tests. Data are
pooled from 2 experiments with 4 or 5 mice/group. (F) Experimental design. Cd8a−/− mice received 1 x 104 dsRed OT-I CD8+ T cells prior to
epicutaneous infection in both ears with VACV-SIINFEKL. At least 28 days later, mice were IV injected with either SIINFEKL peptide or vehicle control
and harvested 6 hours after injection. OT-I CD8+ TRMs were gated as CD45.2 IV- CD45+ CD8b+ dsRed+ CD69+ CD103+. (G) As in (B) but histograms
of granzymes A, B, and C between mice treated with SIINFEKL peptide or vehicle control. (H–J) As in (C–E) but frequencies of granzyme A+, B+, or
C+ OT-I CD8+ TRM between mice having received SIINFEKL peptide or vehicle control. Dots represent individual ears. Error bars = SEM. Statistics =
Mann-Whitney tests. ns, not statistically significant. Data are pooled from 2 experiments with 4 mice/group.
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Having demonstrated exogenous IL-15 administration could

upregulate granzyme C expression in skin-resident gd T cells, we

examined whether IL-15 would have the same effect in CD103+

CD69+ CD8+ TRM. As before, we infected C57BL/6 mice with

VACV-SIINFEKL and allowed for the endogenous polyclonal

VACV-specific CD8+ T cell response to develop (36). On 28 dpi

or greater, we administered IL-15 via IP injection as before,
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generated single-cell suspensions via enzymatic digestion from

the ear pinna and analyzed the frequency of granzyme C-

expressing T cells using flow cytometry (Figures 7H–K). Like

the DETCs, IL-15 increased TRM expression of granzyme C (in

both frequency and MFI) compared to vehicle controls

(Figures 7I–K). Thus, granzyme C expression is also cytokine

responsive in vivo.
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FIGURE 7

Skin-resident T cells upregulate granzyme C after IL-15 administration. (A) Experimental design. Naïve C57BL/6 mice were injected IP with 5 µg of
recombinant IL-15 every 48 hr (three treatments). Ear pinna were harvested on day 7 post-treatment. (B) Flow cytometry plots of cutaneous T cells
from C57BL/6 mice either treated with IL-15 or vehicle control. Cells were gated on CD45+ CD45.2 IV- CD3+. DETCs were gated on CD45+ CD45.2
IV- CD3+ TCRgd+ Vg5+. (C, D) Numbers and frequencies of DETCs isolated C57BL/6 mice either treated with IL-15 or vehicle control. Dots represent
individual ears. Error bars = SEM. Statistics = Mann-Whitney tests. ns, not statistically significant. Data representative of 2 independent experiments
with 4 mice/group. (E, F) As in (C, D) but frequencies of granzyme C+ DETCs and MFIs of granzyme C in all DETCs in IL-15- or vehicle-treated mice.
(G) Confocal images of frozen cross-sections of ears of naive C57BL/6 mice either treated with IL-15 or vehicle control. Top images show all colors
green (TCR gd AlexFluor 488), white (granzyme C), blue (DAPI-nuclear stain). Bottom images remove green (TCR gd AlexFluor 488) channel to better
reveal granzyme C signal (white). Scale bars represent 30 mm. Images are representative of at least 3 images taken from 3 mice/group. (H)
Experimental design. Age- and sex- matched C57BL/6 mice were infected with VACV-SIINFEKL for at least 28 days for TRM formation. At least 28
days post-infection, mice were injected IP with IL-15 every 48 hr. Ear pinna were harvested on day 7 post-treatment. (I) Overlaid histograms of
granzyme C expression in CD8+ TRM in IL-15- or vehicle-treated mice. CD8+ TRM gated on CD45.2 IV-, CD45+, CD3+, Vg5−, TCR gd−, CD8b+,
CD103+, CD69+ cells. (J, K) Frequencies of granzyme C+ CD8+ TRM and granzyme C MFIs in all TRM between treatment groups. Dots represent
individual ears. Error bars = SEM. Statistics = Mann-Whitney tests. Data representative of 2 independent experiments with 4 mice/group.
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Discussion

