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Adipose tissue inflammation has been implicated in various chronic inflammatory

diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an

extra layer and was suggested to contribute to atherosclerosis development.

PVAT regulates the function of endothelial and vascular smooth muscle cells in

the aorta and represent a reservoir for various immune cells which may

participate in aortic inflammation. Recent studies demonstrate that adipocytes

also express various cytokine receptors and, therefore, may directly respond to

inflammatory stimuli. Here we will summarize current knowledge on immune

mechanisms regulating adipocyte activation and the crosstalk between myeloid

cells and adipocytes in pathogenesis of atherosclerosis.
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1 Introduction

Atherosclerosis is the most prevalent form of CVD, which accounts for nearly 18

million deaths annually (1). It is a lipid driven, chronic inflammatory disease with

progressive growth of atherosclerotic plaques infiltrated with all major immune cell

subtypes. Accumulation of lipids particularly within lipid-loaded macrophages (aka

“foam” cells) promotes recruitment and activation of inflammatory cells, and production

of pro-inflammatory and pro-atherogenic mediators (1–4). Various factors including

unhealthy lifestyle(s), suboptimal dietary habits, smoking, stress, and obesity are

implicated in the development of atherosclerosis (5).

Obesity is characterized by adipose tissue hypertrophy, expansion of white adipocytes,

impaired metabolic homeostasis, and low-grade systemic inflammation that can affect

function of multiple organs in the body (6, 7). Adipose tissue also surrounds large blood

vessels. Therefore, changes in its environment may dictate inflammatory changes in

arteries, thereby also contributing to the pathogenesis of atherosclerosis. While

numerous studies showed an important role of adipose tissue in the regulation of
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metabolism (8–10), the role of PVAT as an “immune organ”

impacting inflammation in atherosclerosis is largely unknown.

Myeloid cells, and particularly macrophages, play a dominant

role in the pathogenesis of atherosclerosis (11). Furthermore, myeloid

cells can be found in adipose tissue, where their numbers and

activation status change during obesity progression (12). However,

composition of myeloid cell subsets and a crosstalk between

adipocytes and immune cells in PVAT is poorly understood. Here

we describe current knowledge on how perturbations within adipose

tissue can modulate the inflammatory environment and affect

myeloid cell accumulation; and discuss potential role of PVAT in

the pathogenesis of atherosclerosis.
2 Types of adipose tissue

Adipose tissue is composed of adipocytes, and a stromal

fraction that includes endothelial and mesenchymal cells, and

immune cells (13). Three major types of adipocytes have been

described: white, brown, and beige (8, 14). Origin and development

of adipocytes has been described in detail elsewhere (15, 16). Brown

adipocytes originate from mesodermal progenitors and are typically

found in the interscapular area perinatally (17–19). However,

during ontogeny their numbers in interscapular area gradually

regress; and in adulthood, brown adipose tissue (BAT) is present

mostly in neck and supraclavicular regions (20). Brown adipocytes

store lipids in small droplets that can be quickly used as energy

source, therefore brown adipose tissue plays an important role in

thermogenesis (21). Furthermore, brown adipocytes are heavily

innervated and vascularized which facilitates substrate and

oxygen delivery for efficient thermogenesis (15). White adipose

tissue (WAT), which differentiates from mesenchymal stem cells,

can be found in visceral and subcutaneous regions (22, 23). Lipids

accumulate in all adipocytes primarily in the form of triglycerides;

however, brown adipocytes contain more phosphatidyl-choline

(PC), phosphatidylethanolamine (PE) and cardiolipin (CL) in

comparison to white adipocytes (24). White adipocytes store

lipids in the form of single unilocular large lipid droplet (25). The

detailed description of lipid composition in various types of

adipocytes described elsewhere (24). Upon stimulation of

lipolysis, white adipocytes release free fatty acids (FFA) that can

be utilized by brown adipocytes as a fuel for heat production via

mitochondrial uncoupling or released to the circulation affecting

other tissues (26, 27). Beige adipose tissue represents an

intermediate state between white and brown; and can change its

appearance and function depending on environmental stimuli

including temperature, b-adrenergic signaling and nutrients

availability (28, 29). In obesity, caloric excess contributes to the

transition of beige adipocytes toward white adipocyte phenotype,

and their hypertrophy leads to the expansion of visceral and

subcutaneous WAT (30, 31).

Apart from the control of energy expenditure and storage,

studies for the past decade revealed other important functions of

adipose tissue. It becomes increasingly clear that adipose tissue

represents an important reservoir of various immune cells (32).

Presence of numerous immune cells in adipose tissue positions it as
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a potential regulator of inflammatory responses. It has been

suggested that inflammation in WAT can be initiated by multiple

stimuli, including TLR activation via free fatty acid sensing,

lipotoxicity, excessive lipid burden-induced ER stress, activation

of unfolded protein response, and hypoxia due to inability of blood

vessels to grow fast enough to catch up with the rapid expansion of

adipose tissue. Overall, the ability of lipid-overloaded WAT to

induce and sustain inflammation can lead to enhanced

accumulation and activation of immune cells establishing a

positive feed-forward loop further fueling the inflammation

(32, 33).

While several common risk factors predispose to both obesity

and atherosclerosis, for a long time, these two diseases were viewed

as parallel, simultaneously developing, but mechanistically

independent. However, alterations in adipose tissue function in

atherosclerosis recently started to draw significant attention (34–

36). Perivascular adipose tissue (PVAT) is especially interesting due

to its proximity to the aortic wall (Figure 1). Given the presence of

extensive vasa vasorum (multiple vessels and capillary) in PVAT,

inflammatory activation of adipocytes and infiltrated immune cells

is likely to modulate the inflammation and atherosclerosis either in

paracrine manner or by serving as a depot and a source of migrating

immune cells (37, 38).
3 Perivascular adipose tissue and its
role in atherosclerosis

As any other adipose tissue, PVAT is composed of white, brown,

and beige adipocytes, stromal and immune cells (39–41). In mice,

PVAT in coronary arteries and aortic arch is mostly represented by

WAT; while thoracic aorta is surrounded mostly by brown adipose

tissue (BAT), and PVAT near abdominal aorta consists of WAT and

BATmixture (40–43). In humans, the exact PVAT topography is less

understood and shows heterogenous characteristics between BAT

and WAT along the thoracic aorta, while mostly WAT can be found

in the abdominal aorta and near mesenteric arteries (44). Recent

studies demonstrated hypertrophy of PVAT during atherosclerosis

development (45–47), specifically near atherosclerotic-prone sites in

the aorta (48). A study by Kim et al. using multimodal nonlinear

optical (MNLO) imaging of thoracic PVAT-intact atherosclerotic

aorta revealed changes in lipid droplets, collagen, and elastin during

plaque growth in atherosclerosis-prone Apoe-/- mice (45).

