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Lung cancer patients tend to have strong intratumoral and intertumoral

heterogeneity and complex tumor microenvironment, which are major

contributors to the efficacy of and drug resistance to immunotherapy. From a

new perspective, single-cell techniques offer an innovative way to look at the

intricate cellular interactions between tumors and the immune system and help

us gain insights into lung cancer and its response to immunotherapy. This article

reviews the application of single-cell techniques in lung cancer, with focuses

directed on the heterogeneity of lung cancer and the efficacy of immunotherapy.

This review provides both theoretical and experimental information for the future

development of immunotherapy and personalized treatment for the

management of lung cancer.
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1 Introduction

1.1 Tumor heterogeneity is an unmet
challenge in the immunotherapy of
lung cancer

The advent of immune checkpoint inhibitors (ICIs) over the

past decade has ushered in an rapid-growth era of immunotherapy.

At present, ICIs used in clinical practice mainly include monoclonal

antibodies against programmed death ligand 1 (PD-L1),

programmed death receptor 1 (PD-1) and cytotoxic T

lymphocyte-associated protein 4 (CTLA 4). With its unique

mechanism of action and excellent clinical efficacy, it represents a

revolution in tumor treatment following surgery, radiotherapy,

chemotherapy and targeted treatment for a variety of

malignancies (1). Lung cancer is currently the deadliest

malignancy across the globe (2). Thanks to the antibodies

targeting PD-1 or PD-L1, the overall survival in patients with

advanced non-small cell lung cancer (NSCLC) has been

significantly improved, and the five-year survival in PD-L1-

positive patients has been raised from no more than 5% to

virtually 30% (3, 4). Integration of PD-L1 inhibitors into the first-

line platinum-based chemotherapy could enhance survival rate in

patients with widespread small cell lung cancer (SCLC) (5).

Nonetheless, lung cancer is a highly heterogeneous tumor

and studies showed that the heterogeneity of tumor

microenvironment (TME) mediates cancer progression and

response to immune checkpoint inhibitors (ICI) (6, 7). The

current development of immunotherapies for lung cancer has

been hampered by the lack of biomarkers predictive of efficacy,

and the lack of more immunotherapeutic targets, and

lower remission rate (8). Hence, a comprehensive look at the lung

cancer ecosystem is warranted in order to improve

personalized immunotherapies.

The ecosystem of lung cancer consists of cancer cells, immune

cells, stromal cells, non- cellular tissue components, among others.

Their interactions dictate the disease progression and the response

to treatment (9, 10). Heterogeneity of tumor ecosystem is an

important factor that renders tumor therapy difficult, and the

genes and morphology related to tumor heterogeneity depend on

the intricate interaction between genetic factors and environment

(11, 12). Extensive phenotypic and genetic variations exist not only

among tumor patients (heterogeneity between tumors), but also

within a single tumor (heterogeneity within tumors), including

spatial heterogeneity (different genotypes and phenotypes are found

in different regions of the same tumor) and temporal heterogeneity

(genes and phenotypes differ in primary and secondary tumors).

Tumor heterogeneity leads to diversity in cancer signaling pathways

and variation in cancer phenotypes, presenting a major challenge

for personalized cancer treatment (12).

The molecular heterogeneity of lung cancer (including the

differences among and within tumors) has become a subject of

active investigations of lung cancer immunotherapy. The

heterogeneity includes but is not limited to the molecular

expression heterogeneity of tumor and immune cells, especially

the heterogeneity of genetic phenotypes and antigen presentation
Frontiers in Immunology 02
molecule expression etc. (13, 14). The rapid development of single-

cell techniques has allowed for the determination of the

heterogeneity and immune microenvironment of lung cancer cells

and other cell types (15–17). These techniques can help us gain

insights into the development and progression of lung cancer, and

the complicated mechanism of immunotherapy, thereby improving

immunotherapeutic strategies.
1.2 Technical advantages of the
single-cell technology over traditional
bulk sequencing

Conventional bulk transcriptome and genome analyses have

substantially contributed to our understanding of tumor evolution

and growth. Whereas, signals displayed by some particular group or

state of cells will be masked in the process of bulk sequencing, and

such specific cell populations or states are sometimes very critical,

such as tumor stem cells and infiltrating immune cells that are

related to the tumor response to treatment. Therefore, examining

individual cells at the genomic, transcriptomic, epigenomic and

proteomic levels can help us better understand tumor heterogeneity

at molecular levels and overcome the limitations of the traditional

bulk sequencing and allows for high-granularity analyses at cellular

and molecular levels (18, 19). This feature has a good prospect of

application in the field of tumor immunotherapy, since single-cell

analysis can identify cell pathways and types involved in tumor

response and immune escape.

The current single-cell technology involves a series of rapidly

developing methodologies. The most commonly used single-cell

technologies for tumor immunotherapy include single-cell RNA

sequencing for transcriptomic analysis, mass spectrometry flow

cytometry for proteomic analysis, and spatial molecular analysis

(20–22). Each of these techniques delineates a high-dimensional

molecular contour for a single cell, which can be classified, by

calculation, into different cell groups. For instance, the results of

these techniques are more representative than typical cell type

markers. Meanwhile, the high-dimensional characteristics of these

methods can more accurately describe cell types and infer the

relationship among molecular pathways and transition of cell

status (21). These characterizations identify the pathways

underlying the behavior of each different cell type through

complementary computational techniques, and infer the

intercellular and intracellular interactions associated with cell

state transitions. Therefore, the inference of those pathways

mirrors the ongoing clinical research effort in anti-tumor

immunotherapy, and the exact medical strategies being developed

to reconnect TME using combination therapies to achieve

immunotherapy sensitization.
1.3 How to combine single-cell analysis
with immunotherapy for lung cancer?

(Figure 1) First of all, single-cell omics analysis is performed on

tumor tissues from lung cancer patients, and appropriate single-cell
frontiersin.org
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analysis strategies are selected according to the purpose of the study.

It is desirable if peripheral blood samples of corresponding patients

are used to monitor immune indicators. Secondly, components of

TME are analyzed based on single-cell omics data, with focus being

directed at tumor cell heterogeneity, the subtype and status of

immune cells, then tumor immunity-related indicators or

signatures are established. Finally, appropriate data sets regarding

immunotherapeutic strategies are used for further clinical

verification of treatment mode selection and monitoring of

response, prognosis and other aspects of lung cancer patients.

(Table 1) Here, we first investigated, in general, how single-cell

analysis has been used for the study of the interaction between lung

cancer cells and TME, and, in particular, how it is related to the

response to anti-tumor immunotherapy. Then, we examined the

role of single-cell TCR analysis in immune oncology. After this, we

looked at the emerging technologies for single-cell spatial analysis,

especially their utility to immune oncology. Finally, we discussed

the future trend of single-cell technology and its potential role in

promoting the application of immune oncology in lung cancer.
2 Single-cell omics in lung cancer

2.1 Transcriptome

Single-cell RNA sequencing (scRNA-seq) is a non-targeted

technology for the quantification of transcripts in a single cell,

and is often used to identify new cell types, find rare cell

populations, and construct maps of cell status and phylogeny

(50–52). scRNA-seq can help us gain insights into the

distribution, status, action process and cooperation mechanism of

different subpopulations of similar cells, and, from a new

perspective, look at the heterogeneity of lung cancer, and the

interaction between lung cancer cells and TME, especially their
Frontiers in Immunology 03
relationship with anti-tumor immunotherapy response (15–17).

Due to the rapid technical development of scRNA-seq and cell

separation, the number of cells sequenced has grown from

hundreds to thousands, and the technique is becoming

increasingly cost-effective. The analytical methods are also

improving constantly, covering determination of cell types,

dimensionality reduction of high-dimensional data, unsupervised

clustering, phylogenetic modeling, trajectory inference, RNA

velocity analysis, and collaborative analysis of multiple data sets

(53–57).

