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The interplay of inflammation
and remodeling in the
pathogenesis of chronic
rhinosinusitis: current
understanding and
future directions

Xinru Gong1, Zhoutong Han1, Hongli Fan1, Yuqi Wu1,
Yuanqiong He1, Yijie Fu2, Tianmin Zhu1* and Hui Li2*

1Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu,
Sichuan, China, 2School of Preclinical Medicine, Chengdu University, Chengdu, China
Chronic rhinosinusitis (CRS), a common clinical condition characterized by

persistent mucosal inflammation and tissue remodeling, has a complex

pathogenesis that is intricately linked to innate and adaptive immunity. A

number of studies have demonstrated that a variety of immune cells and

cytokines that play a vital role in mediating inflammation in CRS are also

involved in remodeling of the nasal mucosa and the cells as well as different

cytokines involved in remodeling in CRS are also able to exert some influence on

inflammation, even though the exact relationship between inflammation and

remodeling in CRS has not yet been fully elucidated. In this review, the potential

role of immune cells and cytokines in regulating inflammation and remodeling of

CRS mucosa has been described, starting with the immune cells and cytokines

that act together in inflammation and remodeling. The goal is to aid researchers

in understanding intimate connection between inflammation and remodeling of

CRS and to offer novel ideas for future research.

KEYWORDS

CRS, remodeling, inflammation, TGF-b, TNF-a, neutrophils
Abbreviations: CRS, chronic rhinosinusitis; CRSwNP, chronic sinusitis with nasal polyps; CRSsN,

chronicsinusitis without nasal polyps; BMT, basementmembrane thickening; EMT, epithelial-

mesenchymal transition; TH, helper T lymphocytes; ILCs, innate lymphoid cells; NK, natural killer cells;

IFN-g, interferon-g; IL, interleukin; TNF-a, tumor necrosis factor-a; MMP, matrix metalloproteinase; TIMP,

tissue inhibitor of metalloproteinases; TGF-b, transforming growth factor-b; VEGF, vascular endothelial

growth factor; PDGF, platelet-derived factor; BMP, bone morphogenetic protein; IgE, immunoglobulin E;

FGF, fibroblast growth factors; ECM, extracellular matrix.
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1 Introduction

Chronic rhinosinusitis (CRS) is described as a chronic

inflammatory disease of the mucosa of the nasal cavity and

sinuses which can lead to 12 consecutive weeks of clinical

symptoms such as nasal runny nose, nasal congestion, facial

swelling, decreased sense of smell, headache and dizziness. In

addition, signs of disease can be diagnosed by endoscopy or

associated CT scan changes (1, 2).The pathology of CRS is

commonly characterized by persistent mucosal inflammation and

tissue remodeling (3). The immune response in CRS can be divided

into three main inflammatory endotypes based on a distinctive

characteristic spectrum which is composed of various inflammatory

mediators, immune cells, and physiological functions (4–6). The

three immunological subtypes display the following characteristics:

Type 1 inflammation is primarily mediated by 1 helper T

lymphocytes (TH1), type 1 innate lymphoid cells (ILC1), natural

killer (NK) cells, and neutrophils, with a priority expression of

interferon-g (IFN-g), tumor necrosis factor-a(TNF-a), and IL-12.

Type 2 inflammation is predominantly driven by TH2, ILC2,

eosinophils, macrophages, and B cells, and is associated with

interleukin-4 (IL-4), IL-5 and IL-13. Lastly, Type 3 inflammation

involves neutrophils, TH17 as well as ILC3 and is characterized by

elevated levels of IL-17 and IL-22. The terms Th1, Th2 and Th17

inflammation have been also used to describe these three endotypes.

The remodeling features of CRS include goblet cells proliferation,

basement membrane thickening (BMT), subepithelial edema and

fibrosis, subepithelial glandular hyperplasia, collagen deposition,

epithelial-mesenchymal transition (EMT),and osteitis (7–9). The

typical remodeling related factors that can regulate these features

are matrix metalloproteinase (MMP), tissue inhibitor of

metalloproteinases (TIMP), transforming growth factor-b (TGF-

b), vascular endothelial growth factor (VEGF), platelet-derived

factor (PDGF), bone morphogenetic protein (BMP) and

osteopontin factors (10–12). Interestingly, at the same time, it has
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been reported that the two most common phenotypes, chronic

rhinosinusitis with nasal polyps (CRSwNP) as well as chronic

rhinosinusitis without nasal polyps(CRSsNP), possess different

immunomodulatory mechanisms and remodeling characteristics

(2, 13). However, the potential link between inflammation and

remodeling in CRS is not well understood as for a very long time,

remodeling characteristics in CRS were thought to be secondary

processes resulting from the protracted inflammatory process (14).