Hypertrophy of thoracic PVAT adipocytes was detected in Apoe-/-

mice fed with western diet (WD) as compared to C57BL/6 wild type

controls; however similar lipid droplet number and size in PVAT

adipocytes was observed when mice were fed with chow diet,

indicating that increase in adipocyte size and droplet accumulation

is happening during progression of atherosclerosis (45). Similar

changes in lipid droplet sizes have been observed in humans with

atherosclerosis, therefore, adipocyte size and lipid composition of

PVAT were proposed as a biomarker to determine the stage of the

disease based on so-called fat attenuation index (FAI, i.e. the decrease

of lipid content measured by computerized tomography (CT)), that

has been validated in patients with coronary artery disease (49). CT

studies in human coronary arteries shows a gradient of adipocyte
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sizes and functional characteristics depending on their proximity to

the aortic adventitia. While beige/brown adipocytes are mostly

located nearby the adventitia, more white adipocytes appear

towards the outer layers of PVAT (49). Nevertheless, the

mechanisms underlying this site-specific expansion and

transformation remains to be elucidated.

Uncoupling protein-1 (UCP-1), a marker of brown adipocytes,

functions to uncouple the mitochondria thereby accelerating fatty acid

oxidation, energy expenditure, and thermogenesis. Downregulation of

UCP-1 is typically associated with “whitening” of adipose tissue as

lipids are no longer actively spent and accumulate. Furthermore,

downregulation of UCP-1 reversely correlates with Notch signaling

activation (47). The downregulation of UCP-1 was described in

patients with coronary artery disease (50) as well as Apoe-/- mice (45)

and was especially prominent in PVAT nearby advanced plaques (45).

UCP-1 downregulation, Notch signaling, inhibition of PPARg-
dependent gene expression in adipocytes and TGFb signaling were

suggested to contribute to lipid droplet accumulation and collagen

deposition linked to fibrosis near the plaque (45, 47, 49).

Overall, PVAT represents a complex tissue, where type of

adipocytes and their inflammatory state depends on the location

and changes during atherosclerosis progression. Below we discuss

various roles of PVAT in the regulation of vessel tone and

inflammatory environment.
3.1 Vasoconstriction

Perhaps, the most well-investigated function of PVAT to date is

its contribution to blood vessels support and vascular tone (51). The
Frontiers in Immunology 03
initial indication of PVAT’s involvement in vascular function came

from the discovery that PVAT reduced the contractile reactions to

noradrenaline in rat aorta (52). Subsequently, it has been

established that PVAT is losing its anti-contractile activity in

obesity (53). Ex vivo studies using aortic rings demonstrate that

PVAT from mice fed with normal chow diet promotes vasodilatory

effect, while PVAT from High Fat Diet (HFD) fed mice contributed

to vasoconstriction (54). The effect on vasoconstriction was partially

mediated by stress-response factor ATF3 and was linked to the

regulation of potassium channels (54). It was noted that thoracic

aortas without PVAT exhibited higher stiffness (loss of blood vessel

wall elasticity) supporting vasodilatory role of PVAT. Several

mechanisms regulating this phenomenon have been proposed,

including secreted by PVAT relaxion factors such as NO (46, 55).

In obesity, the relaxing properties of PVAT are abrogated

particularly due to reduction in Adiponectin and bioavailability of

NO (56).

The effect of PVAT on vasoconstriction is likely mediated via

crosstalk between adipocytes and vascular smooth muscle cells

(VSMC) (39, 57, 58). Indeed, PVAT was shown to modulate the

contractile response of VSMC through a variety of signaling

pathways including adipokine signaling, inflammatory signaling,

oxidative stress, and metabolic signaling (59). For example, NO

released from PVAT contributes to the regulation of vascular tone

and blood pressure, controlling VSMC function (59, 60).

Adipocyte-derived reactive oxygen species (ROS) can promote

VSMC proliferation and migration in extracellular signal-

regulated kinase (ERK) signaling-dependent manner thereby

contributing to vascular dysfunction and atherosclerosis (61).

Recently, PVAT-derived hydrogen peroxide (H2O2) was also
BA

FIGURE 1

Potential role of adipocytes in atherosclerosis. (A) Healthy PVAT is mostly represented by brown adipocytes that secrete anti-inflammatory
molecules, such as IL-10, Adiponectin, and Omentin. Crosstalk between adipocyte and immune cells controls adipose tissue homeostasis and
vascular tone. (B) During atherosclerosis development PVAT adipocytes further differentiate toward “white” pro-inflammatory phenotype. They start
to secret multiple pro-inflammatory cytokines such as IL-6, TNF, IL-1b, TGFb, IL-23, BAFF and APRIL; chemokines, such as MCP-1 and adipokines
such as Leptin and Visfatin; and downregulate anti-inflammatory adipokines such as Omentin and Adiponectin. UCP-1 expression essential for
energy dissipation and thermogenesis is also downregulated. The crosstalk between adipocytes and infiltrated immune cells further promotes the
recruitment of inflammatory macrophages, cDCs, pDCs and neutrophils and overall enhances inflammatory environment in PVAT. Adipocyte-derived
Leptin regulates VSMC and EC, and therefore vasoconstriction and endothelial dysfunction. PVAT, Perivascular Adipose Tissue; cDC, conventional
dendritic cells; pDC, plasmacytoid dendritic cells; VSMC - vascular smooth muscle cells, EC- Endothelial cells; VAM, vascular associated
macrophages; LAM, lipid associated macrophages; SAM, sympathetic neuron-associated macrophages. Created using Biorender.com.
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implicated in its anticontractile effect on VSMC as demonstrated in

vitro on aortic rings co-cultured with PVAT (61). Other metabolites

derived from the PVAT, such as hydrogen sulfide (H2S) and

Angiotensin 1-7 may affect VSMC function by promoting

vasodilation (62). For example, H2S might promote VSMC

relaxation by Ca2+-activated K+ channels (62).