2.1.1 Tumor cells and immunotherapy responses
The main feature of lung cancer revealed by scRNA-seq is

intratumoral and intertumoral heterogeneity. The scRNA-seq can

make more precise diagnosis and prognostic predictions, and

facilitate the development of new anti-lung cancer agents. For

example, Wu F et al. (35) utilized scRNA-seq and analyzed 42

samples from patients with advanced NSCLC at various stages.

They found that the intertumoral and intratumoral heterogeneity of

lung adenocarcinoma (LUAD) was lower than that of lung

squamous cell carcinoma (LUSC). In addition, cancer cells from

different patients exhibited higher heterogeneity. Next, the

researchers used scRNA-seq data to infer copy number changes

(CNAs) in the cancer cell population and to reveal heterogeneity

between and within patients. Most patients, especially LUAD

patients, had dominant clones, while in a few LUSCs, malignant

cells were distributed in multiple clusters. To quantify intratumoral

heterogeneity, they obtained expression-based and CNA-based

intratumoral heterogeneity scores (ITH), which were designated

ITHGEX and ITHCNA, respectively. The patients were further

divided into three categories in terms of lung cancer types and

mutations: LUAD patients with driving mutations (LUADm),

LUAD patients without driving mutations (LUADn) and LUSC

patients without driving mutations (LUSCn). Their results showed
FIGURE 1

Combining single cell analysis with immunotherapy for lung cancer.
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TABLE 1 Applications of single-cell analyses in lung cancer immuno-oncology.

PMID/
Refs. Author

Single-cell
technologies

used

lung
cancer
type

Cell types
characterized

Clinical/
cellular/
animal
level

Key findings

33144684
(23)

He D et al. scRNA-seq
EGFR
mutant
LUAD

tumor cells clinical

ELF3 is upregulated in tumor cells under the secretion of
immunoinfiltrating inflammatory cytokines, which activates the
PI3K/Akt/NF-kB pathway and up-regulates the expression of
proliferative and anti-apoptotic genes.

30821712
(24)

Ma KY et al. scRNA-seq LUAD tumor cells cellular
Miscoordinated expression of IFN-g signaling pathway and lower
expression of MHC II gene, MHC II and IFN-g signaling pathway
jointly determine the formation of immunotherapy resistance.

36195615
(25)

Tian Y et al. scRNA-seq SCLC
tumor cells, T
cells,
macrophages

clinical
1.Patients with weak immune characteristics SCLC are more likely
to benefit from immune checkpoint block (ICB) than those with
strong immune characteristics SCLC.

2. Established a detailed immune map of SCLC.

3. The detailed classification of T cells in SCLC also revealed the
expression pattern of dysfunction and exhaustion markers (such
as PDCD1, CTLA4, HAVCR2, LAG3, TIGIT and LAYN), which
may be used as immunotherapeutic targets.

4. Non neuroendocrine SCLC subtype cells tend to have more
interactions with other cells and immune and stromal cells, and
may be related to the clinical results of immunotherapy.

34653364
(26)

Chan JM
et al.

scRNA-seq SCLC tumor cells clinical
PLCG2 overexpression subsets were associated with metastasis,
immunosuppression and poor prognosis.

29942094
(27)

Guo X et al.
scRNA-seq,
scTCR-seq

NSCLC T cells clinical
1. Mapped the immune map of lung cancer T cells at the single
cell level.

2. Higher rates of “pre-exhausted” and exhausted CD8 T cells are
associated with a better prognosis for lung adenocarcinoma, the
proportion of activated Treg cells is negatively correlated with the
prognosis of lung adenocarcinoma patients.

3. The state transition of CD8+T cell cluster in NSCLC was
deduced by scTCR-Seq.

34099454
(28)

Zhang Y
et al.

scRNA-seq NSCLC T cells clinical

In immunotherapy resistant patients with MET gene
amplification, the proportion of XTIST/CD96/KLRG1 triple
positive NK cell subpopulation increased and the proportion of
CD8+T cells and NK cell subpopulations decreased.

33506299
(29)

Zhong R
et al.

scRNA-seq NSCLC T cells clinical
The change in the percentage of NK cells and T cells may be
related to the effective treatment of pabolizumab.

33777802
(30)

Liu S et al. scRNA-seq NSCLC
T cells,
macrophages

clinical
CD8+T cells, INF-g+CD8+T cells and the ratio of M2/M1 like
macrophages was related to the subsequent better immunotherapy
results in patients receiving EGFR-TKI treatment.

35140113
(31)

Yang L et al. scRNA-seq
EGFR
mutant
LUAD

T cells clinical
EGFR mutated tumor cells secrete cytokines to recruit various
immunosuppressive cells, while activated immune cells (CD8
+TRM and CXCL9+TAM) are seriously insufficient.

30979687
(32)

Zilionis et al scRNA-seq NSCLC TIMs clinical
Found 25 TIMs states, which may become a new target for
immunotherapy.

28475900
(33)

Lavin et al.
scRNA-seq,
CyTOF

LUAD
macrophages, T
cells

clinical
1. Obtained the characteristic genes of tumor infiltrating
macrophages such as TREM2, CD81, MARCO, APOE, etc.

2. The immune cells in the microenvironment of early lung
adenocarcinoma were mapped in detail, and T cells were divided
into 21 subgroups with different Marker expression patterns.

3. The content of Treg cells in early tumor stage patients was
significantly increased, and it grew rapidly in early tumor stage,
and PD-1 was significantly expressed in CD4+and CD8+cells in
tumor tissue.

(Continued)
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TABLE 1 Continued

PMID/
Refs. Author

Single-cell
technologies

used

lung
cancer
type

Cell types
characterized

Clinical/
cellular/
animal
level

Key findings

32385277
(34)

Kim N et al. scRNA-seq LUAD
vascular
endothelial cells

clinical
Vascular endothelial cells in LUAD reduced their antigen
presentation and homing activity of immune cells through
remodeling, thereby promoting tumor immune tolerance.

33953163
(35)

Wu F et al. scRNA-seq NSCLC macrophages clinical
Macrophages play a major role in inhibiting T cell function
through checkpoint pathway.

31811131
(36)

Karacosta LG
et al.

CyTOF NSCLC tumor cells cellular
The increased expression of PD-L1 during EMT confirms that
EMT is associated with tumor immune escape.

31957112
(37)

Shaul ME
et al.

CyTOF
NSCLC
and
SCLC

neutrophils clinical
Three main subtypes of LDN/HDN have immune characteristics
and inherent plasticity.

336725934
(38)

Sorin M et al. IMC LUAD
Neutrophils,
monocyte, T
cells, macrophage

clinical

1. Tissue relationship of cells in the immune microenvironment is
of uniquely prognostic value.

2. The increased proportion of HIF1a+ neutrophils subgroup was
significantly correlated with poor overall survival.

36725085
(39)

Sorin M et al. IMC NSCLC
tumor cells,
T cells,monocyte

clinical

The expression of CXCL13 was related to the ICI efficacy, and the
recombinant CXCL13 enhanced the response to anti-PD-1 in vivo,
which could be ascribed to increased T-cell subpopulations
subjected to antigen stimulation and decreased CCR2+ monocytes.

34767762
(40)

Leader AM
et al.

scRNA-seq,
CITE-seq, TCR-
seq

NSCLC

tumor cells, T
cells, plasma
cells,
macrophages

clinical
Constructed the immunoreactive cell atlas of early lung cancer,
and established the LCAM module, which can be used as a more
direct indicator of antigen-specific anti-tumor immune activation.

35452604
(41)

Hanada KI
et al.

CITE-seq, TCR-
seq

NSCLC TILs clinical

A molecular label of neoantigen reactive T cells based on CD39
protein and CXCL13 mRNA expression was defined to rapidly
and efficiently identify CD4+ and CD8+T cells with neoantigen
reactive TCRs.

35331733
(42)

Ma Y et al. scTCR-Seq NSCLC TILs clinical

Tumor specific TCRS were identified, and the corresponding
TCR-T cells can specifically recognize and kill autologous tumor
cells, which can be used for personalized immunotherapy in
advanced cancer patients.