Mice can express many different granzymes, some of which do

not have established function or known immunological roles. One

of these, granzyme C was recently identified as a definitive marker

for mature antiviral ILC1s as these cells continually produce

granzyme C in the liver (13). However, it was unknown if other

antiviral lymphocytes express granzyme C and whether its

expression is regulated in vivo by viral infection. Here, using flow

cytometry, confocal microscopy, and single-cell RNA-seq, we

demonstrate that different innate and adaptive antiviral T cell

subsets express granzyme C in the skin. During homeostasis,

some DETCs and most TRM present in the epidermis expressed

granzyme C. Poxvirus infection of the skin upregulated granzyme C

production by both DETCs and TRM. Interestingly, cognate Ag

recognition in the tissue was not required for maintained granzyme

C expression by TCR-transgenic OT-I CD8+ T cells. Nonetheless,

cognate Ag recognition enhanced granzyme C expression.

Additionally, IL-15 treatment also enhanced granzyme C

expression by DETCs and virus-specific TRM. Together, our data

reveal that granzyme C expression is more widespread than

previously appreciated and is responsive to both environmental

cues and TCR engagement.

An important question remains: what is the function of

homeostatic granzyme C expression? Other studies have shown

that granzyme C can be expressed without contact with tumor or

virally infected cells, hinting at other roles for granzyme C besides

the direct cytolysis of target cells. Most experiments examining

granzyme C-mediated cytolysis have been performed in vitro (3, 11,

13, 41, 42). The most compelling in vivo data for granzyme C-

mediated killing demonstrated that the constitutive activation of

granzyme C+ cells led to perforin-dependent lethality in uninfected

neonatal mice (13). However, perforin knockout mice also

succumbed to death in this model, albeit with a delay of several

weeks. Furthermore, the crystal structure of granzyme C has

revealed that this protease may be auto-inhibited under normal

circumstances (43). Thus, the function of granzyme C may be

multifactorial but remains unestablished.

There are demonstrated non-canonical roles for other

granzymes. Some have been shown to play a pro-inflammatory

role during infection. Granzymes A and B in humans and mice are

produced at high levels during various viral infections including

HIV, CHIKV, and EBV (6, 44, 45). In a mouse model of CHIKV

infection, granzyme A promoted arthritic foot swelling but not viral

clearance (45). Granzyme K is a marker of a unique age-associated

CD8+ T cell population in both humans and mice, which may

induce fibroblast secretion the pro-inflammatory cytokines IL-6,

CCL2, and CXCL1 (7). Granzyme C can be upregulated in mast

cells activated with IL-33 (46).

Granzymes can also directly inhibit viruses via the cleavage of

viral proteins (6). Murine granzyme B degrades the herpes simplex

virus type 1 (HSV-1) immediate early protein ICP4 (needed for

transcription of early and late viral genes) (47, 48). Granzyme M

inhibits human cytomegalovirus (HCMV) replication through the

cleavage of the viral protein pp71 (49). Additionally, granzyme H,
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the human ortholog of granzyme C, can cleave DNA-binding

protein and the granzyme B-inhibiting 100k assembly protein of

adenovirus (50). Future studies will be needed to determine whether

granzyme C also has direct antiviral effects through the degradation

of specific viral proteins.

IL-15 is an important cytokine for tissue-resident antiviral

protection. DETCs, TRM, and ILC1s all reside in barrier epithelia,

and all require IL-15 for their development and/or maintenance

(25, 51–53). Originally identified as a T cell proliferation factor, IL-

15 can be expressed throughout the body by antigen-presenting

cells (APCs), bone-marrow stromal cells, and epithelial lineages

such as human and mouse epidermal keratinocytes (54–57). IL-15

is expressed as both soluble and trans-presented forms, the latter of

which is thought to represent the most physiologically relevant

form of the cytokine (58). During IL-15 trans-presentation, IL-15 is

bound to the IL-15 receptor a (IL-15Ra) and traffics to the cell

surface as an IL-15/IL-15Ra complex (58). Stimulation by IL-15

therefore requires contact between the recipient cells and IL-15/IL-

15Ra trans-presenting cell (59). We show here that IL-15

upregulates granzyme C expression in tissue-resident lymphocytes

in vivo. IL-15 may enhance granzyme C expression independent

from its canonical function, for example as a consequence of

cytokine-driven cellular expansion. Alternatively, granzyme C, a

serine protease, may help to liberate this or other cytokines for use

by tissue-resident lymphocytes. The unique positioning of DETCs

within the epidermis and the expression of granzyme C along their

dendritic extensions of DETCs might also suggest a strategy to

distribute granzyme C as widely as possible in the epidermis.