Furthermore, PVAT was suggested to modulate endothelial cell

function. PVAT-derived NO was shown to inhibit the expression of

pro-inflammatory cytokines and adhesion molecules (55) and

induce the production of anti-inflammatory molecules such as

Adiponectin and IL-10 (51), thereby controlling the inflammation

and atherosclerosis.

Overall, the PVAT plays an essential role in the regulation of

vasodilation relevant to various vascular diseases including atherosclerosis.
3.2 Adipokine production

Leptin and Adiponectin are the most abundant adipokines

produced by adipocytes in physiological or pathological

conditions. Because of its proximity to the vessel wall, PVAT-

derived adipokines were suggested to impact the function of various

cells in the vessel wall. The expression of adipokines changes in

pathophysiological conditions. Hence, the downregulation of

adiponectin during obesity is observed, while Leptin is typically

elevated (63). Both Adiponectin and Leptin play an important role

in the regulation of vascular cells. Adiponectin function was linked

to VSMC contractile response via modulation of intracellular

calcium levels (64, 65), AMP-activated protein kinase (AMPK)

activation, and increase in NO production controlling VSMC

relaxation (64, 65). Adiponectin was also shown to regulate

endothelial cell function and promote eNOS activity within

endothelial cells (66). In accordance, adiponectin-deficient mice

spontaneously develop hypertension and chronic endothelial

dysfunction (51, 67, 68).

On the other hand, Leptin inhibits the production of adiponectin

and regulates VSMC contraction via upregulation of Endothelin 1

(ET-1, a vasoconstrictor and mitogen) (69, 70). It has been also

established that Leptin promotes the proliferation (71), migration

(72), and neointimal hyperplasia of VSMC via a PI3K-dependent

mechanism (73). Leptin was implicated to the regulation of immune

cell function (74, 75). Specifically, it was shown to promote TNF, IL-

6, IL-12, and ROS production by macrophages in adipose tissue (76).

Leptin also plays an important role in T cells. It skews T cell

differentiation toward Th17, and ablation of leptin receptor in CD4

T cells limited Th17 cell subset differentiation (77). Moreover, Leptin

was shown to inhibit Tregs proliferation and induce anergy (78). The

deficiency of Leptin (ob/ob mice) or Leptin receptor (db/db mice)

limited atherosclerosis development which was accompanied by

reduced numbers of IFNg producing Th1 cells while number of

Tregs with strong suppressive activity was elevated (74).

Omentin is an adipokine secreted mainly by adipose tissues,

including PVAT (79). In patients with CVD Omentin serum levels

are reduced (80, 81). Apoe-/- mice expressing human Omentin

transgene in adipocytes and macrophages showed fewer

atherosclerotic lesions and reduced macrophage infiltration in the
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plaque (82), suggesting its anti-inflammatory and anti-atherogenic

role. While a few studies suggest that Omentin may regulate VSMC

contraction (83) and modulate eNOS expression in the endothelial

cells (84), but more mechanistic studies are needed to understand

its role in obesity and atherosclerosis.

Visfatin is an adipokine secreted by adipose tissue, and

implicated into obesity (85) and atherosclerosis (86). Elevated

serum levels of Visfatin have been also reported in patients with

carotid atherosclerosis (86, 87). In mouse models, Visfatin has been

linked to the foam cell formation via modulation of Scavenger

receptors CD36 and SRA expression in macrophages (88) as well as

stimulation of VSMC proliferation (89).
3.3 Immune cells and cytokine production

While the role of PVAT in the regulation of vascular tone and

VSMC draws substantial attention (45, 90), its contribution to the

control of immune cell accumulation and activation in atherosclerosis

remains less understood. The immune infiltrate to the aortic wall

increases both in hypertension and in atherosclerosis. In

atherosclerosis, T and B cell were shown to accumulate

predominantly in the adventitial margin (35, 91, 92) in close

proximity to PVAT. Enhanced immune cell infiltration in PVAT has

been documented in Apoe-/- mice fed with chow diet (91), which was

further exacerbated by high-fat diet feeding (47). Immune cell

accumulation in PVAT may serve as an important link between

vascular and adipose tissue dysfunction and are potent sources of

various cytokines affecting aortic and adipose microenvironments (38).

Importantly, adipocytes themselves are able to produce

inflammatory cytokines and chemokines, such as TNF, IL-8,

MCP-1, IL-6, IL-1b, IL-23, TGF-b, BAFF and APRIL (59, 93–97).

The stimulation of pre-adipocyte 3T3-L1 cell line with TNF induces

the expression of p28, Ebi3, p35, p40, and p19, the subunits of IL-23,

IL-12 and IL-27 cytokines in vitro (96). PVAT collected near the

abdominal aorta was shown to produce higher level of pro-

inflammatory IL-6 and TNF as compared to thoracic PVAT in

rats (98), and heightened MCP-1 expression was found in mouse

abdominal PVAT (99). The spectrum and magnitude of produced

inflammatory mediators changes during disease development.

Hence, PVAT transplanted from C57BL/6 mice to Apoe-/- mice

showed lowered expression of IL-12, IL-6, and MCP-1 which

limited macrophage accumulation to the area of transplantation

in comparison to Apoe-/- PVAT in model of hypertension (100).

These observations suggest novel immunoregulatory role of

PVAT with yet to be identified mechanisms operating in vivo

during atherosclerosis progression.
3.4 Immune mechanisms of
adipocyte activation: specific cytokine
signaling in adipocytes

3.4.1 Interleukin-17 signaling and adipocytes
Adipocytes were shown to express various cytokine receptors

and consequently, they are responsive to a variety of pro-
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inflammatory stimuli (101, 102). IL-17 expression is elevated in

patients with metabolic syndrome (103, 104). Th17 cells have been

linked to the development of atherosclerosis, although their role is

not unequivocal (105, 106). IL-17RA is expressed by most cell types,

while IL-17RC, a second chain of heterodimeric IL-17R, was

recently found to be expressed on adipocytes where it was

suggested to control energy expenditure (107). Adipocyte-specific

ablation of Il17rc (Il17rcfl/fl AdipoqCre) resulted in weight gain,

increased lipid accumulation in BAT, and glucose intolerance (107).