33064988
(43)

Ott PA et al. scTCR-Seq NSCLC T cells clinical

Revealed the dynamic changes of the clonal type of tumor
neoantigen vaccine-specific T cells, and proved that the T cell
immune response induced by tumor new antigen vaccine was
highly specific and effective.

35831283
(44)

Hui Z et al.
scRNA-seq,
scTCR-Seq

NSCLC T cells clinical
TNFRSF4 can be used as a potential target to reduce the function
of Treg and improve the anti-tumor immunity to NSCLC.

32591861
(45)

Zhang F et al.
scRNA-seq,
scTCR-Seq

NSCLC T cells clinical
1. Tumor-related CD4+T cell clones had higher cytotoxicity than
CD8+T cell clones.

2. After lung cancer progression, the abundance of tumor-related
CD4+T cell clones decreased significantly, and the percentage of
PD-1+T cells decreased.

3. The pseudo-time track of CD8+T cell clone corresponds to the
immunotherapy time point, indicating that the activity of the
“cytokine and cytokine receptor interaction” pathway decreased.

33514641
(46)

Gueguen P
et al.

scRNA-seq,
scTCR-Seq

NSCLC TILs clinical
The differentiation of these two CD8+TIL subpopulations from
precursor to late stage is related to TCR amplification and T-cell
cycle in tumor.

36434043
(47)

Zhu J et al.
scRNA-seq,
spatial
transcriptome

LUAD tumor cells, Treg clinical
The spatial changes of TGF-b signaling pathway in the interaction
between cancer cells and TME and in the regulation of immune
escape in the invasion of LUAD.

(Continued)
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that, compared with LUADm patients, LUSCn patients had

significantly higher ITHCNA, but no significant difference was

found in ITHGEX. ScRNA-seq demonstrated a transcriptional

heterogeneity within the malignant cell population, which was

associated with driving mutations. Identification of alterations in

more diverse subpopulat ions may have impl icat ions

for immunotherapy.

It is also feasible to use scRNA-seq to identify ubiquitous tumor

cells with specific transcriptomic status in lung cancer patients,

which helps us better understand the tumor type and cell hierarchy

of lung cancer, and single out transcriptome signature related to the

response and resistance to treatment (23, 58). Mounting evidence

shows that EGFR mutation is an important factor affecting the

therapeutic efficacy of PD-1 inhibitors in NSCLC patients, and

patients with EGFR mutation responded to the treatment less well

than their counterparts without EGFRmutation (59–62). He D et al.

(23), by employing scRNA-seq, revealed a significant heterogeneity

in EGFR mutation in patient with early-stage LUAD, and found

that ELF3 was one of the most up-regulated genes in advanced

tumor cells. Under the effect of immune infiltrating inflammatory

cytokines (such as IL1B), ELF3 in tumor cells was up-regulated,

thereby activating PI3K/Akt/NF- kB pathway, and up-regulating

the expression of proliferation and anti-apoptosis genes, such as

BCL2L1 and CCND1. These findings suggested that there existed an

involved interaction among tumor cells, stromal cells and immune

infiltration cells in TME. These results may pave the way to

immunotherapy targeting EGFR mutant LUAD.

Meanwhile, scRNA-seq analysis has multiple advantages in that

it not only can reveal the molecular diversity of different samples

and show the impact of clinical treatment on different cell subsets.

Ke-Yue Ma, et al. (24) utilized scRNA-seq to examine the

heterogeneity of genes associated with response of LUAD to

immunotherapy. They compared LC2/ad (Vandetanib sensitive)

and LC2/ad-R (Vandetanib tolerant) cell lines, and found that LC2/
Frontiers in Immunology 06
ad had a higher level of MHC II gene and IFN-g signal pathway

coexpression gene. However, the IFN-g signaling pathway in LC2/

ad-R was down-regulated and the expression of MHCII gene was

low. They revealed a possible mechanism of Vandetanib resistance:

that is, MHC II and IFN-g signaling pathways jointly determined

the development of immunotherapy resistance.

Tian Y, et al. (25), by using scRNA-seq, examined about 5000

matched normal adjacent tissues (NAT) and primary tumors (PT)

cells from 11 SCLC patients (including a patient with both primary

tumor (PT) and recurrent tumor (RT)). They found that human

SCLC had a significant inter-tumor and intra-tumor heterogeneity,

and many tumors contained separate subpopulations, indicating

there is a remarkable intra-tumor heterogeneity at the

transcr iptomic leve l . In addi t ion , most SCLCs with

neuroendocrine (NE) characteristics, such as SCLC-N and SCLC-

A, tended to have strong immunological features, while non-NE

SCLCs, such as SCLC-P and SCSC-Y, tended to possess weak

immune traits. Patients with SCLC having weak immune features

were more likely to benefit from immune checkpoint blockade

(ICB) than their counterparts with strong immune characteristics.

The scRNA-seq data revealed that multiple SCLC subtypes showed

different proportions in practically all SCLC patients, highlighting

the importance of scRNA-seq and the need for functional research

on tumor progression and immunotherapy of ITH. Moreover,

Chan JM et al. (26) applied scRNA-seq to analyze the

transcriptome of 21 fresh SCLC samples from 19 patients and

155098 cells from 24 LUAD samples and 4 normal lung tissue

samples from the area adjacent to cancer. They found that the level

of copy number variation (CNV) was higher in SCLC than in

LUAD and had significant heterogeneity. They exhibited that

PLCG2 overexpression subsets were associated with metastasis,

immunosuppression and poor prognosis. Therefore, it is

potentially of great significance for the design of novel strategies

of the targeted therapy and immunotherapy. These observations
TABLE 1 Continued

PMID/
Refs. Author

Single-cell
technologies

used

lung
cancer
type

Cell types
characterized

Clinical/
cellular/
animal
level

Key findings

33972311
(47)

Sinjab et al.
scRNA-seq,
spatial
transcriptome

LUAD
tumor cells,
dendritic cells,
macrophages

clinical

1. The overlap of immune checkpoint-receptor and cytokine
receptor (L-R) interactions between LUAD tumor-distal regions
was reduced compared with L-R interactions between LUAD
tumor-proximal regions.

2.The interaction between the immune checkpoint proteins CD24
and LGALS9 in tumor epithelial cells, SIGLEC10 in dendritic cells,
SIGLEC10 and HAVCR2 in macrophages increased.

32253229
(48)

Zugazagoutia
J et al.

DSP, mIF NSCLC
tumor cells, T
cells

clinical
The high level of CD56 expression in the immune cell region
(CD45+) was associated with longer PFS and OS in NSCLC
patients receiving PD-1 checkpoint inhibitor monotherapy.

32253229
(49)

Moutafi MK
et al.

DSP NSCLC tumor cells clinical

The expression of CD44 in tumor cells is closely related to the
prolonged PFS and OS, which can be used as an independent
evaluation factor to predict the clinical benefits of patients
receiving PD-1 inhibitor treatment.
scRNA-seq, single-cell RNA sequencing; scTCR-seq, single-cell T cell receptor sequencing; CyTOF, mass spectrometry flow cytometry; IMC, imaging mass cytometry; CITE-seq, cellular indexing
of transcriptomes and epitopes by sequencing; DSP, digital spatial profiling; mIF, multiplexed immunofluorescence; EGFR, epidermal growth factor receptor; LUAD, lung adenocarcinoma;
SCLC, small cell lung cancer; NSCLC, non small cell lung cancer; TIMs, tumor infiltrating myeloid cells; TILs, tumor infiltrating lymphocytes; Treg, regulatory T cells.
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collectively demonstrated that ScRNA-seq can help researchers

better understand tumor heterogeneity and the intricate

interactions between tumor cells and their microenvironment,

thereby facilitating the identification of lung cancer cell

subpopulations amenable to immunotherapy.

2.1.2 Immune, stromal cells, and
immunotherapeutic responses

Infiltrating immune cells, cancer-associated fibroblasts and

vascular endothelial cells are important components of TME (63).

