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Multimodal roles of transient
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activation in inducing
pathological tissue scarification
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Wuqing Wang, Huimin Zhang, Xiang He* and Qiannan Li*

Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional
Chinese Medicine, Shanghai, China
Transient receptor potential (TRP) channels are a class of transmembrane

proteins that can sense a variety of physical/chemical stimuli, participate in the

pathological processes of various diseases and have attracted increasing

attention from researchers. Recent studies have shown that some TRP

channels are involved in the development of pathological scarification (PS) and

directly participate in PS fibrosis and re-epithelialization or indirectly activate

immune cells to release cytokines and neuropeptides, which is subdivided into

immune inflammation, fibrosis, pruritus and mechanical forces increased. This

review elaborates on the characteristics of TRP channels, the mechanism of PS

and how TRP channels mediate the development of PS, summarizes the

important role of TRP channels in the different pathogenesis of PS and

proposes that therapeutic strategies targeting TRP will be important for the

prevention and treatment of PS. TRP channels are expected to become new

targets for PS, which will make further breakthroughs and provide potential

pharmacological targets and directions for the in-depth study of PS.

KEYWORDS

transient receptor potential channels, pathological scarification, inflammatory, fibrosis,
re-epithelialization
1 Introduction

Pathological scarification (PS) is a pathological result of wound healing and is caused by

inflammation and trauma. Epidemiology shows that the overall prevalence of PS is 30%-90%.

The incidence of hypertrophic scar (HS) in patients with full-thickness burns is as high as

80% (1). In the United States alone, the cost of treating HS is estimated to be $400 million per

year (2), which brings a huge economic burden to families and society. PS is one of the

important complications of tissue damage repair, including HS and keloids. It is mainly

characterized by the infiltration of inflammatory cells such as macrophages, lymphocytes,

mast cells and neutrophils (3). Inflammatory mediators secreted by immune cells induce

fibroblasts (FBs) fibrosis and keratinocytes (KCs) re-epithelialization, resulting in excessive
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deposition of a large amount of extracellular matrix (ECM)

components, which is accompanied by mechanical stretching and

angiogenesis and eventually develops into PS (4–6). Furthermore,

recent studies have shown that oxidative stress and epigenetic

regulation are involved in the occurrence of PS (7, 8). PS easily

causes appearance damage and local tissue pruritus, pain, tumor-like

hyperplasia or varying degrees of dysfunction, affecting the physical

and mental health of patients (9). PS research has always been a

challenging topic in the field of burns, plastic surgery and

dermatology department (10). However, the exact pathogenesis of

PS is unclear and still needs to be examined.

Recently, many studies have shown that transient receptor

potential (TRP) channels are involved in many mechanisms of

PS, such as participating in the development of PS fibrosis and re-

epithelialization or affecting the secretion of TGF-b1 and ECM by

nonimmune cells, and regulating cytokine release, cell migration

and phagocytosis through immune-related mechanisms (11). Some

TRP channels are involved in PS mechanical conduction, oxidative

stress, epigenetics and pruritus. Therefore, the expression of TRP

channels in PS deserves more attention. This review focused on

specific channels in the TRP family, such as TRPV, TRPC, TRPA

and TRPM, especially TRPV1-4, TRPC3, TRPC6, TRPA1 and

TRPM7. These are channel proteins that play important roles in

the wound healing and the development of PS.

The analysis of this information aimed to demonstrate immune

inflammation and fibrosis to examine TRP channels as potential

targets for inhibiting PS.
2 TRP channels classification
and function

The TRP superfamily consists of nonselective cation channels

with the ability to sense local environmental changes (12). In 1969,

Cosens (13) found that light stimulation only caused a transient

increase in intracellular Ca2+ concentrations in a Drosophila mutant

with light sensing defects. Subsequently, Hardie (14) found that this

was due to the lack of functional copies of genes encoding ion

channels and named this type of calcium-permeable cation channel

the TRP channel. According to differences in amino acid sequence

homology, the mammalian TRP family is divided into six groups:

ankyrin (TRPA), canonical (TRPC), melastatin (TRPM), mucolipin

(TRPML), polycystin (TRPP), and vanilloid (TRPV) (15).

TRP channels are abundantly expressed in various cell types (16).

For example, KCs, melanocytes, FBs and a variety of immune cells

express TRP channels (17). TRP channels can be activated by external

stimuli or local environmental changes (including pain, pruritus,

heat, warmth or cold, odor, mechanical stimulation, and osmotic

pressure changes) (18). In addition, TRP channels are critical in

physiological processes such as regulating skin homeostasis, melanin

synthesis, wound healing, epigenetic regulation, and pathological

processes such as barrier damage, vascular stress relaxation,

oxidative stress, and skin cancer caused by ultraviolet irradiation

(19). There is growing evidence that the TRP family plays an

important role in mediating disease fibrosis (20). These results are

consistent with the mechanism of PS.
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The TRPV subfamily consists of six members, which can

be subdivided into heat-activated TRPV (TRPV1-4) channels and

Ca2+-selective TRPV channels (TRPV5, TRPV6) (21), and these

channels can be activated by different stimuli such as heat, pruritus,

pain, osmotic pressure or chemical stimulation (21, 22). TRPV

channels are involved in the activation and differentiation of immune

cells and play an important role in activating macrophages, stimulating

the type 17 immune inflammatory response and inducing neutrophil

adhesion and chemotaxis (23–25). TRPV is closely related to fibrosis

and is mainly involved in myofibroblasts (MFBs) differentiation and

collagen deposition (26). TRPV is also an important osmotic-

mechanical sensitive channel that mediates abnormal mechanical

conduction into specific biochemical signals (23, 27). In addition,

TRPV is related to angiogenesis (28), epigenetic regulation (29),

electrolyte homeostasis (30) and the maintenance of barrier

function (31).

The TRPC family can be further divided into four subgroups

(TRPC1, TRPC2, TRPC4/5 and TRPC3/6/7) according to their

amino acid sequence and functional homology (32). TRPC channels

may mediate fibrotic diseases as mechanosensitive ion channels

(33) and can sense and regulate oxidative stress responses. For

example, the oxidation product OONO- upregulates the mRNA

and protein expression of TRPC6 and TRPC3 in monocytes (34). In

addition, TRPC channels are involved in the inflammatory response

(35), mitochondrial metabolism in ageing (36), cell proliferation,

wound healing (37), and angiogenesis (38). In particular, TRPC3

and TRPC6 have been shown to be crucial in the mechanical

conduction of wound healing (39).

TRPA channels have been widely studied in the field of pruritus,

pain and neurogenic inflammation (15). TRPA1 is the only member

of the mammalian TRPA family that can be activated by cold and

heat stimulation, mechanical forces, chemicals and endogenous

signals associated with cell damage. TRPA1 is also an important

mediator of acute and chronic itching perception. Exogenous and

endogenous pruritus can produce scratching behavior by activating

neuronal TRPA1 (19). In addition, TRPA1 is expressed in immune

cells, KCs, melanocytes, FBs, epithelial cells and sensory neurons

and plays a key role in the pathophysiology of almost all systems

(40–42).

The TRPM subfamily consists of eight members (TRPM1-8), is the

largest subfamily of TRP channels and has a specific structure and

physical function (43). The TRPM subfamily is expressed in various

organs and cells of the peripheral, central and immune systems and is

vital in various biological processes, such as cold and heat stimulation,

ion homeostasis, autophagy, vascular tension, epigenetics, and immune

inflammation (29, 44–46). An increasing number of studies have

shown that TRPM channel participates in fibrotic diseases (47, 48).
3 Cutaneous wound healing and the
mechanism of PS

3.1 Physiological wound healing process

The physiological wound healing process is divided into four

stages: hemostasis, inflammation, proliferation and remodeling
frontiersin.org
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(49). To a certain extent, this process is mediated by growth factors

and regulatory molecules (50).