But, the findings reported in early CRS studies that increased

fibroblast and collagen deposition in the nasal cavity can occurs

prior to local inflammation has opened new areas of

investigation (15).

The pathogenesis of CRS is complex as it is a chronic disease

that requires long-term maintenance treatment to control the

condition (16). In recent years, control has been proposed as a

more subtle outcome indicator by different experts, which refers to

the maintenance of disease performance at an acceptable level (17).

At present, the dominant methods of control include

pharmacological treatments, followed by surgical intervention.

However, with advent of refractory CRSwNP that persists or

recurs despite long-term pharmacological and surgical treatment

and acute exacerbations of chronic rhinosinusitis (AECRS) that can

cause transient worsening of symptom intensity in patients with

CRS, the traditional methods of medication and surgery do not

often provide ideal results. Additionally, inspired by significant

advances in asthma treatment, biologics have become the focus of

CRS treatment in recent years (Table 1). In fact, some biologics have

shown remarkable improvements in the severity of refractory

CRSwNP and AECRS on both the subjective and objective

indicators (18, 19). These biologics, primarily focusing on

cytokines, cytokine receptors or antibody bindings, appear to

provide a new perspective that the different cytokines, immune

cells and remodeling factors related to CRS could potentially be key

in breaking the prevailing belief that remodeling and inflammation

do not interact during disease progression. Thus, based on these
TABLE 1 Biological agents approved or in clinical trials for CRSwNP.

References Biologic Target Development Status for CRS

Bachert C et al,
2019 (1)

Dupilumab IL-4Ra EMA and FDA approved for CRSwNP, Phase 3 trials concluded

Gevaert P et al,
2020 (2)

Omalizumab IgE EMA and FDA approved for CRSwNP, Phase 3 trials concluded

Jk H et al,
2021 (3)

Mepolizumab IL-5 EMA and FDA approved for CRSwNP, Phase 3 trials concluded

Bachert C et al,
2022 (4)

Benralizumab IL-5Ra Phase 3 trials concluded

ClinicalTrials:
NCT02799446

Reslizumab IL-5 Under phase 3 trial

ClinicalTrials:
NCT05281523

Depemokimab IL-5 Under phase 3 trial

ClinicalTrials: NCTO4851964 Tezepelumab TSLP Under phase 3 trial

ClinicalTrials: NCTO3614923 Etokimab IL-33 Under phase 2 trial
IL, interleukin; EMA, european medicines agency; FDA, food and drug administration; IgE, immunoglobulin E; TSLP, thymic stromal lymphopoietin.
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recent findings in the field, the current article reviews the potential

roles of cytokines, immune cells and remodeling factors in the

inflammation and remodeling mechanisms of CRS. The goal is to

further explore the possible relationship between inflammation and

remodeling, thus laying a theoretical foundation for the formulation

of more refined and individualized CRS treatment strategies in

the future.
2 Important cytokines involved in CRS
remodeling and inflammation

It has been established that cytokine expression and regulation

serve as the most crucial factors in the pathological mechanisms of

CRS that have been identified after years of research development.

The TH1, TH2, TH17 and remodeling-associated cytokines that can

participate in CRS inflammation and remodeling (Table 2), as well

as the pathways of cytokine action, have been discussed in the

sections that follow.
2.1 Impact of cytokines of the TH1 on
remodeling and inflammation

The TH1 cytokines involved in CRS are mainly TNF-a and

IFN-g which are produced by Th1 cells, cytotoxic T cells, NK cells as

well as ILC1 and prior studies have reported that both TNF-a and

IFN-g play a substantial role in the development of inflammation

and remodeling pathology, where the inflammatory response

primarily driven by TNF-a and IFN-g is even considered to be

the main characteristic of TH1 inflammation (20).