By means of scRNA-seq, we can identify the features of various

types of immune, stromal cells, heterogeneous expression profiles,

and look into mechanisms involved in immunosuppression, thus

better understanding the heterogeneity and diversity of cancer

immune responses.

In view of the intricacies of the TME, in recent years, single-cell

transcriptome sequencing has been incrementally used in the study

of infiltrating immune cells in lung cancer (25, 27–31, 45). It has an

important implication for the research of the mechanism

underlying the lung cancer tumor immunity, especially for the

study of the functional status of T cells in the tumor, which play a

pivotal part in killing tumor cells, for the development of efficacious

immunotherapy and the identification of sensitive targets and

markers. Guo X et al. (27) conducted scRNA-seq on 12346 T

cells from the peripheral blood, cancer-adjacent tissues and cancer

tissues of 14 NSCLC patients prior to drug treatment, worked out

the immune map of lung cancer T cells at the single-cell level,

revealed the heterogeneity of lung cancer T cells, and provided a

new notion for immunotherapy to specifically target T cell subsets.

This study identified 16 major clusters of T cells (7 CD8 and 9 CD4

types). In addition to exhausted CD8 T cells, the infiltrating CD8 T

cell population of lung cancer was also found to include two groups

of “pre-exhausted” CD8 T cells that may bear a state transition

relationship with exhausted CD8 T cells. Moreover, higher ratios of

“pre-exhausted” and exhausted CD8 T cells were associated with a

more favorable prognosis for lung adenocarcinoma. Apart from

that, in terms of the expression of TNFRSF9 (4-1BB), a group of

activated Tregs could be distinguished from lung cancer-infiltrating

regulatory T cells (Tregs). The expression of inhibition-related

genes in this group of Tregs was higher, suggesting that they were

the Treg cells that actually serve the inhibition function in tumors.

At the same time, the proportion of activated Treg cells was

negatively correlated with the prognosis of lung adenocarcinoma.

In NSCLC patients receiving ICI, Zhang Y et al. (28) found that

patients with MET gene amplification were refractory to the

treatment. After analysis of more than 20000 immune cells with

scRNA-seq, the researchers identified a new XTIST/CD96/KLRG1

triple positive NK cell subpopulation in patients with MET

amplification. In immunotherapy-resistant patients, the

proportion of this subpopulation was elevated and the proportion

of NK cells and CD8+T cell subpopulations dropped. Moreover,

some researchers used scRNA-seq to study the dynamic change of

peripheral blood T cell clones in NSCLC patients receiving PD-1

inhibitors (45), and found that the number of a CD4+T cell clone

related to tumor significantly dropped upon tumor progression, and

the proportion of PD-1+T cells also decreased significantly. What’s
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more, an NSCLC patient with negative PD-L1 expression benefited

from the treatment of pabolizumab (PD-1 inhibitor) (29). An

scRNA-seq analysis of the patient’s peripheral blood revealed that

the NKG7+NK cells and NKG7+T (NKT) cells of the patient were

significantly lowered, while the CD8+T cells and Naive T cells were

prominently increased, suggesting that the change in the percentage

of NK cells and T cells might be related to the efficacy of

pabolizumab treatment.

Liu S et al. (30) examined whether the patient’s previous

response to EGFR-TKI was related to the subsequent

immunotherapy results. They found that, in patients receiving

TKI (Tyrosine Kinase Inhibitor) treatment, the objective response

rate (ORR) of immunotherapy was significantly higher in patients

with short progression free survival (PFS) than in those with long

PFS. By comparing the TME of the two groups using scRNA-seq,

the researchers found that the infiltration rate of INF-g+CD8+T
cells and CD8+T cells in the immune microenvironment was higher

in patients with short PFS, and the ratio between M2- and M1-like

macrophages was significantly lower in short-PFS patients than in

their counterparts with long PFS. Therefore, this study provided a

marker reference from the angle of a single cell for the ensuing

treatment in patients who had received EGFR-TKI targeted therapy.

scRNA-seq analysis by Yang L et al. (31) revealed that the TME of

EGFR mutant LUAD and wild type LUAD had different

heterogeneity in cell composition, function and their interaction.

The loss of proinflammatory cells, enrichment of inhibitory cell

types and the low expression of immune checkpoint proteins may

lead to an immune silence environment for EGFR-mutated LUAD,

i.e., EGFR-mutated tumor cells secrete cytokines to recruit various

immunosuppressive cells, while activated immune cells (CXCL9

+TAM and CD8+TRM) were seriously insufficient. Therefore, in

future, effective immunotherapy can be accomplished in EGFR

mutant LUAD patients by improving the inhibitory tumor immune

microenvironment (TIME).

Tian Y, et al. (25) employed scRNA-seq to develop a detailed

immunity map of SCLC. Compared with normal adjacent tissues, the

proportion of lymphocytes in primary SCLC was higher and the

proportion of myeloid cells lower, indicating that adaptive immunity

in TME played a more important role. Then, the researchers re-

classified T cells and myeloid cells and categorized macrophage into

four groups: a tumor-associated macrophage groups and three groups

of resident alveolar macrophages. T cells from normal adjacent tissues

and TME were predominantly CD8+ T cells and highly expressed

cytotoxic markers, suggesting that immunological assessment of SCLC

is of great significance. Moreover, reclassification of T cells in SCLC

patients can better mirror the expression pattern of T cells dysfunction

and exhaustion markers (such as HAVCR2, CTLA4, LAYN, PDCD1,

LAG3, TIGIT), which may be used as immunotherapeutic targets.

scRNA-seq of T cell subsets of TME in SCLC revealed that HAVCR2

had the highest expression level in exhausted T cell subsets, while

LAYN was sporadically expressed in exhausted CD8 + T cells, and

CTLA4 was preferentially expressed on other T cells. T cell

heterogeneity and co-inhibitory receptor expression preference in

SCLC patients provide potential immunotherapeutic targets.

Tumor-infiltrating myeloid cells (TIMs), such as monocytes,

macrophages, dendritic cells and neutrophils, have been identified
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as a key regulator of cancer growth (64, 65). Zilionis et al. (32) used

scRNA-seq to locate TIMs in NSCLC patients and identified 25

TIMs states, most of which could be found repeatedly in patients.

This study provides a new theoretical basis for future elucidation of

the role of myeloid cells in cancer, and TIMs may serve as a new

target for immunotherapy. Lavin et al. (33) conducted scRNA-seq

to analyze the TME of 18 LUAD patients, and identified the

characteristic genes of tumor infiltrating macrophages, such as

TREM2, CD81, MARCO, APOE, etc. In addition, analysis with

scRNA-seq found that vascular endothelial cells from NSCLC

patients reduced their antigen presentation and the homing

activity of immune cells through remodeling, thereby promoting

tumor immune tolerance (34, 66). A subgroup of cancer-associated

fibroblasts (CAFs) that highly expressed extracellular matrix

protein genes were found to induce immunotherapy resistance by

increasing the levels of PD-L1 and CTLA-4 proteins in Treg cells

through cell cross talk (67).

Overall, a comprehensive understanding of the composition

and state of immune cells is crucial to the elucidation of the

responsiveness and resistance to current immunotherapies, and to

the design of new immunomodulatory therapies. Use of the single-

cell transcriptomic analysis in lung cancer patients receiving

immunotherapy also revealed the heterogeneity and diversity of

lung cancer immune responses. Clusters based on non-targeted

transcriptional assessment of cell state often cannot be completely

separated into traditional immune cell subpopulations in terms of

cell surface protein expression. For immunotherapy, application of

these methods to immune cells and stromal cells in TME can help

elucidate the response to immunotherapy (such as ICIs) and the

transcriptional state of drug-resistant cells. Importantly, the analysis

aimed at mapping the immune picture of multiple lung cancer types

has identified multiple new transcriptional states, which are related

to the responsiveness of lymphocytes, DC cells, monocytes,

macrophages and fibroblast compartment of TME to

immunotherapy. Researchers can now look into how lung cancer

and the immune system co-evolve during treatment and recurrence

at the single-cell level.