Indeed, when fed with WD, these mice gain weight faster than their

Cre negative littermate controls and presented with higher lipid

accumulation in BAT, bigger inguinal and epididymal WAT depots

and therefore were less tolerant to cold (107). Similar observations

were found in mice where IL-17RC signaling was pharmacologically

inhibited by antibody (108). Mechanistically it was demonstrated

that IL-17A signaling suppresses adipocyte differentiation from

3T3-L1 preadipocytes in vitro that correlates with inhibition of

transcription factor KLF15 (109). Furthermore, IL-17 signaling may

regulate adipocyte metabolism. In obese mice, IL-17 treatment

upregulated the expression of multiple metabolic genes, including

Csl1, Atg1, Dio2, Glut4, Nnmt, Hsl, Ucp1, Pgc-1a and Acox1 (110).

These observations suggest that IL-17 signaling also plays a role in

nonimmune tissues and can be an important player in the

regulation of adipocyte function in CVD and obesity. Future

mechanistic studies focusing on the role of IL-17 signaling in

regulation of PVAT in atherosclerosis development would be of a

great interest.
3.4.2 Type I and type II interferon
signaling in adipocytes

Adipocytes have been reported to produce various interferons,

but also express type I and type II IFN receptors and, therefore, are

responsive to IFN stimulation (111). Administration of IFNb to

mice with diet-induced obesity restores insulin sensitivity, mitigates

the expansion of adipose tissue and weight gain, and increases

thermogenesis (112). Adipocytes stimulated with type I IFN (IFNb)
demonstrate transcriptional signature very similar to IFN/LPS

treated myeloid cells (111). Furthermore, IFNa/IFNaR signaling

was implicated in the regulation of glycolysis in adipocytes (111).

While whole body IFNaR knockout developed obesity similarly to

WT controls, it presented with different distribution of WAT with

hypertrophy, enhanced death of adipocytes in epididymal-eWAT

and reduction of inguinal and perirenal WAT. Ablation of IFNaR
reduced the accumulation of immune infiltrate in eWAT (111).

Furthermore, adipocyte-specific ablation of IFNaR in Ifnarfl/fl

AdipoqCre mice fed with HFD revealed a significant reduction of

inflammatory cytokine production from adipocytes (111).

Adipocytes were also shown to express type II IFN receptor

IFNgR (113–115). The IFNg/IFNgR signaling pathway has

been shown to play a role in the regulation of adipose tissue

inflammation (116). In vitro studies with 3T3-L1 cells suggest that

IFNgR signaling might be involved in the regulation of

l ipid metabolism in adipocytes as IFNgR stimulation

downregulated lipoprotein lipase and fatty acid synthase (117),

and also exerts a downstream activation of the STAT1/3
Frontiers in Immunology 05
pathway resulting in inhibition of PPARg expression (116).

Overall, these observations suggest that IFNaR and IFNgR
signaling are fully functional in adipocytes and regulate their

inflammatory activation.
3.4.3 Interleukin-6/IL-12 superfamily
signaling in adipocytes

The IL-6/IL-12 superfamily includes IL-6, IL-12, IL-23, IL-27

and IL-35 cytokines. These cytokines connect innate and adaptive

immune responses and can exert pro-inflammatory and anti-

inflammatory effects in context dependent manner (118–121).

The IL-6/IL-12 superfamily transduces their signals through

receptor complexes represented by heterodimers (121) with one

of the subunits, for example Gp130 expressed on all cell types

throughout the body, and another one with more cell type specific

expression, such as membrane-bound IL-6Ra that can be found on

hepatocytes, epithelial cells, leukocytes and adipocytes (122, 123).

Recent studies began to illuminate the role of these cytokines in the

regulation of adipocyte function.
3.4.3.1 Interleukin-6 signaling in adipocytes

In adipocytes, IL-6 signaling can be mediated by classical trans-

membrane IL-6R (formed by the heterodimer IL-6Ra and gp130)

(124, 125), or by trans-signaling mediated by soluble IL-6 Receptor

(sIL-6Ra) which binds to IL-6 and surface-expressed gp130 (123).

IL-6 signaling promotes Leptin secretion and lipolysis in BAT

adipocytes, as well as induce energy expenditure (126). Moreover,

chronic activation of IL-6/IL-6R signaling in adipose tissue was

linked to the development of obesity-related metabolic disorders,

such as insulin resistance and type 2 diabetes (123, 127). IL-6

regulates energy expenditure in obese individuals and may also act

as a first homeostatic response to low-grade inflammation related to

obesity. In healthy humans, IL-6 was linked to high insulin

sensitivity and fatty acid oxidation (125). On another hand,

Adiponectin production by adipocytes was suppressed by IL-6

(128), implying that IL-6 signaling in adipocytes play an

important role in the regulation of adipokine production, that in

turn may control the inflammation and vascular dysfunction. IL-6

is also known to promote recruitment of various immune cells via

control of pro-inflammatory chemokines production by myeloid

cells (95) and, possibly, adipocytes.

However, detailed mechanisms of IL-6 signaling in PVAT

adipocytes and their specific role in atherosclerosis remain to be

further investigated.
3.4.3.2 Interleukin-27 signaling in adipocytes

IL-27R signaling has been recently implicated in the

regulation of adipocyte function, and individuals with obesity

show a significant decrease in serum IL-27 (129). IL-27R deficient

mice were found to be susceptible to HFD-induced obesity and

develop insulin resistance, glucose intolerance and steatohepatitis.

Both leptin and adiponectin levels were elevated in the circulation

of IL-27 deficient mice. Adipocyte-specific ablation of IL-27R

using Il27rafl/fl AdipoqCre or Il27rafl/flUCP1-Cre-ERT mice
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resulted in increased HFD-induced obesity and metabolic

syndrome (129), although IL-27R ablation in brown adipocytes

showed milder effect. Furthermore, these mice show significantly

diminished thermogenesis, reduction of UCP-1 expression and

less multiocular lipid droplets in adipocytes (129). Conversely,

no changes were found in body weight gain in mice lacking

IL-27Ra in immune cells (129). The administration of

recombinant IL-27 to wild-type mice reduced body weight,

adipose deposition, and improve insulin resistance, while the

protective effect was ameliorated both in Il27rafl/fl AdipoqCre

and Il27rafl/fl UCP-Cre-ERT2 mice (129). Mechanistically,

stimulation of IL27R-sufficient primary beige adipocytes in vitro

with rIL-27 induced UCP1, PPARa, and PCG1-a expression, a

main regulators of energy metabolism; in p38 MAPK and ATF2-

dependent manner (129). These data demonstrate that IL-27R
Frontiers in Immunology 06
signaling can directly modulate the metabolism of adipocytes.