It has been found that multiple pathways can be used by TNF-a
to have an impact on inflammation and remodeling. TNF-a is

frequently regarded as a key pro-inflammatory factor in the

pathogenesis of CRS due to the fact that nasal polyp tissues have

been observed to express markedly high levels of TNF-a (21). In

fact, previous studies have revealed that TNF-a can directly harm
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the nasal mucosal epithelium by causing mononuclear-

macrophages formation, triggering their migration, and increasing

their cytotoxicity. It can also activate the T lymphocytes, stimulate

the production of immunoglobulin by B lymphocytes (22), and

increase neutrophil levels, by promoting eosinophil survival, and

enhancing their cytotoxic effects (23). In CRSsNP, which constitutes

up to more than two-thirds of CRS cases (24), fibrosis has been

identified as the primary remodeling feature (25). This condition is

typically characterized by excessive fibroblast proliferation and

deposition of the collagen-rich extracellular matrix (26). TNF-a,
on the other hand, has been demonstrated to exert significant

antifibrotic properties in preclinical models of TNF receptor-

deficient mice (27), and in experiments with TNF-a blockers

alone (28). EMT is a process that can effectively convert polar

epithelial cells into cells with a mesenchymal phenotype (29) and it

facilitates a pervasive inflammatory damage repair and remodeling

process that takes place in mucosal and skin barriers. It is well-

known that TNF-a acts as a key signal for EMT induction in the

tumor environment (30), and it has the ability to promote

accelerated EMT through a variety of mechanistic pathways to

increase the invasiveness of cancer cells (31, 32). Additionally,

increased TNF-a expression in CRS can lead to increased EMT,

which could be potentially related to the development of

subepithelial fibrous tissue as well as thickening of the basement

membrane and thickening of nasal sinus mucosal tissue on sinus

CT images (29).

IFN-g is a key cytokine that predominantly aids in host defense

againstTh1 inflammation caused by intracellular pathogens (33),

but it has also been reported to display strong antagonistic effects in

a number of fibrotic disease models. IFN-g plays a complex role in

regulation of inflammation in CRS. On the one hand, it can

promote inflammation by causing neutrophil oxidation,

phagocytosis, as well as chemotaxis, disrupting tight junction

proteins, and inducing apoptosis in nasal mucosal epithelial cells

(34). On the other hand, it can protect by preventing the

development of more pathogenic T cell phenotypes (Th2 and

Th17). The impact of IFN-g on remodeling is reflected in its
TABLE 2 Cytokines Influencing Remodeling and Inflammation.

Effectors

Targets

Tumor necrosis
factor-a

Interferon-g Interleukin-4/
Interleukin-13

Interleukin-5 Interleukin-17
Transforming

growth factor-b
Fibroblast

growth factors

Neutrophils + + / / / / /

Eosinophils + / / + / — /

Macrophages + / / / / / +

Fibroblasts / — / / + + +

Fibrosis — — + / + + +

Mucosal edema / / + + / + /

Epithelial
mesenchymal
transition

+ / + / / + /

Nasal polyps / / + + + / /
'+' indicates promotion, '–' indicates inhibition, '/' denotes not mentioned in the text.
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prominent antiproliferative and antifibrotic effects (35) and IFN-g
has been found to reduce fibrosis in liver (36) and kidney (37)

fibrosis models by inhibiting TGF-b activity, or can also inhibit

fibroblast activation and proliferation to exert anti-fibrotic effects

(37) and suppress collagen synthesis (38). Therefore, it is highly

likely that the elevated levels of IFN-g in CRS can also affect the

remodeling of the nasal mucosa’s fibrosis.
2.2 The impact of TH2 cytokines on
remodeling and inflammation

Eosinophil and mast cell infiltration, goblet cells proliferation,

elevated immunoglobulin(Ig) E levels, and the production of

cytokines like IL-4, IL-5, and IL-13 by ILC2, T cells2, and Th2

cells have all been identified as the characteristics of the TH2

immune response in CRS (39). It has been reported that different

CRS phenotypes have TH2 immune responses, and medium

CRSwNP can have up to 80% of them (40). There are even

several guidelines published for the management of differentiated

CRS with type 2 and non-type 2 immune responses. The TH2

immune response can be found in the different TH2 inflammatory

factors such as IL-4, IL-5, and IL-13 which have been extensively

studied in CRS due to their association with more severe symptoms,

higher recurrence rates, and more complex concomitant symptoms.