2.1.3 Cell interaction analysis
Very complex interactions take place between tumor or

immune cells and/or stromal cells, which together dictate the

tumor progression and response to treatment. This cell-cell

interaction can be studied by calculating the expression level of

receptor and ligand from scRNA-seq data. At the same time, for the

exploration of the complex interaction between tumor cells and

TME, new technologies, including single-cell space transcriptome

methods, are also developing rapidly, making it possible to look into

the cell-cell physical interaction. At present, the extensively used cell

interaction analysis algorithms include CellPhoneDB, CellChat,

iTALK, NicheNet, among others (68–71), which is out of the

scope of the review.

To look into the interaction between different cell types in TME,

Wu F et al. (35) examined the cell-cell interaction by using scRNA-

seq to get a full picture of TME in NSCLC patients, including

angiogenesis, T cell activation, CAF activation, immunosuppressive
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cell recruitment, and activation of checkpoint routes. Obvious

interactions were found between cancer cells and fibroblasts,

endothelial cells and macrophages. An analysis of the cross cell

interaction molecules revealed a complex network involving

multiple carcinogenic and inflammatory signaling pathways. The

researchers found that, in patients’ immune environment,

macrophages played a key role in the inhibition of T cells via

checkpoint pathway. Furthermore, predominant pathways vary

with different subgroups of NSCLC. For instance, LUAD driving

gene mutation had a high level of TIGIT pathway activation, but a

low level of TIM3 (HAVCR2) pathway activation. Except in few

LUSC patients, the authors did not detect any significant activation

of PD1/PD-L1 axis, which might be ascribed to the low expression

of PD1/PD-L1 at the transcriptomic level. Even in the same subtype

of lung cancer, the interactions related to immunotherapy were

different, highlighting the need for more precise biomarkers to

improve the efficacy of immunotherapy. In addition, Tian Y, et al.

(25) used CellPhoneDB to study the interaction between ligand-

receptor pairs, and confirmed that the non-neuroendocrine small

cell lung cancer subtypes (SCLC-non-NE) interacted more with

other cells, including immune and stromal cells than other subtypes

of SCLC, and may be related to the clinical outcomes of

immunotherapy. By correlating the expression of ligand receptor

pairs between different cell types, important information on cell-to-

cell interactions related to lung cancer immunotherapy can be

inferred from scRNA seq data, which may help us better

understand the complicated arrangement and interaction between

tumor cells and TME, as well as to find new indicators or signatures

related to lung cancer immunotherapy.

2.1.4 Limitations of scRNA-seq
ScRNA-seq is the most widely used single-cell sequencing

technique. With its extensive application in scientific research,

scRNA-seq gradually some methodologically inherent problems

began to emerge. First, efficiency of mRNA capture in the single-

cell transcriptome method is low, standing at somewhere between

5% and 15%, leading to data sparsity, sampling deviation, and loss

of low-level transcript gene expressions (72). Second, it is only

applicable to fresh tissue samples. For frozen samples, since cells

have lost their activity, scRNA-seq cannot be performed. This

substantially restricts its application, increases the difficulty of

operation and reduces the sample flux. For example, in order to

ensure the stability of RNA, many clinical samples need to be

frozen. Such archived frozen samples are no longer amenable to

scRNA-seq and their value could not be fully tapped by the latest

technology (73). Third, the dissociation process induces the

expression of stress genes, resulting in “artificial transcriptional

stress responses” of cell transcription and eventually to

transcription bias. The data so obtained cannot truly reflect the

cell transcription status of the sample, and the reliability of the

results is greatly impaired. This has been demonstrated by a great

many experiments. For example, Brink et al. found that the process

of protease dissociation at 37°C would induce the expression of

stress genes, thereby introducing human errors, and leading to

inaccurate results of cell type identification (74). The latest
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comparative experiment further confirmed this limitation:

Dissociation at 37°C induced an increased expression of multiple

stress genes, which yielded seriously distorted results, and the low-

temperature dissociation could effectively avoid this phenomenon

(75). Fourth, for many solid tissues, such as cerebral, cardiac and

renal tissues, protease tends to dissociate the cell types that are

subject to dissociation, thus losing the cells that are not easy to

dissociate. At the same time, some sensitive cells may be damaged

due to excessive dissociation. Therefore, the dissociation process

cannot effectively obtain all cell types in the tissue, and the accuracy

of the results is substantially affected (76–79). It is believed that,

with the continuous improvement and breakthroughs of the

technology, single-cell sequencing technology has a good prospect

of being widely used in the research and treatment of lung cancer.
2.2 Proteome

2.2.1 single-cell proteomic analysis
Single-cell proteomics allows for analysis of protein expression

at the single-cell level, thus revealing fine differences between

individual cells. It provides a powerful tool for the analysis of cell

and tumor heterogeneity, specific cell types, circulating tumor cells

(CTC), immunological research, the genetic study of cell cycle, and

the examination of trace/rare samples. Working on different

principles and depending on various scenarios, many methods for

the quantitative detection of single-cell proteins have emerged in

recent years, including microfluidic techniques, microporous

methods, optical fiber nano biosensoring, fluorescent probing and

mass spectrometry-based single-cell protein detection (80, 81).

Especially in recent years, with the rapid development of mass

spectrometry technology, the bottleneck of proteomic research

based on mass spectrometry has been removed, and the scanning

speed and detection sensitivity have been greatly improved, which

makes it possible to detect extremely trace protein samples.

2.2.2 Mass spectrometry flow cytometry
CyTOF is a flow cytometry technique based on mass

spectrometry principles and is used for multi-parameter detection

of individual cells. By integrating mass spectrometry and traditional

flow cytometry, CyTOF not only keeps the high-speed of traditional

flow cytometry, but also attains the high-resolution of mass

spectrometry, overcomes the problem of overlapping light spectra

of traditional flow cytometry fluorescence emission groups, and is

able to simultaneously detect more than 30 protein markers in

tumor cells. This high-dimensional single-cell technique is

described as the “single-cell atlas” of the tumor ecosystem. As a

single-cell high-dimensional immune analysis, it can better link the

tumor immunity map with its clinicopathological characteristics

(82, 83).

Lavin Y et al. (33) separated immune cells from tumor tissue,

normal lung tissue and peripheral blood from lung cancer patients,

detected specific transcripts of cells and more than 30 protein

markers on the surface using CyTOF and other technologies, and

drew a detailed map of immune cells in the TME of early-stage lung
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adenocarcinoma, to provide an experimental basis for the design of

immunotherapeutic regimen for early lung cancer. The

unsupervised cluster analysis of the three tissues divided T cells

into 21 subgroups in terms of different surface marker expression

patterns, including new subgroups (IX, XX, etc.) that had not been

previously identified by traditional methods. In addition, the

analysis of the proportion of subpopulations in different samples

showed that the content of Treg cells in early-stage tumor patients

was significantly increased, and it grew rapidly at the early stage of

tumor, and PD-1 expression was significantly elevated in CD4+ and

CD8+ T cells in tumor tissue.

Karacosta LG et al. (36) used CyTOF to identify and characterize

the epithelial mesenchymal transformation (EMT) state of clinical

lung cancer specimens according to the immune state map obtained

in lung cancer cell lines. The researchers used HCC827 cell line for

study of EMT, and examined 28 protein expression markers to

characterize the EMT status and proliferation-, signal transduction-

and apoptosis-related status by employing qualitative CyTOF. Their

study observed an increased expression of PD-L1 during EMT,

confirming that EMT was related to tumor immune escape.

Notably, the researchers found that, among the EMT transcription

factors, Oct3/4 and Nanog expression was significantly up-regulated

during the entire EMT process, indicating that the co-expression of

Oct3/4 and Nanog was crucial to the EMT of lung cancer cell lines.

Shaul ME et al. (37) clinically assessed the level of circulating high-

density neutrophils (HDN) and low-density neutrophils (LDN) in

patients with advanced lung cancer by using CyToF, and found that

the three main subtypes of LDN/HDN possessed immune

characteristics and inherent plasticity. These findings laid

foundation to the development of new tumor immunotherapies.