Future studies will be needed to evaluate how IL-27R signaling in

adipocytes may regulate the inflammatory environment in PVAT

in atherosclerosis.

Taken together, while multiple evidence demonstrated an

important role of PVAT in blood vessels support and control of

vascular tone, emerging data suggest that it could also play a key

immunoregulatory role (Figure 2). Recently described expression

of cytokine receptors in adipocytes suggest novel roles of cytokines

in the control of this tissue type, which in turn may regulate

immune cell accumulation. Further studies addressing how

cytokine may regulate adipose tissue including PVAT will help

to shed light on novel mechanisms regulating this tissue and its

impact on immune cell accumulation and activation in

atherosclerosis development.
BA

FIGURE 2

Myeloid cells in aortic PVAT and atherosclerosis. (A) Healthy PVAT is composed of brown and white adipocytes and infiltrated with immune cells.
Composition of myeloid cells in healthy PVAT is represented by VAM, TLF, SAM, “Crown-like” macrophages, cDCs (cDC1 and cDC2) and a small
number of neutrophils. While macrophages maintain tissue homeostasis, DC can activate anti-atherogenic Treg cells, helping to maintain immune
tolerance in the tissue. (B) During atherosclerosis development whitening of adipocytes and expansion of adipose tissue occurs alone with changes
in the composition of myeloid cells. Pro-inflammatory, lipid associate (Trem2high and Trem2low) and metabolically activated macrophages (MMe)
start to accumulate in adipose tissue and aorta, releasing pro-inflammatory chemokines and cytokines including IL-1b, TNF, IL-6, CCL2 and OPN,
which in turn activate adipocytes in PVAT and provide a positive feedback loop to adipocyte whitening, inflammatory activation and subsequent
pathogenic changes within PVAT. Neutrophils in adipose tissue accumulate in high numbers resulting in enhanced release of NETs and pro-
inflammatory IL-1b and CXCL1. Numbers of dendritic cells, including cDC, mDC and pDC, are also increased. While cDC exert their function via
antigen presentation to control T cell activation and differentiation, pDC regulate the inflammatory environment via type I IFNs production. Th1 and
other T helper subsets; Tregs, regulatory T Cell; PVAT, perivascular adipose tissue; VSMC, vascular smooth muscle cells, cDC; conventional dendritic
cells; pDC, plasmacytoid dendritic cells; mature DC, mature dendritic cells; NF, neutrophil; NETs, neutrophil extracellular trap; TLF,
Timd4+Lyve1+Folr2+ cells (vascular associated macrophages); LAM, lipid associated macrophages; SAM, sympathetic neurons associated
macrophages; MMe, metabolically activated macrophages; MacAIR, Aortic intima resident macrophages. Created using Biorender.com.
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4 Myeloid cells in adipose tissue
and atherosclerosis

4.1 Macrophages

Macrophages are innate myeloid cells, which play key roles in

the maintenance of tissue homeostasis as well as in inflammatory

responses (130). Tissue resident macrophages, originating from the

yolk sac during embryogenesis are more specialized in initial

maintenance of homeostasis and play sentinel functions (131,

132). In response to the tissue injury-initiated inflammation,

monocytes are recruited to the injured area and give rise to

monocyte-derived macrophages (133). The function of

macrophages can be site- and tissue- specific (134). The wide

spectrum of macrophage activation can be captured in the tissue,

and state of macrophage activity as well as spectrum of produced

molecules is determined by environmental cues (130).

Macrophages also are the most abundant population of

immune cells in adipose tissue and are key regulators of adipose

tissue homeostasis (12). In lean state, the macrophage population in

adipose tissue is represented mostly by anti-inflammatory/tissue-

repair/alternatively activated subset (135). Obesity facilitates the

accumulation of pro-inflammatory macrophages (135). Several

subsets of adipose tissue macrophages have been described. All

these subsets are established based on their localization or

transcriptional signatures (136). In adipose tissue, macrophages

closely interact with adipocytes. Representation of different

macrophage subsets in PVAT is poorly characterized; and the

role of the crosstalk between these two cell types in aortic

inflammation and atherosclerosis is not well understood. Since

adipocytes in PVAT can produce inflammatory cytokines and

chemokines (59, 94, 98, 99), it is plausible that their inflammatory

activation may be implicated to the recruitment and activation of

macrophages, which due to the physical proximity to the aorta will

likely impact aortic wall inflammation and thus, atherosclerosis.

In atherosclerotic aortas macrophages represent the most

abundant immune cell population known to regulate the disease

development at different stages (11, 137). Recent studies using

single-cell RNA sequencing (scRNAseq) of isolated immune cells

from the aorta or adipose tissue revealed a wide spectrum and

continuum of macrophage activation, which significantly enriched

our understanding of population-specific markers. Integrated

analysis of twelve different scRNA sequencing datasets of

macrophages from healthy and atherosclerotic mouse aortas

revealed four main macrophage subsets in mice: tissue-resident

(Lyve1+, Timd4+, Cd209f+), inflammatory (Ccr2+, MHCII genes,

Il1b+, Cd74+), which also include aortic plaque inflammatory

(Cxcl2high, Cd14 high), foamy (Trem2+) and aortic intimal resident

macrophages (MacAIR) (137–139). Human arteries, however,

appear to contain three major macrophage populations:

Inflammatory-Mj (CD74, HLA-DRB1), Foamy-Mj (APOC1,

APOE, FABP5, FABP4) and LYVE1-Mj (LYVE1, LGMN,

MARCO) (138) (Figure 2).
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4.1.1 Functional subtypes of macrophages
Diversity of macrophages in adipose tissue has been extensively

studied; and markers and functional characteristics of adipose tissue

macrophages have been well-described (136).