① Collagen and tissue factors promote the clumping of platelet

aggregation in the affected area, releasing chemotactic and growth factors

and eventually forming clots (51). ② The infiltration of inflammatory

cells marks the beginning of the inflammatory phase of wound healing

(50). Immune cells such as neutrophils, lymphocytes, mast cells and

monocytes release inflammatory mediators to defend against

microorganisms and remove wound pathogens and tissue fragments

(52). When proinflammatory M1 macrophages transform into anti-

inflammatory M2 macrophages, the wound healing process shifts to the

proliferative phase (53). The hemostasis and inflammatory phases

typically take 3 days (54). ③ The proliferative phase is an important

stage associated with angiogenesis, KC migration, granulation tissue

formation, ECM accumulation and epithelialization (55). FBs synthesize

ECM and promote the formation of granulation tissue (53). FBs

activation, KCs proliferation and migration, and new epithelial

differentiation jointly promote wound re-epithelialization (56).

Furthermore, FBs can be activated and differentiate into MFBs, which

promotematrix remodeling to promote wound healing and angiogenesis

(56, 57).④The final step is the remodeling phase, which typically lasts for

weeks or even years (58). This stage mainly involves excessive tissue

degradation (59). Excessive ECM is degraded, and collagen type III

(COL-3) is replaced by mature collagen type I (COL-1), eventually

leading to wound healing (60), as shown in Figure 1.

TRP channels play a key role in various stages of physiological

wound healing, with TRPV1-4, TRPC3, TRPC6, TRPA1, and
Frontiers in Immunology 03
TRPM7 being closely associated. Specifically, TRPV1, TRPV3,

TRPV4, and TRPA1 are involved in the inflammatory,

proliferative, and remodeling phases of physiological wound

healing. For instance, TRPV1 deficiency can lead to neutrophil

inflammation and NETs formation, as well as defective re-

epithelialization, which can prolong wound healing (61).

TRPV3, on the other hand, can induce fibrosis through TRPV3/

TSLP/Smad2/3 pathway, resulting in significantly increased

expression levels of a-SMA, fibronectin, COL1A1, and TSLP (62).

Additionally, the selective TRPV3 activator KS0365 has been shown

to accelerate the migration of KCs and promote re-epithelialization

during physiological wound healing (63). Furthermore, the

presence of TRPV3 in macrophage lysosomes may play a crucial

role in the inflammatory phase of PS (64).

The activation of TRPV4 has been shown to promote TGF-b1
and IL-6 induced fibrosis and inflammation (20). Conversely, the

lack of TRPA1 has been found to retard macrophage infiltration,

subsequent fibrotic tissue formation, and mRNA expression of a-
SMA and COL-1, which may further impair fibrotic behavior in

fibroblasts (65). Additionally, TRPV2, TRPC3, TRPC6, and TRPM7

have been implicated in the proliferative and remodeling phases of

wound healing. Specifically, TRPV2 mediates FB differentiation and

contraction by promoting TGF-b1 and a-SMA expression (66).

Inhibition of TRPC3 and TRPC6 can suppress MFBs trans-

differentiation and the expression of aSMA and TGF-b1 (67, 68).

Furthermore, overexpression of TRPM7 promotes fibrosis and

ECM deposition in wound healing (69).
B

C D

A

FIGURE 1

Schematic diagram of different stages of wound healing. Wound healing includes four stages: hemostasis (A), inflammation (B), proliferation (C) and
remodeling (D). (A) After injury, platelets aggregate, release chemotactic and growth factors, and eventually form clots. (B) Shortly thereafter,
immune inflammatory cells release inflammatory mediators to resist microbial invasion and remove wound pathogens and tissue fragments.
(C) Subsequently, FBs migrate to the wound tissue and synthesize ECM to promote the formation of granulation tissue at the wound site. The
proliferation of KCs at the wound edge promotes wound re-epithelialization and migrates down to the injured dermis. (D) In the final remodeling
stage, the tensile strength of the wound increases and the wound is completely covered by the new epidermis.
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3.2 Mechanism of PS

PS can be induced by prolonged hemostasis and inflammatory

phases, leading to an abnormal increase in activated cells and their

accumulation at the injury site, abnormal proliferation of FBs and

excessive collagen deposition during the proliferative phase;

reduced degradation of ECM and excessive wound contraction

during the remodeling phase. The mechanism of PS is complex,

and current research is mainly related to immune inflammation,

fibrosis, re-epithelialization, epigenetics, oxidative stress, and

mechanical forces.

3.2.1 The mechanism by which immune cells
regulate PS

Immune cells mainly prevent the invasion of pathogenic

microorganisms during wound healing, and an imbalance will

change the outcome of wound healing. Immune cells release

cytokines or chemokines to promote fibrosis and re-epithelialization,

resulting in excessive deposition of ECM and eventually leading to PS.

At present, PS-related immune cells mainly include macrophages,

lymphocytes, mast cells and neutrophils (Figure 2).

Macrophages are the key effector cells of innate immunity and play

an important protective role in clearing pathogenic microorganisms
Frontiers in Immunology 04
and tissue fragments, presenting antigens, and promoting wound

repair (70). Studies have shown that macrophages undergo

significant phenotypic and functional changes to coordinate changes

in the microenvironment at different stages of wound healing (71). In

different microenvironments, macrophages can be polarized into two

main phenotypes: M1 and M2. During wound healing, monocytes are

polarized into theM1 phenotype bymicroorganisms, proinflammatory

Th1 cytokines, damage-associated molecular patterns (DAMPs) and

lipopolysaccharide (LPS) to initiate the inflammatory response (72, 73).

Furthermore, the number of M1macrophages begins to increase at 0-2

days after injury, peaks at 7-14 days after injury, and decreases

significantly at 14-28 days after injury (72). This finding indicates

thatM1 cells secrete many inflammatory mediators in the early stage of

normal scar formation (74, 75). During the transition from the

inflammatory phase to the proliferative phase of wound healing, M1

cells are transformed into the M2 phenotype by the phagocytosis of

neutrophils or the change of local wound microenvironment (76, 77).

However, how M1 macrophages differentiate into M2 macrophages is

not clear. The anti-inflammatory M2 phenotype is mainly involved in

the proliferation and remodeling phases of wound healing. The

secretion of vascular growth factors, cytokines and chemokines

induces the proliferation and differentiation of FBs and MFBs, the

re-epithelialization of KCs, the deposition of ECM and angiogenesis
FIGURE 2

The mechanism by which different immune cells regulate PS. Macrophages are polarized into two main phenotypes: M1 and M2. M1 macrophages
secrete TNF-a and IFN-g to initiate inflammatory responses; M2 macrophages secrete TGF-b1 and IL-10 to promote tissue fibrosis. Mast cells release
inflammatory mediators such as IL-1 and IL-4, and promote FBs fibrosis and KCs re-epithelialization. Neutrophils release IL-6 to induce MFBs
transdifferentiation. CD4+ helper T cells are further divided into Th1, Th2, Th17 and Treg subsets. Th1 releases pro-inflammatory cytokine IFN-g; Th2
cells produce anti-inflammatory factors IL-4, IL-13 to promote fibrosis and IL-10 to inhibit fibrosis; Th17 cells secrete IL-17 and IL-22 to promote the
expression of a-SMA and collagen; Treg cells secrete pro-fibrotic cytokines TGF-b1, COL-1, COL-3 and anti-fibrotic cytokine IL-10.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1237992
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2023.1237992
(71, 78–81). M2 cells are significantly increased at 28 days after injury

and returned to baseline at 56 days (80). Normal wound healing is

characterized by the transition from the early inflammatory stage,

which is dominated byM1macrophages, to the recovery stage, which is

dominated by M2 macrophages (71). Increased secretion of

inflammatory cytokines by M1 macrophages promotes the

development of inflammation, or increased secretion of cytokines by

M2 macrophages promotes the development of fibrosis, which leads to

the formation of PS.