2.2.3 Imaging mass cytometry
Imaging mass spectrometry (IMC) combines high-resolution

imaging technology and CyTOF technology to generate tissue

structure images involving multiple factors such as cell markers,

transcripts, and transduction signals, so as to achieve single-cell

proteome spatial analysis (84). In the field of immune oncology,

IMC can classify infiltrating immune cells in a high parameter space

while maintaining its spatial coordinates, which may provide useful

information about host responses and inform the selection of

appropriate immunotherapies (85).

Sorin M et al. (38) used IMC to describe histopathological

patterns of pulmonary adenocarcinoma and the immune cell

landscape in 416 patients, and analyzed more than 1.6 million

cells, and conducted spatial analyses on immune cell lineages and

activation status with different clinical relevance (including

survival). Their analyses on the category of cellular neighborhood

and survival time confirmed the association between specific cell

interactions and survival rate, indicating that the tissue relationship

of cells in the immune microenvironment is of uniquely prognostic

value. They also studied the relationship between cell phenotype

and survival in the TME. The results showed that the total number

of neutrophils exerted no significant impact on survival, but the

increased proportion of HIF1a+ subgroup was significantly

correlated with poor overall survival.
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Sorin M and their colleagues (39) also performed IMC on

114,524 single cells from 27 NSCLC patients receiving ICI, and

achieved spatial resolution of immune spectrum and activation state

with different clinical results. These studies proved that the

expression of CXCL13 was related to the ICI efficacy, and the

recombinant CXCL13 enhanced the response to anti-PD-1 in vivo,

which could be ascribed to increased T-cell subpopulations

subjected to antigen stimulation and decreased CCR2+

monocytes. These findings highlighted the importance of major

immune cell lineages and their functional states in the response to

ICIs and help us better understand the role of the tumor immune

microenvironment in such response.

These observations highlighted the importance of evaluating

immune cell phenotypes at the single-cell level. In fact, both CyTOF

and IMC are particularly useful methods for characterizing the specific

phenotypes of cells involved in responses to immunotherapy at the

single-cell level. With immunotherapy, single-cell proteomic analysis

can provide insights into the signaling pathways related to the

effectiveness of immunotherapies and drug resistance. At the

entrance into the era of single-cell proteomics, we are still faced with

great challenges in proteome coverage depth and flux. We believe that

these challenges can be addressed by integrating mass spectrometry

flow cytometry, measurement strategies, and algorithms.
2.3 Genome

Single-cell genome sequencing is a new technique that

sequences and amplifies the entire genome within a single cell

(86). A complete genome with high coverage can be obtained by

efficient amplification of a small amount of whole-genome DNA

from isolated single cells, followed by high-throughput sequencing.

In fact, single-cell genome sequencing has become a powerful tool

for study of the heterogeneity between cells in biological samples

and identification of genomic changes (such as copy number

variation and point mutation). This technology presents unique

advantages in the research of cell lineage differentiation, especially

cell evolution during tumorigenesis, and cell heterogeneity in

complex biological samples (87, 88).

In recent years, many single-cell genome amplification

technologies have been developed, such as DOP-PCR, multiple

annealing, multiple displacement amplification (MDA) and loop-

based amplification cycle (MALBAC), transposon insertion-

mediated linear amplification (LIANTI), etc. (89). Single-cell

whole exome and whole genome sequencing techniques have

been developed (90). Although they have not been used for the

study of lung cancer immunotherapies, single-cell genome

sequencing has been employed for the analysis of a large number

of single cells. In the entire process of lung cancer management, we

can track the specific gene variation of lung cancer patients and the

heterogeneity of tumor cell population clonal evolution (91–93),

which suggests that this technology has a good prospect of being

applied in the research of lung cancer immunotherapies.

The single-cell genome sequencing of single circulating tumor

cells (CTC) shows some unique advantages in the diagnosis,

differential diagnosis, monitoring and prognosis of lung cancer.
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For example, Su Z et al. (91) conducted single-cell whole genome

sequencing on CTC from 48 SCLC patients, and compared the

sequence data with the mutations in tumor tissue of the same

patient. They found that most gene mutations in tumor tissue could

be accurately detected in CTC, and DNA had conspicuous

heterogeneity, suggesting that single-cell genome detection of

CTC is an effective way to monitor the genetic variation and

disease progression of SCLC. Ni X et al. (92) used MALBAC

technology to sequence the whole exome and genome of a single

cell in CTC of lung cancer patients, and found a new copy number

variation profile. By detecting the copy number change (CNV) of

CTC, tumor metastasis could be monitored. The research team

further analyzed the CNV profile of individual CTC from 11

patients with different subtypes of lung cancer, and identified the

different lung cancer subtypes, indicating that it is feasible to use the

CNV analysis of CTC to classify tumors in the future. Chen J et al.

(93) found, by using the dimensional analysis of the single-cell

genome, that different driver changes and the initial EGFRmutation

co-existed in the same cancer cell in the patients with Osimertinib-

resistant NSCLC. The heterogeneity of clonal evolution of tumor

cell populations led to the development of Osimertinib resistance.

However, at present, no literature reported single-cell genome

sequencing for the prognostic prediction of immunotherapy for

lung cancer. Further studies are needed in this field.
2.4 Epigenomics

Single-cell epigenomics allows for the analysis of information

about chromatin modifications and their potential regulatory effects

at single-cell resolution, and can complement data beyond RNA

expression and DNA variation obtained by single-cell DNA

sequencing and RNA sequencing (94, 95). Combination of single-

cell epigenomics with single-cell transcriptomics can help us better

understand the cell type-specific gene regulation program and how

the tumor cells change in response to environmental stimuli (96–

98). These subjects are the important directions of future studies on

single-cell analysis in lung cancer immunotherapy. Epigenomic

analysis has been used for single-cell study, such as ATAC-seq,

ChIP-seq, bisulfite-based DNA methylation sequencing, and

chromosome conformation capture techniques (3C and Hi-C)

(99–101). Among these techniques, single-cell ATAC-seq

(scATAC-seq) is currently the only widely used method with

sufficiently high throughput, being capable of detecting the

openness of chromatin in different cells at the single-cell level and

showing the sites of different transcription factors and regulatory

factors. Although it has not been used in the study of lung cancer

immunotherapy, it has found widespread application in the

research of lung cancer heterogeneity, tumor microenvironment

and other fields.

In order to gain insights into the intratumoral heterogeneity of

lung squamous cell carcinoma, Wang et al. (102) performed single-

cell ATAC seq on an LUSC patient, and detected a total of 50486

peaks. The open chromatin map was highly consistent with the bulk

NSCLC sample. On the level of single-cell analysis, high

heterogeneity was observed in some open chromatin regions.
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LaFave LM et al. (103) used single-cell epigenomics to analyze the

chromatin state transition in the mouse model of LUAD, and

identified a pre-metastasis transition in lung adenocarcinoma,

characterized by the activation of the RUNX transcription factor,

which mediates the remodeling of extracellular matrix to facilitate

metastasis, and is indicative of the survival rate of LUAD patients.

Their findings proved that the single-cell epigenomics plays an

important role in the identification of regulatory programs and can

help reveal the mechanism of tumor progression and

key biomarkers.