4.1.1.1 Crown-like macrophages

One important function of macrophages in adipose tissue is

scavenging of debris and dead cells (140). Macrophages that cluster

around dying adipocytes are known as “crown-like” macrophages,

and their numbers are increasing in obesity (141). Damaged

adipocytes release lipids and damage associated molecular

patterns (DAMPs) that in turn activate macrophages infiltrating

adipose tissue. “Crown-like” macrophages produce CCL2 (142),

and Osteopontin, a pro-atherogenic mediator (119), which has been

also implicated to the control of adipocyte progenitors

accumulation and differentiation. This interplay between

adipocytes and macrophages highlights the complex interactions

within adipose tissue (143) and dysregulation of this process may

have implications for metabolic and cardiovascular health.

4.1.1.2 Metabolically activated macrophages

High level of glucose and fatty acids in obesity promotes

metabolically activated transcriptional profile in macrophages

(144). Similarly, to “crown-like” macrophages, these cells are

located nearby dying adipocytes and engulf them. Metabolically

activated macrophages (MMe) produce lipases, essential for the fat

digestion, and internalize lipids released by dying adipocytes, which

in turn promote their activation in PPARg, p62 and NOX2-

dependent manner (144). Furthermore, MMe was shown to

potentiate inflammation and express high level of pro-

inflammatory genes (Il1b, Tn, Il6) as well as genes involved in

lipid metabolism (Plin2, Cd36, Abca1) (145) and, thus, their

presence correlated with augmented adipose tissue inflammation

(145). These cells create lysosomal synapses with dying or dead

adipocytes in order to prevent lipotoxicity caused by necrotic

adipocytes (143). PPARg plays an important role in regulation of

cell metabolism and function. Constitutive acetylation of PPARg in
macrophages impedes their ability to skew toward anti-

inflammatory state, and mice with constitutive acetylation-

mimetic form of PPARg in macrophages shows heightened

macrophage infiltration to adipose tissue and activation toward

pro-inflammatory state (146). In atherosclerosis, multiple

macrophage populations detected in the plaque and vessel wall

have at least some characteristics of MMe and can be accounted also

as inflammatory macrophages. Recent scRNA seq analyses

identified them as Ccr2+, Cd74+ and H2-Eb1+. They can also

express Nlrp3 and Il1b. Another small cluster of inflammatory

macrophages are Interferon-inducible macrophages that are

characterized high expression of Ifit3, Irf7, and Isg15 genes (147).

During atherosclerosis progression pro-inflammatory macrophages

accumulate in the aortic wall and atherosclerotic plaque and secrete

pro-inflammatory, pro-atherogenic cytokines including TNF, IL-

1b, IL-6, IL-12 and others (137).
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4.1.1.3 Lipid-associated macrophages

Another distinct population of macrophages found in adipose

tissue are lipid-associated macrophages (LAM) (148). Gene

expression signature of LAM macrophages resembles that of foam

cells in atherosclerotic plaque and is represented by the expression

of characteristic genes such as Lgals3, Ctsb, Itgax, and especially

Trem2 (149). These cells surround adipocytes and are characterized

by the expression of the lipid-detecting receptor - triggering

receptor expressed on myeloid cells 2 (Trem2), and genes

encoding proteins related to lipid uptake, lipid catabolism and

phagocytosis. The number of these cells is increased in adipose

tissue during obesity (148). Genetic ablation of Trem2 results in

limited recruitment of macrophages to the expanding adipose tissue

and, thus, contributing to massive adipocyte hypertrophy, systemic

hypercholesterolemia, inflammation, and glucose intolerance (139,

148). Therefore, Trem2+ LAM macrophages are essential for the

maintenance of adipose tissue homeostasis and control of metabolic

diseases including atherosclerosis (139, 148). Another subset of

tissue-resident macrophages was found in the inguinal white

adipose tissue (iWAT) and eWAT. These cells are characterized

by TIM4 expression and production of PDGF-family growth factors

and facilitate lipid storage in adipose tissue in response to dietary

changes (150).

In atherosclerosis Trem2+ LAM macrophages had been

identified in mouse and human arteries (139). They are located in

aortic plaque and are characterized by Igtax (CD11c), Trem2, Cd9

and Spp1 expression, at least in mice (138, 151). Trem2 is implicated

in lipid influx and foam cell formation in atherosclerosis (152), and

Trem2+ LAM upon lipid uptake become foam cells (138). Trem2

genetic ablation significantly reduces atherosclerotic plaque and

lipid accumulation in the plaque (152). In mouse aorta Trem2+

LAM can be further divided onto two subpopulations:

Trem2hiSlamf9 and Trem2hiGpnmb. Trem2hiSlamf9 cluster is

enriched for Cd72, Ch25h, and inflammatory markers (Tnf, Il1b),

while Trem2hiGpnmb expresses Gpnmb, Syngr1 and Fabp5 (138). In

humans, a population of LAM macrophages expressing PLINhi/

TREM1hi had been recently reported (153). The presence of PLINhi/

TREM1hi macrophages was higher in patients who experienced

stroke or transient ischemic attack (153). RNA-velocity trajectory

analysis suggests that TREM2hi macrophages differentiate toward

inflammatory PLINhi/TREM1hi LAMs (153), and oxLDL uptake

further upregulates PLIN2 expression. PLINhi/TREM1hi LAMs are

characterized by the enrichments of genes associated with apoptosis

and inflammation such as G0S2, BTG1, BCL2A1, IER3, BNIP3L

(153). OxLDL was recently shown to regulate metabolism of aortic

macrophages, modulating fatty acids trafficking to mitochondria

and suppressing OXPHOS in CD36-dependent manner (154), and

therefore can be further implicated in regulation of in situ

macrophages phenotypic plasticity.

Another key subset of macrophages in the aorta was shown to

take up lipids becoming foam cells. They are found in intimal layer

and accumulate with atherosclerosis progression (155). Recent

studies identified them as MacAIR macrophages (137). MacAIR are

characterized by Acp5, Cd74, Mmp12 and Gnt2 gene expression

(153). They also express Vcam1, Fcgr4, but have low level of Trem 2

and Spp1. Recent evidence suggests that they maybe in direct contact
Frontiers in Immunology 08
with vessel lumen (138). While MacAir macrophages are differentiate

come from monocytes, they are able to maintain independently of

circulating cells via local proliferation (137). MacAIR, Trem2hiGpnmb

and Trem2hiSlamf9 subset have overlapping functions including

cellular response to lipids. However, each population may have also

unique functions as well. For example, MacAIR macrophages express

more genes associated with antigen presentation, Trem2hiGpnmb

macrophages are involved in osteoclast differentiation, while

Trem2hiSlamf9 cells negatively regulate macrophage colony

stimulating factor (M-CSF) pathway (153).
4.1.1.4 Vasculature associated macrophages

Vasculature associated macrophages (VAMs) are resident

macrophages located near blood vessels in adipose tissue (156).