Granzyme C upregulation after IL-15 stimulation suggests that

granzyme C expression might serve as a surrogate to identify cells

receiving IL-15 during homeostasis, infection, and inflammation.

Interestingly, human granzyme K expression was identified as a

feature of both gd T cell and innate CD8+ T cell subsets and is

upregulated in response to cytokine stimulation rather than TCR

stimulation (60). Our data reveal that a smaller percentage of

DETCs express granzyme C than CD8+ TRM, at least at the

timepoints we examined. This may reflect the recent development

of TRM in the epidermis and more recent IL-15 acquisition by TRM.

Interestingly, TRM and DETCs exhibit different motility in the

epidermis (35), which might cause differences in IL-15 acquisition

as these cells perambulate through the keratinocytes.

Our data provide a framework for understanding granzyme

C expression by antiviral lymphocytes in the skin. Rather than

being developmentally programmed, granzyme C expression

was dynamic and reflected the current tissue status. Given the

functional versatility of granzymes, the deletion of granzyme C

in select lymphocyte populations may disrupt viral clearance

either through reduced lysis of virally infected cells or the

inhibition/degradation of viral proteins. Alternatively, knocking

out granzyme C may impair pro-inflammatory pathways or

reduce the ability of lymphocytes to migrate through the dense

tissue microenvironment. Although CRISPR editing is an attractive

approach to knockout granzyme C expression in OT-I CD8+ TRM,

granzyme gene homology will necessitate careful validation to

ensure proper targeting of only granzyme C. Furthermore, this
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approach could not be employed for other tissue-resident cells that

are seeded embryonically or neonatally. Therefore, the creation of

animal models deleting granzyme C expression will be required to

fully unravel the role(s) of this enigmatic protease during antiviral

immune responses. Nonetheless, the widespread increase in

granzyme C expression in skin-resident lymphocytes in response

to viral infection or cytokine stimulation suggests that this protease,

like other granzymes, could be an important contributor to antiviral

immunity in the tissue.
Materials and methods

Mice

Specific pathogen-free C57BL/6N mice were obtained from

Taconic Farms. dsRed (Stock Tg(CAG-DsRed*MST)1Nagy/J,

#5441); Cd8a-/- (B6.129S2-Cd8atm1Mak/J, #2665); and albino

C57BL/6 (B6(Cg)-Tyrc-2J/J, #58) mice were obtained from Jackson

Laboratories. Rag1-/- (Line 146); Rag2-/-Il2rg-/- (Line 111); T-

betZsGreen (Line 8419); and OT-I TCR transgenic (C57BL/6NAi-

[Tg]TCR OT-1-[KO]RAG1, Line 175) mice were obtained from the

NIAID Intramural Research Repository at Taconic Farms. dsRed

mice were crossed with OT-I TCR transgenic mice to create dsRed

OT-I mice. Rag1-/- mice were crossed with T-betZsGreen mice and

bred to homozygosity to create Rag1-/- T-betZsGreen mice. Cd8a-/-

mice were crossed with B6 albino mice and bred to homozygosity to

create albino Cd8a-/- mice. 6- to 20-week-old male and female mice

were used in experiments. All mice were maintained on standard

rodent chow and water supplied as necessary. All animal studies

were approved by and performed in accordance with the Animal

Care and Use Committee of NIAID.
Microbe strains

Viruses used for this study included VACV-NP-S-eGFP

(expressing a fusion protein consisting of influenza nucleoprotein,

the SIINFEKL T cell determinant, and eGFP); VACV-NP-eGFP (an

identical virus to VACV-NP-S-eGFP that lacks SIINFEKL); VACV-

SIINFEKL (expressing residues 257-264 of ovalbumin).