Most studies on lymphocytes in PS focus on T cells. Studies

have shown that there may be a decrease in CD8+ cytotoxic T cells

in keloids, and the number and activity of FBs co-cultured with

CD8+ cytotoxic T cells are significantly reduced (82, 83). CD4+

helper T cells can be further divided into Th1, Th2, Th17 and

regulatory T (Treg) cell subsets. The dynamic balance of the

proinflammatory Th1 response with the anti-inflammatory Th2

response is crucial in wound healing. Once the balance is disturbed,

PS may occur. During PS, Th1 cells can produce the

proinflammatory factor IFN-g to protect against fibrosis (84, 85).

Th2 cells produce IL-4 and IL-13 driven by the transcription factor

GATA3, which can not only induce macrophage polarization to the

M2 phenotype but also induce TGF-b1 and collagen synthesis

through the JAK-STAT signaling pathway and induce pruritus

(86, 87). In addition, Th2 cells can produce the anti-inflammatory

mediator IL-10 to protect against fibrosis (88). Treg cells can secrete

cytokines and interact with other inflammatory cells to regulate PS.

The profibrotic cytokines TGF-b1, COL-3, and COL-3/COL-1,

anti-fibrotic cytokine IL-10 and nuclear transcription factor

Foxp3 are secreted by Treg cells, which can directly regulate PS

(89). Treg cells can promote macrophage polarization to the M2

phenotype and interact with helper T cells to indirectly regulate PS

(88). Th17 cells activate FBs differentiation and KCs proliferation by

secreting IL-17 and IL-22 (88, 90). Overall, these studies showed

that lymphocytes can induce the differentiation of FBs and KCs by

releasing inflammatory mediators or participate in the development

of PS by interacting with macrophages. However, there are

relatively few studies, and the specific mechanism needs

further study.

Mast cells are mainly involved in PS and its pruritus by releasing

inflammatory mediators, promoting FBs and KCs activation and

excessive collagen deposition. Mast cells release inflammatory

mediators, induce degranulation, directly activate FBs fibrosis,

angiogenesis and KCs re-epithelialization, recruit more immune

cells to migrate to the injured site; and indirectly promote tissue

repair (91, 92). Furthermore, the mast cell inhibitor DSCG can

reduce the width of PS and the levels of the wound inflammatory

factors IL-1a, IL-1b and CXCL1 (93). In addition, mast cells are

closely related to PS pruritus. Compared with those in non-pruritus

keloids, the number and degranulation of mast cells in pruritus

keloids were increased (94). Therefore, number of mast cells and

their storage particles are important factors affecting the PS.

Neutrophils are the first immune cells to reach the wound site

and secrete various cytokines to participate in wound healing.

Neutrophils kill microorganisms, remove tissue debris, and

contribute to the activation of macrophages (95). However, the

persistent presence of neutrophils in peripheral tissues triggers an
Frontiers in Immunology 05
inflammatory response. Studies have shown that neutrophil

extracellular traps (NETs), which are network structures by which

neutrophils kill pathogens, are highly expressed in HS and induce

FBs to differentiate into MFBs through the TLR-9/NF-kB/IL-6
signaling pathway (96). It is known that the IL-6 signaling

pathway is critical in the pathogenesis of PS (97, 98). At present,

there is a lack of studies on the specific mechanisms by which

neutrophils induce FBs differentiation and interact with other

immune cells to mediate PS.

3.2.2 The mechanism by which nonimmune cells
regulate PS

In addition to immune cells, many nonimmune cells are

involved in the development of PS (Figure 3). The nonimmune

cells involved in PS are mainly FBs, MFBs and KCs. During

physiological wound healing, MFBs undergo apoptosis or revert

to static FBs. When the mechanical environment around the wound

changes or the internal environment is disordered, FBs are activated

by cytokines and chemokines secreted by immune cells and

differentiate into MFBs, which is accompanied by excessive

secretion of ECM components which ultimately leads to PS (99).

MFBs mainly mediate information exchange through autocrine and

paracrine mechanisms. Autocrine signaling involves binding to its

own receptor to trigger TGF-b1 and induce MFBs differentiation.

When TGF-b1 is inhibited, it causes the dedifferentiation of MFBs

(100). In addition, the paracrine pathway mainly recruits immune

cells such as macrophages and neutrophils to achieve indirect

communication and jointly promote the development of PS. KCs

play an important role in the development of PS by inducing wound

healing re-epithelialization and regulating FBs differentiation (101).

During normal skin differentiation, KCs move from the basal layer

of the epidermis. When the skin is damaged, these cells proliferate

and migrate to the wound, promoting wound healing (102). In HS,

the thicker the epidermis, the stronger the re-epithelialization of

KCs (103). In addition, KCs upregulate the expression of

profibrogenic molecules to accelerate FBs proliferation and

collagen production (104). At present, the abnormal interaction

between KCs and MFBs is one of the most widely recognized

mechanisms in PS. In conclusion, the excessive differentiation of

FBs into MFBs, which in turn promotes fibrosis and excessive re-

epithelialization of KCs, leads to the occurrence of PS.

3.2.3 The mechanism by which other factors
regulate PS

Increasing evidence shows that epigenetic modifications,

represented by DNA methylation, histone modification and

noncoding RNAs (ncRNAs), play a key role in the gene

regulation of PS (105, 106). Many studies have focused on the

expression of miRNAs in PS. The upregulation of miR-152-3p,

miR-31, miR-181a, miR-21, lncRNA H19, and circRNA_0002198

(107–112) and the downregulation of miR-26a, miR-1224-5p,

microRNA-152-5p, miR-29b, miR-205-5p, and circRNA_0008259

(112, 113) can promote the proliferation of FBs and the formation

of collagen and ultimately induce the formation of PS (Figure 3).

There is hypoxia during PS. Compared with those in normal

tissues, HIF-1a and ROS are highly expressed in PS (114, 115).
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Furthermore, hypoxia can induce the transformation of FBs to

MFBs in keloids through the TGF-b1/SMAD3 pathway (114). In

addition, Lee showed that antioxidant protein Nrf2 in keloids was

significantly lower than that in normal skin tissue, and the protein

levels of the oxidation product 2,4-dinitrophenylhydrazine were

significantly higher than in normal skin (116). This finding suggests

that oxidative stress is one of the mechanisms of PS (Figure 3).

Mechanical forces are important factors leading to PS (117,

118). TRP channels have been shown to play key roles in response

to mechanical conduction, and TRPV2, TRPV4, TRPC3 and

TRPC6 are potential mechanical force sensors involved in PS (3,

119). Studies have shown that continuous mechanical stretching

can lead to the formation of PS by inducing FBs to synthesize ECM,

indirectly activating the immune response to promote collagen

secretion and fiber synthesis (120). In addition, local high

mechanical forces are associated with abnormal skin fibrosis (1).