The inflammatory VAMs are characterized by expression of

LYVE1, which binds hyaluronan on VSMC, and bring these cells

together to allow matrix and collagen remodeling in MMP9-

dependent manner (157). VAM macrophages can upregulate

LYVE1 in response to local hypoxia, and loss of LYVE1 was

associated with reduced presence of blood vessels in adipose

tissue indicating the role of this subtype in regulation of adipose

tissue vascularization (143, 158–160). VAMs numbers are

constantly and dynamically changing. They increase in response

to high-fat diet feeding, while decrease during fasting or treatment

with b3-adrenergic agonists which induce lipolysis (160). Acute

inflammation induced by Lipopolysaccharide (LPS) or Salmonella

enterica markedly reduces the number of VAMs (160). Adipose

tissue macrophages express high level of Neuropilin-1 (Nrp1) and

Nrp1 macrophage-specific ablation results in compromised glucose

tolerance, weight gain and reduced efficiency of fatty acid

catabolism (159).

In atherosclerosis adventitia’s tissue-resident macrophages have

been identified. They are CSF1 dependent and are characterized by

high level of Lyve1, Tim4 and Folr2 expression and, therefore, in

resent publications, have been named TLF. This population can be

further subdivided on TLF-Cd209hi and TLF-Cd209low (161).

Although, the unique function of these subsets remains to be

established, early studies identified these cells as tissue-repair

macrophages known to produce Arginase-1 and chitinase-like

protein 3 (Chil3). They express CD209, CD163 and CD206

surface markers and metabolically rely mostly on OXPHOS (4,

162). This subset was originally suggested to play a protective role in

vessel homeostasis and implicated in plaque regression (163).

Numbers of tissue repair macrophages are typically decrease

during the progression of atherosclerosis, while plaque regression

is associated with heightened presence of this anti-inflammatory

tissue-repair cell type (163). In humans, the presence of tissue repair

macrophages was associated with calcification in atherosclerotic

plaque, and heightened intima and media thickness, a signature of

plaque stability (151).
4.1.1.5 Sympathetic neuron-associated
macrophages (SAMs)

Nervous system plays an important role in the regulation of

adipose tissue homeostasis and energy storage (164). Changes in
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temperature or availability of nutrients drive catecholamine

production from adrenal glands, which have a significant effect

on the regulation of central nervous system-adipose tissue crosstalk,

promoting lipolysis and energy expenditure via b-adrenergic
receptor activation by noradrenaline (165). Recently, the

communication between macrophages and neurons has been

demonstrated. Thus, macrophages interacting with neurons have

been named “sympathetic neuron- associated macrophages”

(SAMs). These macrophages are located near sympathetic

neurons and can import and degrade norepinephrine (NE)

leading to decreased NE levels in the tissue and reduction in

lipolysis in WAT which leads to increased weight gain (165).

Number of SAMs during obesity is typically increased, and their

transcriptional profile shows heightened expression of genes

associated with neuronal development and synaptic signaling

(165). These macrophages express a noradrenaline transporter

SLC6A6 and monoamine oxidase (MAO). Genetic ablation of

Slc6a6 enhanced thermogenesis and adipocyte browning (165).

Methyl-CpG-binding protein 2 (MeCP2) is a transcriptional

regulator that plays a critical role in development and function of

neurons, but also other immune cells including macrophages.

Mecp2 expression in macrophages can be influenced by

inflammatory signals, such as LPS and cytokines. It was shown

thatMecp2 ablation in brown adipose tissue macrophages impaired

sympathetic innervation and therefore promoted spontaneous

obesity via altered adipose tissue thermogenesis (166).

Neuro-immune interaction has been recently implicated in

enhanced immune cell activation and cytokine production in

atherosclerosis (167). Activation of sympathetic nervous system

was linked to atherosclerosis development, particularly via control

of hematopoiesis (168). Catecholamines produced by leukocytes

and sympathetic nerve in bone marrow promote expansion of

GMPs and myeloid cell output required for enhanced

atherosclerosis development in diabetic WD-fed Apoe-/- mice

(169). The expansion of neurons was also detected during the

progression of atherosclerosis in WD-fed Apoe-/- mice. The

crosstalk between neurons and macrophages in atherosclerosis

may be especially prominent in PVAT which is heavily innervated.

While certain mechanisms discussed herein may also be directly

applicable to PVAT, future studies will be needed to establish the

composition and function of macrophages in PVAT and determine

the role of adipocyte-macrophage cross-talk on inflammatory

environment in the aorta in atherosclerosis.
4.2 Neutrophils

Neutrophils are myeloid cells which are first responders at to the

sites of inflammation (170). Their recruitment is mediated by

chemokines including CXCL1, CXCL8, complement fragments and

bacterial peptides (171). Activated neutrophils produce cytokines,

elastase (NE), defensins, myeloperoxidase (MPO) as well as

extracellular traps (NETs), which are intricate web-like structures

entrapping pathogens and extracellular entities (171, 172). LPS,

cytokines, and cholesterol crystals mediates neutrophils activation

and NETs release in atherosclerosis (173). In advanced stages of
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atherosclerosis, neutrophils can contribute to plaque destabilization

and rupture (174). Their activation and release of proteases, such as

matrix metalloproteinases (MMPs), can weaken the fibrous cap of the

plaque, making it prone to rupture (174). Plaque rupture can trigger

the formation of blood clots, leading to acute cardiovascular events.

Neutrophils were detected in adipose tissue, although they

represent a rather minor population in lean eWAT (175). During

obesity neutrophil numbers are rapidly increased (up to 20 times)

both in eWAT (175) and in PVAT (176). Inflamed adipocytes

producing IL-8 and other chemokines were suggested to mediate

neutrophil recruitment into adipose tissue (200). Accumulated in

adipose tissue Neutrophils were shown to produce CCL2 and TNF,

that in turn facilitate the recruitment of monocytes (176).