Recombinant VACV viruses were generated as TK- viruses using

the Western Reserve strain of VACV and have been previously

described (32, 61).
Method details

Viral infections and enzymatic tissue dissociation
Mice were infected in the dorsal ear pinna as previously

described (33, 62) with 5 pokes of a bifurcated needle dipped in

VACV. VACV infection was performed with VACV-SIINFEKL (1

x 108 pfu), VACV-NP-S-eGFP (2.1 x 108 pfu), or VACV-NP-eGFP

(2.4 x 108 pfu). At the indicated time, ears were harvested, separated

into dorsal and ventral sides, diced, and digested in RPMI
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containing 7.5% fetal bovine serum (FBS), collagenase I

(Worthington), DNAse (Worthington), and brefeldin A solution

1000x (Biolegend) at a 1:1000 dilution for 1 hr at 37°C. Spleens and

cervical lymph nodes were harvested and homogenized using a

pestle in RPMI containing 7.5% FBS and brefeldin A solution 1000x

(Biolegend) at a 1:1000 dilution.
Blood collection and lymphocyte isolation

Prior to blood collection mice were IV injected with 200 µls of

saline containing brefeldin A solution (Biolegend) at a 1:100

dilution. Mice were immediately placed under isoflurane

anesthesia and blood was collected through terminal retro-orbital

eye bleeds. BioWhittaker Lymphocyte Separation Medium (LSM)

(Lonza) was then used to isolate lymphocytes.
Flow cytometry analyses

To distinguish IV+ cells, mice were injected with 3 µgs of pacific

blue-conjugated CD45.2 (clone 104.2) intravenously as previously

described 3 minutes prior to tissue isolation (63). Suspensions were

filtered through 70 µm nylon cell strainers. Cells were stained with a

combination of the following antibodies: CD45 (clone 30-F11),

CD45.2 (clone 104), CD3 (clone 17A2), CD8b (clone H35-17.2 or

YTS156.7.7), CD8a (clone 53-6.7), CD69 (clone H1.2F3), CD103

(clone 2E7), Va2 (clone B20.1), TCRb (clone H57-597), TCR gd
(clone GL3), Vg5 (Tonegawa’s nomenclature (clone 536)),

granzyme A (GzA-3G8.5), granzyme B (clone 16G6 or NGZB),

granzyme C (clone SFC1D8), IFN-g (clone XMG1.2), Armenian

Hamster IgG Isotype Control (clone HTK888), CD62L (clone MEL-

14), CD44 (clone IM7) and fixable viability dyes (Zombie Aqua)

from Biolegend, eBiosciences, Invitrogen, or BD Biosciences diluted

in PBS and brefeldin A solution (Biolegend) at a 1:1000 dilution.

Cells were fixed with 3.2% paraformaldehyde for 15 minutes and

intracellular staining was done using 0.5% saponin in Hanks

Balanced Salt Solution (HBSS) + 0.1% Bovine Serum Albumin

(BSA) for 1 hr at room temperature. dsRed+ cells were identified

based upon fluorescent protein expression. Cells were analyzed on a

Fortessa flow cytometer (BD Biosciences) or 5L 16UV-16V-14B-

10YG-8R Aurora (Cytek) and resultant data analyzed using FlowJo

software (Treestar).
Drug and Peptide treatment

Recombinant murine IL-15 (PeproTech) was reconstituted in

water and diluted in sterile saline solution prior to intraperitoneal

(IP) injection of 5 µg/mouse every 48 hr for a total of 3 treatments.

Ears were harvested 7 days after the start of the first treatment.

SIINFEKL peptide (GenScript) was reconstituted in dimethyl

sulfoxide (DMSO) and diluted in sterile saline solution prior to

one time IV injection of 200 µg of peptide/mouse. Ears were

harvested 6 hours after peptide injection.
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Adoptive transfer of OT-I CD8+ T cells

CD8+ T cells were purified from spleens and lymph nodes using

an EasySep Mouse CD8+ T cell Isolation Kit (Negative Selection)

according to the manufacturer’s instructions (Stem Cell

Technologies). Cells were naïve (CD69-) (antibody information

clone: H1.2F3) and > 90% pure by flow cytometry prior to IV

transfer. Unless otherwise noted, mice received a standard dose of 1

x 104 OT-I CD8+ T cells prior to infection.
Confocal microscopy of frozen
tissue sections