These studies showed that mechanical forces can not only induce

the release of inflammatory mediators by activating the immune

response but also directly promote fibrosis in PS (Figure 3).
4 Modulation of TRP channels in PS

TRP channels are involved in PS (Table 1). The specific

manifestations include immune inflammation, fibrosis, re-
Frontiers in Immunology 06
epithelialization, abnormal oxidative stress, epigenetic disorders,

and excessive mechanical stretching. The factors are related to TRP

channels. In addition, some TRP channels mediate PS-induced

pruritus. TRP channels that are most closely related to PS are

described below. Furthermore, we offer some opinions for reference

in expounding the related problems.
4.1 TRPV1

TRPV1 is not only a heat-activated capsaicin receptor but also a

multimodal receptor that is activated through multiple pathways in

different microenvironments and mediates PS fibrosis, re-

epithelialization and inflammatory responses, as well as being

involved in PS pruritic signaling (Figure 4) (26, 148, 149).

In HS, the expression of TRPV1 is upregulated. Studies have

shown that trans-epidermal water loss (TEWL) in HS is

significantly higher than that in normal skin (150). This finding

suggests that there is the presence of epidermal barrier dysfunction

in HS, which is consistent with the clinical manifestations of skin

dryness in some HS patients. Studies have shown that the barrier

function of the skin is closely related to the expression of TRPV1 in

KCs. Overactivation of TRPV1 delays the recovery of epidermal

barrier function (151). Further studies have shown that disrupting

the water barrier leads to KCs production of IL-1 and TNF-a to
FIGURE 3

The mechanism by which non-immune cells and other factors regulate PS. Non-immune cells mainly include FBs, MFBs and KCs. When the
mechanical environment around the wound changes or the internal environment is disordered, FBs differentiate into MFBs, accompanied by
excessive secretion of COL-1, COL-3, a-SMA, eventually leading to PS. At the same time, KCs secretes TGF-b1 and TGF-b2 to promote re-
epithelialization and FBs fibrosis. Epigenetic modification represented by noncoding RNAs is abnormally expressed in PS, which further promotes the
fibrosis of FBs. Hypoxia releases ROS and HIF-1a, reduces the expression of antioxidant protein Nrf2, and induces MFBs transdifferentiation.
Continuous mechanical stretching induces FBs to synthesize ECM, promotes collagen secretion and fiber synthesis.
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TABLE 1 The function of TRP channels in PS.

Subfamilies
Positive

biomarkers
Role of TRPs in PS

Influence
mechanism

References

TRPV1

IL-1

Epidermal barrier disruption up-regulates the expression of TRPV1, promotes KCs
release of IL-1, TNF-a, IL-6, IL-8 and GM-CSF to induce proliferation and re-

epithelialization

Re-
epithelialization

(121)

TNF-a

IL-6

IL-8

GM-CSF

CGRP

TRPV1 activates the release of CGRP, promotes the expression of COL-1, TGF-b1 and
a-SMA, upregulates the levels of macrophage-related inflammatory factors IL-1, IL-6,

TNF-a and CCL2 through NF-kB and ERK signaling pathways, and promotes the release
of IL-17 from type 17 inflammation

Immune
inflammation,

Fibrosis
(25, 122)

SP
SP released by TRPV1 binds to its receptor NK1R to mediate neurogenic pruritus or

activate Th2 immune cells, promoting the release of IL-4 and IL-13 to mediate pruritus

Pruritus

(87, 123–126)

IL-31 The activation of TRPV1 promotes mast cells to release IL-31 and FBs to produce
Periostin to induce pruritus

(127, 128)

Periostin (129–131)

TRPV2
TGF-b1

The activation of TRPV2 promotes the expression of TGF-b1 and a-SMA

Re-
epithelialization (132–134)

a-SMA Fibrosis

TRPV3

COL-1

The activation of TRPV3 promotes the expression of COL-1, TGF-b1, a-SMA and
fibronectin in FBs through Smad2/3 signaling pathway

Fibrosis (62)
TGF-b1

a-SMA

Fibronectin

NO TRPV3 promotes the expression of COL-1 by activating iNOS to induce NO synthesis
Re-

epithelialization

(135, 136)

TGF-a
TRPV3 channel promotes KCs to release TGF-a, and induces KCs proliferation through

TGF-a/EGFR signaling pathway
(137)

TSLP The upregulation of TRPV3 channel increases the expression of TSLP and PAR2 to
induce pruritus

Pruritus (138–140)
PAR2

TRPV4

IL-6
The activation of TRPV4 channel may promote FBs differentiation into MFBs by

upregulating IL-6
Fibrosis (20)

TSLP TRPV4 induces KCs to release TSLP to promote pruritus Pruritus (141, 142)

Piezo1 TRPV4 cooperates with Piezo1 channel to promote mechanical conduction
Mechanical

forces
(118, 119)

TRPC3

COL-1

Repeated mechanical stretching activates TRPC3 channel and promotes COL-1, TGF-b1,
a-SMA and fibronectin through the Smad3/NF-kB signaling pathway

Mechanical
forces

(33)
TGF-b1

a-SMA

Fibronectin

NFAT
Repeated mechanical stretching induces ET-1 in KCs to bind to EDNRB in FBs to

promote the expression of TRPC3 and the profibrotic gene NFAT through Gaq-PLC-
DAG signaling.

Fibrosis (143)

ROS The activation of TRPC3 evokes ROS release to participate in FBs differentiation Oxidative stress (67)

TRPC6 NFAT
TGF-b1 up-regulates the expression of TRPC6 to activate NFAT through p38 MAPK/

SRF pathway, promotes MFBs transdifferentiation and the release of a-SMA and collagen
Fibrosis (68, 144)

TRPA1

IL-4 IL-4 and IL-13 activate TRPA1 to mediate PS fibrosis through TGF-b/SMAD and IL-
4Ra/STAT6 signaling pathways; IL-4 and IL-13 stimulate TRPA1 neuronal expression

and induces pruritus

Fibrosis,
Pruritus

(87)
IL-13

IL-17 (92, 145, 146)

(Continued)
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trigger the inflammatory response, and upregulate IL-6, IL-8, and

granulocyte/macrophage colony stimulating factor (GM-CSF),

promote KCs proliferation and re-epithelialization, and ultimately

induce PS (121). In addition, Capsaicin induces increases in

proliferation through IL-6 upregulation and TRPV1 induces the

proliferation of human corneal epithelial cells through global

MAPK activation (152, 153). These studies have shown that the

expression of TRPV1 is related to the barrier function and

inflammatory response of HS. The loss of TRPV1 inhibited

inflammatory cell invasion and expression of TGF-b1 and other

proinflammatory gene expression in cultured ocular fibroblasts

(154). This is due to the overexpression of TRPV1 in HS which

affects KCs proliferation and differentiation (20). Therefore,

interfering with TRPV1 expression in KCs may become a new

therapeutic strategy for PS. In addition, studies have shown that

TRPV1 activation can release calcitonin gene-related peptide

(CGRP) stored in vesicles from nerve endings to mediate immune

inflammation and local vasodilation (155, 156). Zhou found

increased CGRP levels in both human and mouse HS tissues.

Furthermore, CGRP antagonists can directly reduce the

expression of COL-1, TGF-b1 and a-SMA and can downregulate

the levels of the macrophage-related inflammatory factors IL-1, IL-

6, TNF-a and CCL2 through the NF-kB and ERK signaling

pathways. Moreover, CGRP can promote PS by inducing the

Th17 immune response (122). Cohen found that IL-17 expression

was closely related to the Th17 immune response in light-simulated

TRPV1-Ai32 mice (25). However, this process requires TRPV1 to

induce CGRP release (25). The development of macrophages, the

Th17 inflammatory response and fibrosis in HS induced by CGRP

may be related to the release of TRPV1 from neurons. The

neuroimmune mechanism by which TRPV1 regulates PS provides

a new research direction. In summary, these studies have shown

that TRPV1 may promote PS by directly promoting fibrosis and re-

epithelialization and indirectly inducing inflammatory stimulation.