Activation of Neutrophils by fatty acids released from adipocyte

results in IL-1b (177) and ROS production governs the recruitment

of other immune cells (Figure 2).
4.3 Dendritic cells

Dendritic cells are professional antigen-presenting cells that are

crucial for T cell activation (178, 179). Several subsets of DC have

been identified, including conventional (cDC) and plasmacytoid

pDC (180). cDC can be further divided into two main subsets based

on their phenotype and function: cDC1 and cDC2 (181). In

addition to standard surface markers, recent scRNA-sequencing

analyses proposed additional transcriptional signatures to identify

cDC subsets in aortas. Mouse cDC1 are characterized by Xcr1 and

Clec9a expression, while human cDC1 express CLEC9A, IRF8 and

IDO1. Mouse cDC2/monocyte-derived DC are characterized by

Cd209a, Clec10a, Ifitm1 and Napsa gene expression, while human

cDC2 express CLEC10A, FCER1A and CD1C. Mouse aortic mature

Fscn1+ Ccr7+ DC also express Il4i1+, Cd274+, Tnfrsf4+, Ccl22+,

Cd40+ and CD86 genes (138).

In adipose tissue, cDC1 promote differentiation of regulatory T

cells, which help to suppress inflammation and prevent the

development of obesity and metabolic dysfunction (182). The

ablation of CD11c+CD8+ cDC1 in Batf3-/- mice led to weight gain,

while the expansion of cDC1 caused the weight loss and increase in

numbers of Tregs and iNKT (invariant Natural Killer) (182). At the

early stage of atherogenesis, DC have been identified in the

subintimal space, where they were shown to uptake lipids (180),

however recent scRNA seq studies suggest that these CD11c+ cells are

actually similar to MacAir macrophages. During atherosclerosis

progression DC accumulate in the aorta, particularly in adventitia

where they present antigens to CD4 T cells and activate them directly

in the aortic wall (183). CCL17-expressing DC were suggested to

restrain Treg responses thereby contributing to atherosclerosis

development (184). Clec4a4 or DCIR2 (Dendritic cell

immunoreceptor 2) is a C-type lectin receptor, which is expressed

by CD8a- cDC. WD-fed Ldlr-/- mice lacking Clec4a4 developed

smaller plaques with only limited necrosis indicating pro-

atherogenic role of this DC subset. Ldlr-/-Clec4a4-/- mice were

characterized by lower plasma cholesterol and triglyceride levels, as

well as fewer monocytes and neutrophils in circulation suggesting

that Clec4a4+ DC may regulate mobilization of myeloid progenitors
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from the bone marrow under hypercholesterolemic conditions (185).

cDC2 (CD11c+CD11b+CD8-) was also shown to play an important

role in the regulation of T cell immunity (178). Activation of PPARg
in cDC2 suppresses the onset of local inflammatory responses in

adipose tissue during inflammation by promoting the differentiation

of Tregs. During atherosclerosis development cDC2 were reduced in

aortas of WD-fed Apoe-/- mice (186).

High-fat diet feeding causes the expansion of pDC in visceral

adipose tissue. They produce significant amounts of IFN, which

suppresses the accumulation of PPARg+ Tregs by affecting their

proliferation and survival (187). Pharmacological or genetic

depletion of pDC by anti-PDCA-1 antibody or in BDCA2DTR

mice treated with diphtheria toxin, lowered body weight and

blood glucose level and contributed to the expansion of Treg cells

(187). pDC have been found in atherosclerotic lesions, where they

may play a dichotomous role during development and progression

of the disease (155, 188). At early stages, pDC may contribute to the

initiation of the disease by rapidly secreting type I interferons

(IFNs), which promote foam cell formation (189). pDC also

release pro-inflammatory cytokines, such as TNF, and enhance

the recruitment and activation of T cells and monocytes (190). In

human atherosclerosis, IFNa secretion correlated with plaque

instability (191). IFNa stimulation promotes production of IFNg
and TRAIL by CD4+ T cells which in turn may contribute to

vascular smooth muscle cell death in antigen-independent manner

(191). However, at advanced stages of atherosclerosis, pDC may be

atheroprotective and limit the disease progression by dampening

proliferation and activation of T cells (192).

Little is known about the roles of DC specifically in PVAT,

although they were found at adventitia-PVAT border (193)

(Figure 2). Presence, activation status and functions of various

DC subsets in PVAT has not been yet defined. The inflammatory

changes in PVAT may facilitate DC accumulation and activation

acting via secretion of adipokines and cytokines such as Leptin,

Resistin, and TNF (194, 195). Growing and inflamed PVAT can

produce chemokines, such as CCL2 and CXCL8, which attract DC

to the site of inflammation.
5 Concluding remarks

Perivascular adipose tissue is a dynamic and metabolically

active tissue that interacts with vascular wall and immune system.

The role of PVAT in atherosclerosis is now gaining attention, not

only as a regulator of vasoconstriction, but as a source of paracrine

molecules. Furthermore, PVAT as any other adipose tissue also

serves as a reservoir for various immune cells, including myeloid

cells. These immune cells contribute to the chronic low-grade

inflammation in PVAT and may regulate the progression of

atherosclerosis. In the past two decades, multiple molecules

secreted within PVAT and regulating aortic tissue in a paracrine

manner has been identified, but the cellular source and mechanisms

of action on various cells within the aortic wall remains

incompletely understood. Increased cytokine production and

immune infiltration into PVAT has been reported both in obesity

and hypertension, promoting the pro-inflammatory crosstalk
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between immune cells and adipocytes, however, the specific

changes in immune cell composition in PVAT during

atherosclerosis development remains to be determined.

It is likely that under inflammatory conditions during the

development of atherosclerosis, interaction between adipocytes

and infiltrating myeloid cells will generate a positive feed-forward

loop potentially facilitating the recruitment of pro-inflammatory

myeloid cells and, thus, further fueling the inflammation in the

aortic wall. The pro-inflammatory signaling might induce adipocyte

differentiation from BAT-like to WAT-like, and therefore

stimulates the production of various cytokines and adipokines.

Defining new mechanisms regulating the crosstalk between

adipocytes, PVAT infiltrating myeloid cells and aortic wall/tissue

may help to develop targeted therapies or preventive approaches in

CVD. By studying the heterogeneity of myeloid cells in PVAT, we

can gain insights into the complex connections between

inflammation in adipose tissue, immune responses, and

atherosclerosis. Nevertheless, the causality and the level of

participation of PVAT in the development, stability, and rupture

of the atherosclerotic plaques need to be further elucidated.
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