They can be identified as biomarkers in the peripheral blood and

nasal mucosal tissue of CRS patients, and have also been shown to

play a significant role in the pathological mechanisms of both

inflammation and remodeling in CRS (41).

A pair of closely related cytokines, IL-4 and IL-13, share the IL-

4R/signal transduction and activator of transcription 6 (STAT6)

signaling pathway for mediating their actions (42). Inflammation

and remodeling in response to CRS also reveal similarities between

IL-4 and IL-13 pathological manifestations. For instance, IL-4 can

exert immunomodulatory effects on B cells, T cells, mast cells, as

well as macrophages, and serves as an autocrine growth factor for

helper T cells that can influence CRS inflammation. In CRS, IL-4

can stimulate B cells to differentiate into the plasma cells and

produce IgE that can bind to the mast cells and cause the release

of a number of inflammatory mediators, particularly eosinophil

chemokines, which ultimately can damages sinus mucosal tissues

and promote the development of nasal polyps (43). Moreover, IL-4

can induce the expression of vascular cell adhesion factors by

endothelial cells, and it can also facilitate the binding of

monocytes, lymphocytes, as well as eosinophils to the vascular

endothelial adhesion, which ultimately can augment the overall

inflammatory response (44). IL-13, on the other hand, is a

pleiotropic cytokine that is primarily produced by activated Th2

cells, and prior studies have shown that the nasal mucosal tissues

from CRS patients have significantly elevated levels of IL-13 (45).

IL-13 is involved in the nasal mucosa’s defense mechanism against

the respiratory viral and bacterial infections and it can activate B

cells to regulate IgE production and epithelial remodeling (46, 47).

It can also act synergistically with other proinflammatory cytokines.

As a result of the discovery that IL-4 and IL-13 play a critical role in
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the inflammatory process that can lead CRS, several biological

agents that target the IL-4/IL-13 pathway have been discovered

for use in CRS. Although IL-4 and IL-13 can influence CRS

remodeling in remarkably identical fashion, IL-13 generally has

been reported to have a greater impact. It is believed that IL-13 is a

crucial component in pro-fibrosis because numerous studies have

indicated that it can either directly or indirectly promote fibrosis

(48, 49). It had been previously also hypothesized that IL-4 could be

responsible for the pro-fibrotic effect of IL-13 (50). However, it has

been found that IL-13 can still exert its fibrosis-inducing effect when

the traditional IL-4R/STAT6-mediated signaling pathway has been

blocked, i.e., IL-13 can induce fibrosis by activating additional

signaling mechanisms through its own receptors (51). In addition,

through activating its downstream signaling pathways, IL-13 can

also stimulate TGF-b expression, which can enhance fibroblast

activation and collagen deposition, thereby causing inflammatory

edema and thickening of the basement membrane (52). Moreover,

IL-13 and IL-4 can work in conjunction to suppress the tissue

fibrinogen activator expression, activate coagulation factor XIIIa,

and negatively modulate eosinophil levels. These events can result

in increased fibrin deposition and cross-linking, tight tetrameric

complex formation, and worsened edema remodeling in

rhinitis (53).

As IL-5 has been identified a crucial component in eosinophil

proliferation, chemotaxis, differentiation, activation, and survival

(54), it appears that IL-5 can primarily affect inflammation and

remodeling through eosinophils during the pathological

development of CRS. For example, in CRS, activated IL-5 can

promote a large number of eosinophils to migrate into the

mucosa and strengthen their adhesion, thus promoting nasal

mucosal inflammation, which has been established as the tissue

basis of nasal polyps (55). The expression of IL-5, on the other hand,

was reported to be significantly increased in CRS, both in the nasal

mucosal tissue and serum, and it was closely correlated with both

the subjective and objective measures of the severity of the disease

(56). Eosinophils play a vital part in how IL-5 can affect remodeling

as well, and hence the topic is discussed in more detail under

eosinophils below.