Pruritus is the most important symptom affecting the quality of

life of PS patients. TRPV1 inhibitors may be one of the effective

treatment strategies. The study found that the degree of scar

pruritus after TRPV1 gene knockout was significantly less than

that of wild type rats (152). Further studies have shown that TRPV1
Frontiers in Immunology 08
can induce pruritus by promoting the expression of the pruritus

mediators IL-31 and SP (127). The level of IL-31 secreted by mast

cells was increased in HS compared with that in normal tissues, and

the number of mast cells was also increased (128). This finding

suggests that HS pruritus may be related to TRPV1-mediated

promotion of mast cell degranulation and the release of

inflammatory factors. In addition, the expression of SP and

TRPV1 were significantly higher in HS skin than in normal skin.

Furthermore, immunofluorescence analysis showed that the

distribution of TRPV1 and SP was consistent (157). As a

neuropeptide, SP mediates angiogenesis, macrophage polarization,

mast cell degranulation, KCs proliferation and fibrosis and is an

important neuromodulator of pruritus. SP can selectively bind to its

specific receptor neurokinin-1 receptor (NK-1R) to mediate

neurogenic pruritus (123, 125). Further studies have shown that

the SP-NK1R signaling pathway promotes FBs to secrete COL-1

and is positively correlated with SP levels (157). The mechanism of

skin neurogenic pruritus mediated by the TRPV1-mediated SP-

NK1R signaling pathway may provide a new therapeutic target for

PS pruritus conduction. Study has confirmed that hyperbaric

oxygen therapy (HBOT) can alleviate the pruritus symptoms of

keloid patients by reducing the expression of TRPV1 (158), but the

specific mechanism is still unclear. Recently, Hashimoto found that

the new pruritic Periostin was upregulated in PS (129). Periostin is

produced by TGF-b1 and histamine-stimulated FBs and induces

pruritus by binding to the aVb3 integrin receptor or inducing the

Th2 cytokine cascade (130). However, this process requires the

activation of TRPV1 and TRPA1 (130, 131). The discovery of

Hashimoto provided a new direction for researching the

mechanism of Periostin-mediated pruritus in PS through the

activation of TRPV1 and TRPA1. Overall, these results indicate

that targeting TRPV1 channels may be a prospective therapeutic

strategy for PS.
4.2 TRPV2

TRPV2 is mainly involved in PS by promoting the release of

TGF-b1 from KCs and the differentiation of FBs (Figure 4).
TABLE 1 Continued

Subfamilies
Positive

biomarkers
Role of TRPs in PS

Influence
mechanism

References

TRPA1 activates type 17 immune cells to release IL-17, IL-22 and further recruits gdT
cells to release Fgf9

Immune
inflammation

IL-22

COL-1 The activation of TRPA1 promotes COL-1 through TGF-b1
Fibrosis

(147)

TSLP TRPA1 promotes the expression of TSLP (126, 147)

Periostin The activation of TRPA1 promotes FBs to produce Periostin to induce pruritus Pruritus (129–131)

TRPM7

COL-1

The activation of TRPM7 enhances COL-1, TGF-b1 and a-SMA through PI3K-AKT
signaling pathway

Fibrosis (145)TGF-b1

a-SMA

HIF-1a
Hypoxia upregulates TRPM7 to activate STAT3/SMAD3/HIF-1a signaling pathway to

induce fibrosis
Oxidative stress (146)
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In new granulation tissue in the wound, KCs, FBs and

macrophages at the edge of the wound promote wound re-

epithelialization by secreting cytokines such as TGF-b1 and

stimulate MFBs to produce a-SMA, eventually leading to PS

(132, 133). In the cell collagen contraction model based on this

theory, researchers found that the TRPV2 inhibitor SKF96365 or

tranilast inhibited collagen contraction, while a TRPV2 inhibitor or

TRPV2 knockdown using siRNA reduced TRPV2 agonist-induced

Ca2+ influx in FBs. It was further confirmed that the TRPV2

inhibitors SKF96365 and trani last could induce FBs

differentiation and collagen contraction by downregulating TGF-

b1 and a-SMA expression (134). These studies showed that altering

FBs and KCs differentiation with drugs targeting TRPV2 channels is

beneficial for preventing PS and contracture.
4.3 TRPV3

TRPV3 plays an important role in mediating KCs re-

epithelialization and FBs fibrosis and promoting ECM deposition

in PS. In addition, TRPV3-mediated PS pruritus may be related to

the expression of PAR2 and TSLP (Figure 4).
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Studies have shown that the new TRPV3 channel activator

KS0365 promotes wound healing by accelerating the re-

epithelialization of KCs, while the broad-spectrum channel

blocker ruthenium red and siRNA-mediated TRPV3 knockdown

inhibit this process (63, 159). This finding indicates that

overexpression of TRPV3 channels can promote excessive wound

healing leading to the formation of PS. A clinical study showed that

the TRPV3 activator carvacrol could promote the expression of

COL-1, a-SMA, TGF-b1 and fibronectin in FBs through the

Smad2/3 pathway, thereby promoting HS fibrosis (62). In

addition, NO is an important mediator involved in biological

processes such as wound healing, fibrosis, inflammation and KCs

differentiation (160). Cobbold found that compared with those in

normal tissues, NO levels in keloids were increased, and NO

produced by nitric oxide synthase (iNOS) promoted the

expression of COL-1 (135). TRPV3 induces NO synthesis by

activating iNOS, thereby promoting KCs re-epithelialization and

facilitating wound repair (136). This finding suggests that TRPV3-

induced NO overexpression leads to PS. In addition, epidermal

growth factor receptor (EGFR) can promote wound healing by

promoting KCs proliferation, inflammation and angiogenesis (161).

Aijima found that the phosphorylation of EGFR in the oral
FIGURE 4

Modulation of TRPV channels in PS. TRPV1 channel activates IL-1 and TNF-a, triggers inflammatory response, promotes KCs proliferation and re-
epithelialization; CGRP released by TRPV1 directly promotes PS fibrosis, and can induce PS by upregulating the levels of inflammatory factors
through NF-kB and ERK signaling pathways; the SP released by TRPV1 activation mediates PS fibrosis and pruritus. The activation of TRPV1 promotes
the expression of Periostin, IL-4, IL-13 and induces PS pruritus. (2) TRPV2 inhibitors SKF96365 and tranilast inhibited PS by downregulating TGF-b1
and a-SMA. (3) TRPV3 activator carvacrol promotes fibrosis through Smad2/3 pathway; activation of TRPV3 may interact with ANO1 and NO or
promote PS through TGF-a/EGFR signaling pathway. PS pruritus may be related to the PAR2-TSLP positive feedback pathway mediated by TRPV3
and TRPV4 channels. (4) The activation of TRPV4 may promote the expression of EMT, NCAD, a-SMA, IL-6 to induce fibrosis, inhibit EV to inhibit
abnormal angiogenesis, or release TSLP to induce PS pruritus and cooperate with Piezo1 channel to promote the formation of PS induced by
mechanical stretching.
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epithelial cells of TRPV3-KO mice was inhibited, and TGF-a,
which is a ligand of EGFR, was released from KCs through the

activation of TRPV3 (137). This finding indicates that the TGF-a/
EGFR signaling pathway plays a role in oral mucosal wound healing

through TRPV3. Although the oral mucosa repairs faster than skin

wounds and has fewer scars (137), the mechanism of oral mucosal

repair suggests that the activation of TRPV3 may promote PS

through the TGF-a/EGFR signaling pathway. Recent studies have

shown that anoctamin1 (ANO1), a calcium-activated chloride

channel, can promote the migration and proliferation of cancer

cells (162). The interaction of TRPV3 with ANO1 promotes the

proliferation of KCs during wound healing, while TRPV3 and

ANO1 inhibitors inhibit the proliferation of KCs (162). The

mechanism of the TRPV3-ANO1 interaction may provide a new

target for PS.