Compared with scRNA-seq, one of the main advantages of

scATAC-seq lies in that it can provide more in-depth

understanding of gene regulation and transcription or other

processes, and more information about cell lineages and

characteristics. However, the scATAC-seq is still restricted by

some technological limitations, including limited data and high

sensitivity to tissue separation. In addition, no literature covered the

appl icat ion of s ingle-ce l l epigenome in lung cancer

immunotherapy, and further studies are warranted in the future.
2.5 multimodal omics analysis

Single-cell multiomics refers to the cutting-edge technology of

measuring multiple omics data simultaneously in the same cell (18,

104). For example, the recently developed CITE-seq (105)

technology is designed to couple specific oligonucleotides to

different antibodies, so that it can convert the measurement of

proteins into the measurement of DNA tags (ADTs) connected to

antibodies. Therefore, CITE-seq can determine the abundance of

RNA and cell surface protein in the same cell by sequencing. In

addition, with the progress of new technologies, transcriptome has

been able to be used simultaneously with other genomics at the level

of single-cell analysis, including ATAC (97, 106), DNA methylation

(107), nucleosome distribution (108), spatial location (109, 110),

among others, which overcomes the inherent limitations of scRNA-

seq and helps researchers further understand how other genomics

affect the state and function of cells (18). The utilization of single-

cell multiomics technology in immune oncology can identify the

heterogeneity of immune cells in tumors and reveal the interaction

and mode among multiple cell groups in the process of

differentiation, so that researchers can look into the role of

immune cells in the growth of tumor, so it has significant

application prospects in immunotherapy research (111).

In order to study the molecular state and composition of immune

cells in NSCLC, Leader AM et al. (40) carried out single-cell analysis of

NSCLC by using scRNA-seq, CITE-seq and TCR-seq (T cell receptor

sequencing), and constructed the immunoreactive cell atlas of early

lung cancer, and established the LCAM module for detailed

classification of NSCLC tumors by analyzing immune cell types. The

high score of LCAM indicates that the patient was undergoing a

stronger antigen-specific anti-tumor adaptive immune response.

Therefore, LCAM can serve as a more direct indicator of the

activation of antigen-specific anti-tumor immunity, providing

important reference data for the selection of targets for

immunotherapy. Hanada KI et al. (41) used CITE-seq and TCR-seq
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to analyze tumor-infiltrating lymphocytes (TILs) in NSCLC, and

defined a new antigen-reactive T cell molecular tag in terms of the

expression of CD39 protein and CXCL13 mRNA to efficiently identify

CD4+and CD8+T cells with new antigen-reactive TCRs. Zhang L et al.

(112) showed the unique cell composition and gene expression profile

of LUAD and LUSC through the multi-group analysis on the basis of

single-cell transcriptome, which provided insights into the

pathogenesis and heterogeneity formation of various types of lung

cancer. At the same time, several highly-expressed genes identified in

early lung cancer samples can provide clues to potential targets for early

treatment of lung cancer.

Single-cell multimodal omics aims to integrate multiple

molecular information from the same single cell (such as at DNA

and RNA, RNA and ATAC levels) or at all three levels. These

methods can provide more insights into genotype phenotype

relationship and epigenomic regulation of gene expression.

Although the initial result has proven the feasibility of sequencing

DNA and RNA in the same cell, currently, their throughput

remains low and the cost is high. The future development of

these methods using nanopore systems, droplet platforms, and

combinatorial indexing is expected to overcome many of these

technical barriers, thereby expanding their application in lung

cancer research.
2.6 Single-cell TCR analysis

In our immune system, T cells play an important part in the

acquired immune response. T cell receptor (TCR) is a protein on the

surface of T cells responsible for specific recognition and binding with

major histocompatibility complex (MHC) antigen peptides (113). In

tumor tissue, when TCR on tumor-infiltrating T cells recognizes and

binds to tumor antigen-MHC complex, T lymphocytes are activated

via signal transduction and enter the subsequent immune response

process, which enables immunotherapy to effectively elicit antigen-

specific anti-tumor immune response (114). TCR sequencing

targeting tissue or population cells can reflect the expression status

of cell groups to a certain extent, but cannot determine the state of

specific cells in a certain cell group. With the rapid development of

single-cell sequencing techniques, TCR sequencing has also advanced

from bulk TCR sequencing to single-cell TCR sequencing (scTCR-

seq). ScTCR-seq is a high-throughput sequencing technique for

detecting TCR molecular sequences at the level of single-cell

analysis, and can provide information on the role of TCR

sequences in T cells-specific selection, activation, and phenotypic

identification, as well as T cell differentiation pathways. ScTCR-seq

can achieve higher cell-processing throughput and accuracy, so

immunophenotypic analysis at the level of single-cell analysis is

increasingly used in immunological research (115–117).

In a study on lung cancer immunotherapy, Ma Yd et al. (42)

developed a scTCR-seq technology based on RNA pre-

amplification, and used this technology to identify tumor-specific

TCR from lung cancer-specific TILs at high efficiency and low cost.

Further functional verification showed that its corresponding TCR-

T cells could specifically recognize and kill autotumor cells, which

can be potentially used for individualized immunotherapy for
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1238454
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liao et al. 10.3389/fimmu.2023.1238454
advanced lung cancer. Ott PA et al. (43), in their clinical trials, used

personalized tumor neoantigen vaccine (NEO-PV-01) and PD-1

inhibitor in the treatment of three kinds of high TMB, metastatic

tumors (NSCLC, advanced bladder and melanoma cancer) for the

first time, and the scTCR-seq analysis revealed the dynamic changes

in the clonal type of tumor neoantigen vaccine-specific T cells, and

accurately detailed characterized the T cell response. From the

cellular level, they proved that the T cell immune response induced

by tumor new antigen vaccine was highly specific and effective. Hui

Z et al. (44) conducted scRNA-seq and scTCR-seq analyses on the

immune cells from NSCLC patients who had received neoadjuvant

immunotherapy but not immunotherapy. They found that the

enrichment of B cells and CD4+T cells was related to the more

favorable prognosis in NSCLC patients. IL-21 was essential for

tumor control and the transformation of the B-cells to anti-tumor

IgG1 and IgG3 subtypes. In addition, TNFRSF4 can potentially be

used as a molecular target to reduce the function of Treg and

improve the anti-tumor immunity against NSCLC, which help us

better understand the mechanism of cell synergy in the clinical

response to neoadjuvant immunotherapy.

It is of importance to have an in-depth understanding of the

clonal dynamics and functional status of T cells in NSCLC to improve

the efficacy of immunotherapy. Zhang F et al. (45) conducted scRNA-

seq and scTCR-seq on T cells from the peripheral blood of NSCLC

patients before and after PD-1 blockade, identified single peripheral T

cell clones, and dynamically monitored their changes during

immunotherapy. They found that tumor-related CD4+T cell clones

had higher cytotoxicity than their CD8+T counterparts. When lung

cancer progresses, the number of tumor-related CD4+T cell clones

decreased significantly, and the proportion of PD-1+T cells dropped.

In addition, the pseudo-time track of CD8+T cell clone corresponded

to the treatment time point, indicating that the “cytokine receptor-

cytokine interaction” pathway was down-regulated. These analyses

help us better understand the dynamics of T cell clones from the

peripheral blood of NSCLC patients during PD-1 blockade. To study

cloning relationship between NSCLC single T cells, Guo X et al. (27),

again, used scTCR-seq and obtained, in 16 cell clusters, 8038 full-

length TCRs containing both a-chain and b-chain. Of them, 5015

cells had unique TCRs, and 3023 cells repeatedly used TCRs,

indicating that the clones were expanding. The state transition of

CD8+T cell clusters in NSCLC was deduced by detecting TCRs,

including the inherent T cell development and tumor-induced T cell

exhaustion. By using single-cell RNA sequencing and TCR

sequencing, Gueguen P et al. (46) found two CD8+TIL sub-

populations in NSCLC that expressed memory-like gene modules.

The differentiation of these two sub-populations from precursor to

late stage was found to be related to TCR amplification and T-cell

cycle in tumor. These findings provided important evidence

regarding the origin, ontogenesis and functional organization of

TIL in NSCLC.