In conclusion, TH2 cytokines IL-4, IL-5, and IL-13 not only

contribute to CRS inflammation by rupturing the epithelial barrier,

mediating the cilia dysfunction and mucus production, mediating

altered nasal mucosal macrophage function, reducing innate

immune function in the nasal cavity stimulating the development

of mucosal edema and pseudocysts (57), but can also display strong

pro-fibrotic properties. Overall, they possess potent pro-fibrotic

properties in the context of CRS remodeling, which are intimately

linked to the onset of fibrosis (58).
2.3 The impact of TH17 cytokines on
remodeling and inflammation

ILC3 and Th17 cells can all produce two main cytokines of the

TH17 immune response, IL-17, and IL-22. An important

characteristic of the TH17immune response is inflammation that
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is mainly driven by IL-17 and IL-22 cytokines (59). A number of

related to CRS have also shown that IL-17 and IL-22 can have a

significant impact on the inflammatory process, but their influence

on CRS remodeling is currently unknown. IL-17 is a general term

for the various cytokines like IL-17A, B, C, D, E, and F (60), among

which abnormal expression of IL-17A has been strongly associated

with chronic inflammation and autoimmune diseases (61)and it has

been reported to play a significant role in promoting nasal polyp

formation (60). Thus, by influencing the pro-inflammatory

response of inflammatory cells in the nasal mucosa, high

expression of the IL-17 protein found in CRS patients could

effectively contribute to the pathogenesis of nasal polyps (60).

Additionally, since IL-17 was discovered to be significantly pro-

fibrotic in skin (62), liver (63), lung (64), intestine (65), kidney (66),

and heart (67)models of fibrosis, IL-17 is also identified to function

as a significant pro-fibrotic factor. For instance, in asthma model

mice, anti-IL-17 treatment was found to decrease the lung

inflammation, edema, oxidative stress, and extracellular matrix

remodeling (68). It could also induce collagen production in

myofibroblasts and modulate the expression of MMP-3, MMP-9,

and TIMP1 (69, 70). Therefore, it is implied that IL-17 may also be

crucial for the remodeling of the nasal mucosa in CRS.

A member of the IL-10 cytokine family, IL-22 has been reported

to be crucial for mucosal intrinsic immunity in the respiratory,

digestive, and skin tracts, because it can aid in anti-microbial

defense, the protection and repair of the tissue damage, and acute

phase responses (71). Interestingly, prior studies on IL-22 in CRS,

however, are still unclear, and the inconsistent results of IL-22

content measurements in CRS could be a significant impediment.

This could be attributed to the fact that nasal polyps themselves

have more pathological types and can be affected by various factors,

such as the site of sampling and the application of hormonal drugs

at the time of the study, as well as the different ethnicities of the

study subjects (72). However, in terms of influencing the

remodeling, researchers have hypothesized that its function is

similar to that of IL-10; however, in contrast to the hazily

predicted remodeling effects, inflammatory effects of IL22 are

relatively evident in CRS, where it was discovered to exhibit a

favorable effect on the expression of different adhesion molecules

and chemokines. Thus, through affecting these important functions,

it can attract diverse inflammatory cells, which in turn can intensify

the Th2-type immune response and ultimately induce pathological

effects (73).
2.4 The impact of remodeling-related
cytokines on remodeling and inflammation

Normally considered to be typical cytokines affecting CRS

remodeling, TGF-b, fibroblast growth factors (FGF) and VEGF

have been found to have a profound impact on the pathological

process of CRS inflammation through prior research.

TGF-b refers to TGF-b1 when not otherwise specified because

TGF-b1 has an overwhelming predominance of up to 80% and is

the most abundant member of TGF-b family. Given that TGF-b1 is
Frontiers in Immunology 05
the most fibrogenic factor (74), it has been proposed that the

differences in TGF-b levels between CRSwNP and CRSsNP could

contribute to the different remodeling characteristics of CRS tissue

remodeling (75). Moreover, When it comes to its inflammatory

impact on CRS, TGF-b1 has been reported to have both pro- and

anti-inflammatory effects. For example, studies have elegantly

shown that TGF-b1 can promote fibrosis through a variety of

pathways as CRS pathology develops.