PS pruritus may be related to the expression of PAR2 and TSLP,

which is mediated by TRPV3 channels. The expression of PAR2 can

be detected in burn scars with pruritus (138). Furthermore,

inhibiting TRPV3 channels can reduce the expression of PAR2

and inhibit the itching of burn scars (139). In addition, compared

with normal tissues, the expression of TRPV3 and TSLP in KCs in

burn scars was upregulated, especially in burn scar tissues with

pruritus (139). Further studies have shown that the synergistic effect

of TSLP and PAR2 is particularly important in mediating pruritus

signal transduction. TSLP triggers mast cell degranulation and the

release of tryptase by binding to its receptor. Tryptase binds to

PAR2 in KCs and activates TRPV3 channels to induce Ca2+ influx

to promote the expression of TSLP, forming a positive feedback

loop. TSLP binds to its receptor and transmits to the spinal dorsal

root ganglion to induce pruritus (140). Kim found that higher levels

of the TRPV3 activator carvacrol were associated with higher NRS

scores of the burn scar pruritus index (138). Therefore, the

expression of TRPV3 in PS may be positively correlated with the

degree of pruritus, and the upregulation of TRPV3 channels may be

related to the increased expression of PAR2 and TSLP and the

involvement of the PAR2-TSLP positive feedback pathway. The

current research results provide a reference for the function of

TRPV3 in PS pruritus. Further research is expected to determine

whether the combination of TRPV3 with TSLP and PAR2

inhibitors can provide a feasible solution for PS pruritus.
4.4 TRPV4

Recent literature shows that TRPV4 may be involved in PS

fibrosis, angiogenesis, pruritus, mechanical conduction and

epigenetic regulation (Figure 4).

Epithelial-mesenchymal transition (EMT) plays an important

role in wound healing by inducing re-epithelialization and

promoting MFBs contraction and the secretion of ECM (163,

164). Sharma found that TGF-b1-induced EMT-like changes in

KCs were dependent on TRPV4. Furthermore, TRPV4 promoted

the expression of the mesenchymal markers N-cadherin (NCAD)

and a-SMA in a bleomycin-induced mouse skin fibrosis model

(165). Whether the activation of TRPV4 is involved in EMT in PS

and affects the levels of NCAD and a-SMA remains to be further
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studied. In addition, studies have shown that IL-6 deficiency in

TRPV4-deficient corneal FBs decreases MFBs differentiation,

resulting in delayed corneal wound closure (20). It is well known

that the IL-6 signaling pathway plays an important role in the

pathogenesis of PS (97, 98). However, in the alkali burn wound

healing response of TRPV4-null mice, biomarker gene expression of

fibrosis, collagen1a1 and a-SMA were attenuated along with

macrophage release of IL-6 whereas TGF-b release was

unchanged (166). Therefore, TRPV4 channel may promote the

differentiation of FBs into MFBs to mediate the development of PS,

but whether the release of IL-6 promotes this process needs further

study. Recent studies have shown that extracellular vesicles (EVs)

are involved in skin wound healing (167). Lactobacillus delbrueckii-

derived EVs (LDEVs) may inhibit PS fibrosis by inhibiting the

expression of collagen and a-SMA (168). Furthermore, Wnt4 in

mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs)

stimulated the proliferation and migration of FBs and KCs in a

dose-dependent manner, enhanced the production of collagen and

fibronectin to accelerate the process of wound healing (169, 170). In

addition, studies have shown that EV induces abnormal

angiogenesis by downregulating TRPV4-mediated ERK

phosphorylation and activating VEGFR2 and YAP signaling

(171). This finding suggests that studying the activity and

participation of EVs in PS will provide new intervention targets

for exploring the mechanism of TRPV4-mediated PS. In summary,

these studies provide new ideas for TRPV4-induced PS fibrosis and

angiogenesis, and the related mechanisms need to be

further elucidated.

TRPV4 may also be involved in PS pruritus. Yang found that

TRPV4 mRNA expression was significantly increased in patients

with burn scar pruritus and was positively correlated with pruritus

intensity compared with that in patients without scar pruritus (141).

Lee found that skin dryness relied on TRPV4 channels to induce

TSLP production in KCs and promote pruritus (142). This study

provides a new research direction for the mechanism of TRPV4-

mediated PS pruritus.

In addition, TRPV4 is related to the mechanical conduction of

PS, and immune inflammatory cells and FBs fibrosis are involved.

Studies have revealed the effect of TRPV4 on the reaction of

implanted foreign bodies, and in the absence of TRPV4,

macrophage-induced FBs differentiation into MFBs was

significantly reduced (172). This finding suggests that TRPV4-

mediated mechanical conduction contributes to the accumulation

of MFBs. In addition, studies have shown that TRPV4 activation by

some stresses (excessive mechanical, osmotic, and chemical

stimulation) induces pain through ATP release in human corneal

epithelial cells (173). Therefore, the interaction between mechanical

conduction, immune cells and fibrosis may be related to TRPV4. In

addition, a novel mechanically activated cation channel Piezo1 is

overexpressed in HS, and its inhibitor GsMTx1 can protect rats

from stretch-induced HS (118). Furthermore, Piezo1 interacts with

TRPV4 after activation to produce a continuous Ca2+ signal and

promote mechanical conduction (119). Therefore, TRPV4 can

promote PS by cooperating with the Piezo1 channel, and Piezo1

blockers may be used to treat PS. These findings provide new

research targets for reducing PS mechanical contraction.
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Furthermore, TRPV4 may be involved in the epigenetic

regulation of PS. In liver fibrosis, TRPV4 is a direct target of

miR-203 and promotes TGF-b1-induced hepatic stellate cell

proliferation (174). Studies have shown that miR-203 regulates

wound healing and scar formation by inhibiting Hes1 expression

in epidermal stem cells (175). Furthermore, studies have shown that

downregulating lncRNA LINC01116 inhibits keloid by regulating

the miR-203/SMAD5 axis. Western blot analysis showed that

lncRNA LINC01116 and SMAD5 were upregulated in keloids,

while miR-203 expression was downregulated (176). Therefore,

downregulating miR-203 expression and upregulating lncRNA

LINC01116 expression may promote PS by regulating TRPV4

channel, but the specific mechanism needs further research.
4.5 TRPC3

TRPC3 induces mechanical stretch to promote the

differentiation of FBs and KCs and regulates oxidative stress by

promoting the production of ROS and H2O2 in PS (Figure 5).
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Studies have shown that repeated mechanical stretching can

promote the expression of TRPC3 in HS (33). TRPC3 promotes the

expression of fibronectin through the Smad3/NF-kB pathway,

thereby affecting FBs fibrosis in HS. In addition, TRPC3 protein

and mRNA levels were positively correlated with VSS in HS patients

(33). Further in vitro experiments showed that compared with that

in Trpc3+/+ mice, the expression of TGF-b1, a-SMA, fibronectin

and COL-1 in the granulation tissue of Trpc3-/- mice was

significantly decreased. In addition, the TRPC3 inhibitor Pyr3

could significantly downregulate the expression of TGF-b1 (67).