Ears were removed on the indicated dpi, fixed in periodate-

lysine-paraformaldehyde (PLP) for 24 hr, and moved to 30%

sucrose/PBS solution for 24 hr. Ears were embedded in optimal-

cutting-temperature (OCT) medium (Electron Microscopy

Sciences) in cross-section orientation and frozen in dry-ice-

cooled 2-methylbutane. 16-µm sections were cut on a Leica

cryostat (Leica Microsystems), blocked with HBSS, 0.1% BSA,

10% bovine and donkey serum, 0.05% Triton X. Tissues were

stained with a combination of the following antibodies: purified

granzyme C (clone SFC1D8), Alexa Fluor 647 AffiniPure Goat

Anti-Armenian Hamster IgG (H+L) or Alexa Fluor® 594

AffiniPure Goat Anti-Armenian Hamster IgG (H+L), purified

Cytokeratin 6 (clone SP87), Alexa Fluor 647 AffiniPure Donkey

Anti-Rabit IgG (H+L), conjugated Alexa Fluor 488 anti-mouse

TCR g/d (clone GL3) antibody, and nuclei stained using DAPI

from Biolegend, ThermoFisher, or Jackson ImmunoResearch.

Antibodies were diluted in HBSS, 0.1% BSA, 10% bovine and

donkey serum, 0.05% Triton X. Images were acquired on a Leica

SP8 confocal microscope equipped with hybrid detectors or a

Leica Stellaris 8.
Cell sorting and single-cell RNA-seq

Rag1-/- T-betZsGreenmice received 1 x 104 dsRed OT-I CD8+ T

cells prior to infection with VACV-SIINFEKL. At the indicated

time post infection, mice were injected with 3 µgs of pacific blue-

conjugated CD45.2 (clone 104.2) IV as previously described 3

minutes prior to tissue isolation to distinguish IV+ cells (63). Ears

were harvested, separated into dorsal and ventral sides, diced, and

digested in RPMI containing 7.5% fetal bovine serum (FBS),

collagenase I (Worthington), and DNAse (Worthington) for 1 hr

at 37°C. Suspensions were filtered through 70 µm nylon cell

strainers. Cells were stained with a combination of the following

antibodies: CD45 (clone 30-F11), CD8a (clone 53-6.7) along with

Zombie Aqua viability dye. Using a BD FACS Aria III Cell Sorter,

OT-I CD8+ T cells and Tbet-ZsGreen group I ILCs were sorted as

Viability Dye- CD45.2 IV- CD45+ dsRed+ CD8a+ or ZsGreen+ cells,

respectively, into RPMI containing 10% FBS and HEPES (25 mM).

Cells were centrifuged and resuspended in RPMI containing 10%

FBS and HEPES (25 mM) at a 1000 cells/ml concentration.
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Single-cell RNA-seq library generation

Two technical replicates of the Rag1-/- T-betZsGreen ear samples

were collected for single-cell RNA sequencing using Chromium

Next GEM Single Cell 3’ v3.1 standard kit (10X Genomics,

Pleasanton, CA). Approximately 3000 cells were targeted in each

single-cell preparation. For the preparation of the cDNA and

sequencing library generation, libraries were prepared as

described in the Chromium Next GEM Single Cell 3’ Reagent Kit

v3.1 (Dual Index) user guide to produce barcoded cDNA and

perform Illumina sequencing library preparation.
Single-cell RNA-seq library sequencing,
and analysis

The Illumina library quality was assessed by TapeStation D1000

high sensitivity reagent kit (Agilent, Santa Clara, CA), and DNA

concentration was measured by Qubit High Sensitivity reagent kit

(Thermo Fisher, Waltham, MA). Samples were diluted for

sequencing and pooled equimolarly according to Illumina

sequencing protocol to a final concentration of approximately 650

pM. Sequencing was performed NextSeq2000 instrument using two

P3 200 cycle kits (Illumina, San Diego, CA) to target approximately

50,000 reads per cell.

After sequencing, the FastQ files were submitted to Cell Ranger

‘count’ and ‘aggregate’ functions. Sample Rag1-/- T-betZsGreen

Ear_1 had 2,744 passing cells with 1,986 median genes per cell

and Rag1-/- T-betZsGreen Ear _2 had 1,910 passing cells with 2,180

median genes per cell. Sequencing saturation for both libraries were

64.8% and 76.8%, respectively. After all quality control of the

replicates, the expression of granzyme C and other genes were

analyzed in the Loupe browser (10X Genomics, Pleasanton, CA).
Statistical analyses

Significances were assessed using Prism software (GraphPad)

using a Kruskal-Wallis Test (3 or more groups) or unpaired two-tail

Mann-Whitney test (2 groups) as indicated in the figure legends.

Exact P values are shown throughout, statistical significance was set

at P ≤ 0.05.
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