The number of fibroblasts is directly correlated with the

expression of TGF-b1, which has been found to induce fibroblast

proliferation and differentiation into the myofibroblasts (76).

Additionally, TGF-b1 can regulate the balance between TIMP

and MMP, mediate collagen release and extracellular matrix

synthesis (77). Furthermore, TGF-b is the most effective inducer

of EMT (78) and can contribute significantly to EMT through

modulating Smad signaling (79). In conclusion, TGF-b can

mediate EMT and induces extracellular matrix (ECM) protein

expression in mesenchymal cells by regulating the stromal MMP

and TIMP expression, thus leading to increased stromal

permeability, ECM degradation, albumin deposition, and nasal

mucosal edema. It can thus actively participate in the tissue

remodeling of the sinus mucosa in CRS. TGF-b1, meanwhile,

also plays a dual role in the inflammatory immune response in

CRS. On the one hand, TGF-b1 can increase inflammation by

triggering the differentiation of T lymphocytes into inflammatory

Th17 (80), but on the other hand, it can suppress the production of

various inflammatory cytokines and mediators (e.g. IL-1, IL-8,

TNF-a) (81), thus suppressing the release of mediators from

eosinophils and increasing their apoptosis rate (82). It can also

significantly inhibit the proliferation and cytokine production of

naive T cells as well as Th1 as well as Th2 clones (83), and promote

the differentiation of T regulatory cell (84) by exerting diverse anti-

inflammatory effects.

FGF is a crucial cytokine involved in the various developmental

processes like cell proliferation, differentiation, and migration as

well as in injury and tissue remodeling (85). FGF can promote

fibrosis when it is involved in CRS remodeling by transforming the

epithelial cells into fibroblast-like cells (86), whereas it was

discovered that significantly more basic FGF-2 was found in the

nasal secretions of CRS patients (87), which can attract leukocytes

to secrete the different inflammatory mediators in acute and chronic

inflammatory conditions (88). FGF-2 can also stimulate the

development of inflammatory cells and improve their infiltration

into tissues, including the macrophages and T lymphocytes (89).

Additionally, research findings using FGF receptor inhibitors to

block FGF signaling have revealed that it can cause inflammatory

reactions that involve TNF-a (90).

An important factor regulating the tissue angiogenesis, tissue

proliferation remodeling, and increasing vascular permeability is

VEGF, which is a mitogenic peptide that is specific to endothelial

cells (91–94). At the beginning of CRS, the nasal mucosal tissue is

already neovascularized and as the proliferating tissue grows, the

rate of VEGF positive expression increases substantially (95).

Consequently, it is also believed that VEGF can control both the

vascular growth and inflammation during CRS.
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3 Important immune and effector cells
involved in CRS remodeling and
inflammation

The pathological mechanisms of CRS inflammation and

remodeling are complicated due to the impact of the main

immune and effector cells involved in this condition (Table 3).

This can be attributed to the fact that these cells are able to exert

differential effects on them at various stages of the disease

development and because they also constitute a part of

interconnected pathological networks that can sometimes have

completely divergent effects on one another depending on

the situation.
3.1 Neutrophils

Neutrophils have been reported to play a significant role in the

development of all forms of CRS pathology, both in terms of

inflammation as well as remodeling, and their importance cannot

be underestimated. Neutrophils are the primary effector cells of the

intrinsic immune system and they exhibit a variety of synergistic

functions that work together to eliminate pathogens (96). On the

contrary, it was discovered that chronic inflammatory diseases

associated with the respiratory system have persistent neutrophil

infiltration, and the level of infiltration was positively correlated

with the degree of inflammation and disease (97). Neutrophils can

contribute to the immune response by secreting various cytokines,

such as IL-36 and IL-33, IL-1, IL-6, IL-8, IFN-g and TNF-a, to
upregulate the inflammatory response, which is one of the major

event in CRS (98). Additionally, CRSsNPs that clearly demonstrate

the neutrophil infiltration, in addition to neutrophils that may

contribute to nasal polypogenesis have been identified in non-

eosinophilic CRSwNPs (99).