This finding indicates that mechanical stretching induces FBs

fibrosis in PS by activating TRPC3 channels. In addition, the

signal exchange between ET-1 secreted by KCs induced by

mechanical stretch in PS and the ET-1 receptor EDNRB in FBs

enhanced the expression of TRPC3 in FBs through Gaq-PLC-DAG
signaling, promoting Ca2+ influx and the expression of the

profibrotic gene NFAT (143).

TRPC3 is involved in hypoxia-induced PS. A study showed that

ROS and H2O2 was significantly enhanced and ATP was

significantly reduced in HS, while the TRPC3 inhibitor Pyr3
FIGURE 5

Modulation of TRPC3 and TRPC6 channels in PS. TRPC3 channel induces Ca2+ influx accompanied by the expression of ROS, activates Nox4/
pSmad2/3 pathway, and participates in FBs differentiation; activation of TRPC3 can also directly promote the expression of COL-1, a-SMA and TGF-
b1;mechanical stretching and oxidative stress activate TRPC3 channels to increase Ca2+ influx, and then activated Smad3/NF-kB migrates to the
nucleus to induce fibrin expression and promote wound contraction; the signal exchange between ET-1 secreted by KCs and EDNRB activates
TRPC3 channel and promotes the expression of the profibrotic gene NFAT. Mechanical stretching stimulates ATP release and activates TRPC6
channel upon binding to P2Y2 receptors, enhancing ATP- Ca2+ influx and triggering wound healing; TGF-b1 activates TRPC6 channel through p38
MAPK-SRF signaling pathway, and promotes the expression of collagen and a-SMA through TRPC6/calcineurin/NFAT signaling pathway.
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could decrease mitochondrial ROS and H2O2 and promote ATP

production, thereby reducing the level of oxidative stress (67).

Furthermore, the skin FBs of Trpc3-/- mice and Trpc3+/+ mice

were used for detection in animal models. It was found that the

levels of PDHE1a, a key subunit of the mitochondrial tricarboxylic

acid cycle, and NOX4, a ROS-producing enzyme, in the skin FBs of

Trpc3-/- mice, were significantly reduced compared to those of

Trpc3+/+ mice (67). These results show that TGF-b1 upregulates

TRPC3 expression and promotes PDHE1a phosphorylation during

wound healing, resulting in increased mitochondrial ROS and H2O2

in FBs, decreased ATP production, activation of the Nox4/pSmad2/

3 pathway, and thus participating in FBs differentiation in PS. We

suggest that this is the mechanism by which TRPC3 promotes PS in

the context of oxidative stress. Therefore, intervention with TRPC3

may be a new idea for the treatment of PS.
4.6 TRPC6

TRPC6 has great potential in mediating MFBs fibrosis and

mechanical stretching in PS (Figure 5).

Genome-wide screening identified TRPC6 as an essential

channel for MFBs transformation during wound healing and

tissue remodeling, and TRPC6 overexpression activates MFBs

differentiation (68). Further studies have shown that TGF-b1
induces TRPC6 expression through the p38 MAPK-serum

response factor (SRF) signaling pathway to promote wound

healing, and the p38 MAPK inhibitor SB731445 can completely

block TRPC6 expression (68). Furthermore, TRPC6 is activated to

induce Ca2+ influx and MFBs transdifferentiation through the

TRPC6/calcineurin/NFAT signaling pathway, further promoting

the expression of a-SMA and collagen (68). Calcineurin

inhibitors can be used to treat keloids (144). The TRPC6/

calcineurin/NFAT signaling pathway, which is a key signaling

pathway that mediates MFBs transdifferentiation to promote

wound healing, is expected to provide new intervention targets

for PS and fibrotic diseases.

In addition, TRPC6 can promote wound healing through

mechanical conduction. Mechanical stimulation induces HaCaT

cells to release ATP, which acts as an autocrine mediator and binds

to the P2Y2 receptor, activating TRPC6 channels in HaCaT cells,

promoting Ca2+ influx, and participating in wound healing (177).

Further studies have shown that the TRPC6 activators hyperforin

and hypericin, which are Chinese herbal medicines that promote

wound healing, can upregulate the expression of TRPC6 in HaCaT

cells induced by mechanical stretching, mediate Ca2+ influx and

enhance ATP-Ca2+ signaling to promote wound healing (177, 178).

These studies suggest that mechanical stimulation enhances ATP-

Ca2+ signaling by activating TRPC6 channels, which may be a

potential mechanism by which TRPC6 participates in PS.
4.7 TRPA1

TRPA1 mainly regulates immune inflammation and fibrosis of

PS. Furthermore, this channel mediates PS pruritus (Figure 6).
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Murata found that TRPA1 deficiency inhibited the infiltration

of FBs, T cells and the expression of a-SMA and COL-1 during

wound healing (65). TSLP, which is a Th2 cytokine, was positively

correlated with TRPA1 expression (126). Studies have shown that

TSLP promotes the expression of SDF-1a in FBs through the

CXCR4/SDF-1 axis and promotes the synthesis of COL-1 and

COL-3 through TGF-b1, thereby inducing keloids (147). In

addition, TRPA1-expressing neurons stimulate dendritic cells to

produce IL-23, leading to skin inflammation, which in turn

activates type 17 immune cells to produce IL-17 and IL-22 to

further recruit gdT cells, which release fibroblast growth factor 9

(Fgf9) to promote wound healing (92, 145, 146). Excessive

upregulation of Fgf9 may lead to PS. In addition, the absence of

TRPA1-induced upregulation of TGFb1-related signaling cascades

inhibits chemical injury-induced corneal wound inflammation and

fibrosis in mice (20). Thus, TRPA1-mediated inflammation and

fibrosis play important roles in wound healing. Targeting TRPA1

may provide a new strategy for the treatment of PS (20).

Studies have shown that the expression of TRPA1 in the scar

tissue of patients with burn scar pruritus is higher than that of

patients without pruritus, especially in mast cells (141). Studies have

shown that IL-4 and IL-13 can upregulate the transcription of

TRPV1 and TRPA1 (126). IL-4 and IL-13 can not only mediate PS

fibrosis through the TGF-b/SMAD and IL-4Ra/STAT6 signaling

pathways but also directly stimulate neurons through IL-4 receptors

to induce PS pruritus (87). This finding suggests that IL-4 and IL-13

secreted by Th2 cells may mediate PS pruritus through TRPV1 and

TRPA1 neurons. These studies provide a new direction for

improving PS pruritus.
4.8 TRPM7

Abnormal TRPM7 expression may be involved in PS fibrosis,

oxidative stress and noncoding RNA-related gene regulation (Figure 6).

Zhi found that the expression of TRPM7 was upregulated and

enhanced the expression of TGF-b1, COL-1, COL-3 and a-SMA

through the PI3K-AKT signaling pathway in HS (179).

Furthermore, Panax Noto ginseng saponins (PNSs) can protect

against HS by inhibiting TRPM7 expression, cell migration and

viability, and collagen deposition by downregulating the PI3K/AKT

pathway, thus inducing apoptosis and cell cycle arrest. This finding

indicates that TRPM7 can promote fibrosis and collagen deposition

through the PI3K/AKT signaling pathway and ultimately induce PS.

Zhang found that the overexpression of TRPM7 regulated the

BAX/Bcl-2 balance and antioxidant processes through the STAT3/

SMAD3/HIF-1a signaling pathway, thereby promoting FBs

migration and inducing wound healing (69). This led us to

hypothesize that TRPM7 may accelerate PS through the STAT3/

SMAD3/HIF-1a signaling pathway.