In summary, scTCR-seq adds key information about the antigenic

specificity of T cells to immune cell analysis, enabling a more refined

dissection of the role of antigenic specific T cells in the response to

immunotherapy. What is more, non-invasive identification of

amplified TCR clones in vertically collected blood samples during

lung cancer immunotherapy can accurately characterize the immune
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activity of T cell subpopulations related to treatment response, making

immunotherapy monitoring more accurate.
3 High dimensional space analysis

The spatial cell composition of tumors is inconsistent. The

spatial distribution of tumor subclones and the spatial variability of

immune microenvironment are believed to be responsible for the

heterogeneity of most cancer types and the variability of

immunotherapy response (118–120). Single-cell space technology

includes image-based spatial proteomics technology in combination

with analyses of single-cell resolution, and variation information at

DNA level and changes in RNA level expression, and multi-

dimensionally analyzes research objectives (121). By quantitatively

determining tens to hundreds of genes, transcripts or proteins,

single-cell space technology can garner valuable molecular, cellular

and micro-environmental information under the background of cell

structure, and help researchers to look into the interaction between

cells, the relationship between tumor cells and TME, and patients’

response to immunotherapy from the perspective of cell spatial

configuration (122, 123).

Because obtaining single-cell suspension entails enzymatic

hydrolysis of tissues, the single-cell transcriptomic sequencing

leads to loss of the spatial location information of cells during

tissue lysis, and the spatial information is crucial for the

understanding of the cell microenvironment and the interaction

between cells (124). Single-cell space transcriptome technology

(121) overcomes the limitations of scRNA-seq, and can combine

gene expression with the immunohistochemical image of tissue

samples, thereby locating the gene expression information of

various cells in the tissue in terms of the original spatial location

of the tissue, identify genes that are active in the tissue, and can

visually detect the gene expression difference in various parts of the

tissue. Single-cell space transcriptome technology has been widely

used in the study of spatial distribution of cancer cells and TME,

which are important to the understanding of the relationship

between tumor heterogeneity and TME (125, 126).

Zhu J et al. (47) used single-cell transcriptome and spatial

transcriptomic technology to map the changes of cell

heterogeneity and spatial distribution in the progression from

adenocarcinoma in situ to microinvasive adenocarcinoma and

further to invasive adenocarcinoma, and found that, with LUAD

progressing from adenocarcinoma in situ to invasive

adenocarcinoma, the spatial distribution of cancer cells became

increasingly evident, and the malignant features of the tumor

margin became more conspicuous, while UBE2C+cancer cell

subgroup played a crucial role in promoting this process. The

results of single-cell space transcriptome showed that, in

adenocarcinoma in situ, there was no Treg in the cancer area,

while in invasive adenocarcinoma, cancer cells recruited Treg to the

cancerous regions, suggesting that Treg accumulation in the cancer

area initiated the invasion process of LUAD and that TGF-b
signaling pathways are involved in cancer cell interaction with the

TME and spatial changes in regulating immune escape in the

invasion of LUAD. The crosstalk between the components of
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TME impacts the tumor progression largely by mediating the

immunosuppressive phenotype. Sinjab et al. (127) found that the

overlap of immune checkpoint-receptor and cytokine receptor (L-

R) interactions between LUAD tumor-distal regions was reduced

compared with L-R interactions between LUAD tumor-proximal

regions (including adjacent tissues and moderately distant tissues).

It is noteworthy that, in the samples of multiple patients, the

interaction between the immune checkpoint proteins CD24 and

LGALS9 in tumor epithelial cells, SIGLEC10 in dendritic cells,

SIGLEC10 and HAVCR2 in macrophages increased. These

intercellular interactions exhibited differential enrichment in

LUAD tumor tissues and LUAD normal tissues. These findings

suggested that the LUAD ecosystem had intercellular

communication that promotes tumor inflammation and enhances

immunosuppressive states.

Visual imaging of proteins is usually achieved by the fusion

expression of antibodies or fluorescent proteins. Currently, image-

based single-cell spatial proteomics improves the multiple

capabilities of proteomic spatial analysis of up to nearly 100

markers, thereby expanding the number of representable cell

states and cell types, and providing an opportunity to visualize

and study proteins in the cellular environment (128, 129). Growing

studies have shown that cell populations with the same genetic

background also present differences in protein expression and

protein location. The image-based spatial proteomic technology is

helpful to the study of this variability since it captures the protein

spatial distribution at single-cell resolution, so as to obtain the

protein characteristic expression spectrum of tissues of different

regions, and it is widely used in the studies of tumor cell

heterogeneity, which is of great value for the analysis of TME,

diagnosis and prognosis (130, 131).

Zugazagoutia J et al. (48) performed DSP spatial proteomic

analysis and multiplexed immunofluorescence (mIF) detection on

FFPE samples in the form of tissue microarray (TMA) in 53 patients

with advanced NSCLC who had received PD-1 checkpoint inhibitor

monotherapy. They demonstrated that the high-level CD56

expression in the immune cell region (CD45+) was associated

with longer PFS and OS in NSCLC patients receiving PD-1

checkpoint inhibitor monotherapy. Moutafi MK et al. (49)

analyzed the spatial in situ expression data of 71 proteins in

NSCLC samples by using DSP technology, and found that the

expression of CD44 in tumor cells was closely related to the

prolonged OS and PFS, which can be used as an independent

factor for the prediction of the clinical efficacy in patients receiving

PD-1 inhibitor treatment. However, for patients without receiving

immunotherapy, the high expression of CD44 in tumor cells had no

prognostic effect. In addition, researchers also found that a unique

immune microenvironment developed in the tumor region whose

tumor cells had high expression of CD44, suggesting that the

expression of an array of immunoregulatory molecules, such as

PD-L1, TIM-3, ICOS and CD40, was significantly up-regulated. It

showed that the expression of CD44 in lung cancer cells can

function as a new independent biomarker that supplements the

existing biomarkers for optimal patient stratification, and may open

up a new and better immunotherapeutic strategy for lung cancer.
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Although single-cell space technology remains at its early

stages, spatially resolved multiplex analyses are reshaping our way

to look at cellular interactions and structural relationships between

tumor cells and TME cells, which affect tumor immunity and

dictate patients’ response to immunotherapy. Moreover, spatial

localization multiple techniques can add genotypic and

phenotypic dimensions to our understanding of cell interactions

in the tumor immune microenvironment, and represents the next

frontier in the elucidation of the mechanism underlying the

resistance of lung cancer to immunotherapy. Therefore, clinical

application of single-cell space technology can help us better

understand the tumor response and resistance to immunotherapy.
4 Conclusion

Single-cell techniques have revolutionized our way to look at

complex diseases, such as lung cancer, providing unprecedented

insights into the heterogeneity of tumor cells and the tumor

microenvironment. In fact, these techniques help us better

understand lung cancer and its response to immunotherapy, and

thereby develop more efficacious therapeutic strategies.
1. In-depth Understanding of Tumor Heterogeneity: By

studying tumor heterogeneity at a single-cell level,

researchers can identify subpopulations of cells that drive

resistance to treatment, leading to the development of more

personalized therapies.

2. Characterizing Tumor-Immune Interactions: Single-cell

techniques enable the profiling of both tumor and immune

ce l l s s imu l t aneous l y , sh edd ing l i gh t on the

communications and signaling pathways involved in the

immune evasion and tumor progression.

3. Discovery of Novel Biomarkers: Single-cell analyses can

identify rare cell populations or immune cell subsets that

are specifically implicated in the modulation of the tumor

immune response. These new biomarkers can be validated

and used for patient selection.

4. Uncovering Mechanisms Underlying Resistance: Single-

cell techniques help researchers look into the cellular and

molecular mechanisms that underlie drug resistance, help

us understand how tumors evolve and escape immune

surveillance. This knowledge can inform the development

of combination therapies that overcome resistance.

5. Targeting Tumor-Resident Immune Cells: Single-cell

techniques aid in the identification of tumor-resident

immune cells and their functional features. By targeting

these cells, researchers can work out therapies to reprogram

the immune response and thereby enhance anti-tumor

immunity.

6. Treatment Monitoring and Precision Medicine: Single-

cell techniques can be applied to the analysis of liquid

biopsies (e.g., circulating tumor cells or cell-free DNA)

from patients. This allows for non-invasive monitoring of

treatment response and disease progression, informing
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treatment decisions and the adjustment of therapies in real-

time manner to achieve precision medicine.
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