Neutrophils can display a variety of effects on CRS remodeling,

including fibrosis, edema, EMT and cause an imbalance between

MMP and TIMP. A number of studies have reported a positive

correlation between fibrosis and neutrophils in CRS, probably
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because neutrophils are the primary source of TGF-b2-positive
cells that can positively correlate with the myofibroblast number

and fibronectin expression levels (100), i.e., the number of

neutrophils which can positively correlate with the expression of

pro-fibrotic factors, thus suggesting that neutrophils likely promote

CRS via TGF-b2 in tissue fibrosis. The quantity of the neutrophils

was also discovered to be negatively correlated with the level of

edema (100). Neutrophil elastase, a serine protease released from

the neutrophils has been found to affect goblet cells proliferation

and mucin overproduction in patients with CRS (101, 102), EMT is

a phenomenon involved in tissue remodeling that can eventually

result in the local pools of fibroblasts, abnormal extracellular matrix

deposition and the formation of nasal polyps (9). Whereas patients

with neutrophil-dominated CRS can promote EMT via the IFN-g
pathway (103, 104); In addition, hypoxia-inducible factor-1a,
which can induce EMT (105) has also been positively correlated

with the number of neutrophils (100) and one of the primary

mechanisms of pathological tissue remodeling in CRS is the

imbalance between MMP and TIMP (7), where MMP-9 mainly

degrades the gelatin, proteoglycan and elastin, a key factor in

remodeling, whereas there is an association found between MMP-

9 and neutrophils (106), which is an important source of MMP-

9 (107).
3.2 Eosinophils

Eosinophils, which are a crucial part of leukocytes and like other

granulocytes, are derived from the hematopoietic stem cells in the

bone marrow can release granular materials that can damage tissue

and advance inflammation (108). According to the prior reports,

eosinophils have been implicated in a variety of biological functions

(109), including mediating inflammation or inducing immunity.

Moreover, studies have found that eosinophilia is positively

correlated with the severity of CRS, thus indicating that more the

number of eosinophils, greater is the severity of the disease (110).

This is in addition to the pro-inflammatory role of eosinophils in

releasing IL-4, IL-5, and IL-13 cytokines. Similarly, tissue

eosinophilia has been significantly linked to the worsening of
TABLE 3 Cells Influencing Remodeling and Inflammation.

Effectors
Targets

Neutrophils Eosinophils Macrophages Fibroblasts

Interleukin + + + +

Interferon-g + / / /

Tumor necrosis factor-a + / + /

Fibrosis + + + +

Transforming growth factor-b + + + /

Mucosal edema — + / /

Nasal polyps + + / +

Epithelial-mesenchymal transition + + / /
Please refer to Table 2 for the definitions of the special symbols used in this table.
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symptoms, lower quality of life, and substantially higher risk of

recurrence in patients with CRSwNP after endoscopic nasal surgery

(ESS) (111, 112). Hence, for these reasons, eosinophils are

regarded as potential biomarkers for more severe and refractory

diseases (113).

Eosinophils exhibit an extraordinarily strong positive

correlation with various remodeling-related factors during the

progression of CRS pathology, in addition to their capacity to

release different pro-fibrotic and pro-angiogenic substances like

TGF-b1, FGF-9, and VEGF. Interestingly, researchers have

speculated that there exists a very close link between eosinophils

and remodeling because sinus mucosal remodeling is more

pronounced in CRS patients with co-morbid asthma and higher

eosinophil load (14, 114, 115). The ability of eosinophil products to

induce submucosal edema and epithelial damage has been

highlighted in particular by the positive correlation between

eosinophil cationic protein levels and edema (116). Additionally,

BMT has been positively correlated with tissue eosinophil

infiltration (117), but both edema and collagen deposition in the

basement membrane in CRS have been positively correlated with

eosinophil (100, 118), where increased albumin deposition mainly

caused by eosinophil-driven inflammation (119). The ability of

eosinophils to promote fibrosis may be attributed to TGF-b, whose
main source is eosinophils (120), which can induce fibroblast

proliferation and differentiation into the myofibroblasts, as well as

possesses capacity to produce IL-11 and IL-17, which have

significant pro-fibrotic effects (121). Furthermore, it has been

reported that eosinophils and fibronectin levels can be

significantly correlated in nasal polyps of CRS patients (122).