In addition, TRPM7 may be related to the regulation of

epigenetic noncoding RNA-related genes in PS. MiR-9-5p

mediates endothelial cell proliferation, migration and angiogenesis

by targeting TRPM7 through the PI3K/AKT/autophagy pathway

(180). Studies have shown that miR-9-5p can inhibit the expression

of a-SMA and COL-1 in HS by targeting PPARb, promote the
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proliferation of FBs and accelerate apoptosis (181). Therefore, we

hypothesize that miR-9-5p targets PPARb to activate TRPM7

channel through the PI3K/AKT pathway, inhibit FBs fibrosis and

collagen deposition, which may be an important target for PS. In

addition, studies have shown that expression of the tumor

suppressor miR-192-5p can be reversed by TRPM7

overexpression, thereby promoting the proliferation, migration

and invasion of cervical cancer cells (182). However, miR-192-5p

derived from adipose tissue-derived mesenchymal stem cell-derived

exosomes (ADSC-Exos) inhibits HS by targeting IL-17 to regulate

the Smad pathway (183). Therefore, inhibiting miR-9-5p to

promote the expression of TRPM7 may aggravate PS fibrosis by

activating the IL-17/Smad pathway. In-depth study of TRP

channels may become an important research direction to

determine the mechanism of PS in the context of epigenetics.

We now acknowledge that while few studies have reported on

the involvement of other TRP channels in the mechanism of PS, the

similarity of the structure and function of the homologous TRP

channel family leads us to speculate that other TRP channels may

also be related to the mechanism of PS, which needs further

research and exploration in the future. In recent years, studies

have found that the expression of TRPC1 is associated with renal

fibrosis. CircRNA_010383 colocalized with miR-135a, and that

overexpression of circRNA_010383 increased the level of TRPC1,

which is a target protein of miR-135a. Additionally, the

overexpression of circRNA_010383 inhibited the high glucose-

induced accumulation of ECM (184). TRPC1 may have a

potential relationship with the fibrosis of PS, but further research

is needed to confirm this. Additionally, the study mentions that
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TRPM2 ablation has been found to significantly reduce renal

interstitial fibrosis by decreasing TGF-b1 levels. This reduction in

TGF-b1 is accompanied by a decrease in a-SMA, connective tissue

growth factor (CTGF), fibronectin, and COL-1. The study also

suggests that TRPM2 ablation may protect against renal fibrosis and

inflammation by impeding JNK activation regulated by TGF-b1
(185). TRPM2 may be involved in inflammation and fibrosis of PS.

Additionally, TRPML channels have important functional activities

in immune cells such as macrophages, dendritic cells, neutrophils,

NK cells, and B lymphocytes, which may provide important ideas

for exploring the mechanism of TRPML in the inflammation and

immunity of PS (186).In addition, TRPP1-like proteins may form

mechanosensors in primary cilia. The phosphorylation of the

COOH-terminus of TRPP1 may recruit TRPP2 to the cell

membrane, which can promote Id2 to enter the nucleus and

induce renal cell proliferation (187). The study suggests that Id2,

as a key regulator of cell proliferation and differentiation, may

provide a research direction for future studies on the mechanism of

TRPP channel and PS.
5 Discussion and conclusion

In recent years, it has been found that a variety of TRP channels

are involved in the development of PS, especially in immune

inflammation and fibrosis, which has great research and clinical

values. In this review, we introduced the specific physiological and

pathological functions of TRP channels and focused on their

important roles in mediating PS immune inflammation, fibrosis,
FIGURE 6

Modulation of TRPA1 and TRPM7 channels in PS. TSLP triggers TRPA1 channel to promote fibrosis through CXCR4/SDF-1 axis or promote the
synthesis of COL-1 and COL-3 through TGF-b1; the activation of TRPV1 promotes the expression of Periostin, IL-4 and IL-13, which induced PS
pruritus. TRPA1 activates immune cells to release inflammatory factors to promote wound healing. The activation of TRPM7 channel upregulates the
expression of TGF-b1, COL-1, COL-3 and a-SMA through PI3K-AKT signaling pathway, or induces hypoxia through STAT3/SMAD3/HIF-1a signaling
pathway. MiR-9-5p and miR-192-5p may inhibit PS by targeting TRPM7.
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mechanical conduction, epigenetics, oxidative stress and pruritus.

TRP channels promote tissue fibrosis and re-epithelialization by

regulating the proliferation, migration, phagocytosis and cytokine

release of immune cells or by directly activating FBs and KCs to

promote the deposition of ECM and mediate the development of

PS; mechanical stimulation which directly promotes fibrosis by

activating TRP channels or recruiting immune cells to participate in

fibrosis; noncoding RNA which regulates FBs fibrosis and collagen

deposition by activating TRP channels; and the activation of TRP

channels that can promote the release of oxidative stress-related

factors such as ROS and H2O2, which in turn induce PS. Based on

the latest reports, this review summarized the most novel concepts

for the therapeutic drugs of PS from targeting TRP channels as

follows: EVs are paracrine molecules that regulate cell signal

transduction in the corneal scar and fibrosis, and studying how

EVs participate in the development of PS through TRP channels

may provide a promising treatment (167); Mechanical forces

stimulate some TRP receptors on skin sensory fibers to release

neuropeptides including SP and CGRP, which may provide

direction for TRP-mediated PS neurogenic inflammation

mechanism (122); and IL-31 mediates pruritus through TRPV1

and TRPA1 channels, indicating a new therapeutic target for the

treatment of PS pruritus (127, 128). In addition, most of the current

research on PS focuses on immunity. Immune signals enhance

epithelial cell proliferation, differentiation and migration to

accelerate skin repair (188), which suggests that targeting

immune-epithelial communication to promote repair or reduce

inflammation can be a new strategy for PS treatment. Therefore,

studying the important role of TRP channels on account of the

immune perspective may prompt novel targets for improved

treatment of PS.

Although many studies have been carried out on immune

inflammation in PS, the role of TRP channels in the regulation

and treatment of PS is still in its infancy, mainly because it is a

relatively new field involving wound healing and PS mechanisms,

and many problems require further study. First, in response to

di fferent intens i t ies of mechanica l s t re tching , some

mechanoreceptors in the TRP family promote wound healing.

Excessive activated TRP in the wound site may lead to PS.

Therefore, identifying the most suitable mechanical force

triggering wound healing is particularly important to avoid the

occurrence of PS. Second, the effects of various TRP channels on PS

are different. For instance, the mechanism of TRP channels in the

inflammatory, proliferative and remodeling stages of PS, TRP needs

to be further explored. Finally, although several TRP agonists or

antagonists have been developed for the treatment of PS, such as

SKF96365 or tranilast, they have infrequently used in clinical

practice due to the problems of drug permeability, side effects,

and poor efficacy (189). Therefore, there is an urgent need for a

comprehensive summary and in-depth evaluation of TRP channels

to provide novel directions for identifying more selective and

efficacious drug target to treat PS. This paper summarized the
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latest progress in understanding the role of TRP channels in PS, and

the role of other TRP channels in PS needs to be further examined.

In the future, as the mechanisms of different TRP channels and

their interactions with cytokines and growth factors become

increasingly clear, TRP channels are expected to have further

breakthroughs in the prevention and treatment of PS. In this

article, we summarized the important roles of TRP channels in

the pathogenesis of PS and proposed that drug development

targeting TRP channels will be a critical topic for PS. Therefore,

we hope to provide potential pharmacological targets and directions

for future deeper understanding of PS and the evolution of new

drugs by summarizing the mechanism of TRP channels in PS.
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