Moreover, a stromal cell protein called periostein has been linked

to extracellular matrix buildup and fibrosis in the tissue remodeling

(123, 124). Interestingly, expression of this protein in the sinus

tissues has been positively correlated with eosinophil infiltration

(125). Eosinophil infiltration and EMT in CRS have also been

linked, and it was found that eosinophils play a significant role in

promoting EMT process (9). In addition, eosinophils can effectively

contribute to the secretion of MMP-9 from the nasal mucosal

epithelium and have been positively correlated with it (126, 127).

Eosinophils are crucial for osteitis bone remodeling as observed by

the positive correlation between eosinophilic inflammation and

upregulated growth differentiation factors as well as exostein

glycosyltransferases in osteitis of CRS patients (128).

Eosinophils undoubtedly play a significant role in regulating

both mucosal inflammation and remodeling in CRS, but consistent

remodeling was also observed in nasal polyps in Western and Asian

populations in comparison to Asian patients with different

inflammatory features and generally lower eosinophil levels (7),

thereby presumably indicating that eosinophils may not be the

primary factors influencing remodeling (129).
3.3 Macrophages

Macrophages have been recognized to play a key role in the

development and resolution of inflammation (130). After

phagocytosing cellular debris, invaders, neutrophils, and other
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apoptotic cells that appear after the tissue injury (131, 132), local

tissue macrophages and recruited monocytes quickly transform

from M1-type macrophages, which secrete a wide variety of

proinflammatory cytokines such as IL-1, IL-6, TNF-a, IL-17A
and IL-12 (133, 134), to M2-type macrophages with an increased

capacity for anti-inflammatory response. M2-type macrophages can

contribute to the remodeling by secreting diverse cytokines like

TGF-b1, IL-6, and IL-13 to promote the fibroblast survival,

proliferation, myofibroblast activation, collagen production, and

increased transcription of pro-fibrotic genes (135–138), as well as by

secreting factors like IL-10 and TGF-b1 which can exhibit anti-

inflammatory effects (139). Moreover, both M1 and M2

macrophage numbers have been reported to increase during the

pathological progression of CRS, with an especially large increase in

M2 macrophage numbers in the later stages (140). This finding

suggests that macrophages also exhibit a pattern from M1 to M2

types, or from pro-inflammatory to anti-inflammatory, during this

process (141).

Given the intricate relationship between the reported

pleiotropic effects of macrophages on inflammation and tissue

remodeling in CRS, it has been hypothesized that the

development of nasal polyps could be closely linked to the tissue

remodeling caused by M2 macrophage polarization (142). It has

been established that because macrophages can serve as a significant

cellular source of different chemokines like eosinophil chemokines

in the nasal mucosa (143), Th2 cytokines have been positively

correlated with increased macrophage numbers during the pro-

inflammatory developmental phase of CRS (140) and can directly or

indirectly induce the production of Th2 cytokines thereby

regulating the immune environment. In addition, M2

macrophages in CRS can significantly alter the vascular

permeability (77), regulate associated inflammatory factors and

control coagulation mechanisms (144), which can result in tissue

remodeling in CRS. In conclusion, research has shown that

monocytes-macrophages, depending on their polarization within

the tissue as well as the type and stage of the disease, can play a

complex but significant role in the regulation of inflammation,

proliferation, and fibrosis (58).
3.4 T cells and innate lymphoid cells

T cells play multifaceted roles in regulating various

physiological processes, which include recruiting effector cells,

neutralizing infected cells, aiding B cells in immunoglobulin

production and functioning as potential memory cells in innate

immune system (145). Predominantly, T cells can be categorized

into CD4+ T helper cells and CD8+ cytotoxic T cells. CD4+ T cells

can further differentiate into five primary subsets: Th1, Th2, Th17,

follicular helper T cells, and T regulatory cell (146). Th1 once

activated by phagocytosed microbes along with support from ILC1s,

can release IFN-g, TNF-a, and TNF-b. These cytokines can then aid

in the phagocytosis of the microbiome by activating macrophages

and promoting antigen presentation, in addition to stimulating IgG

production by B cells, neutrophils, and inducing local tissue

inflammation (147). Th2 are primarily activated by the different
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parasites, which can trigger eosinophils, mast cells, ILC2s and

enhance IgE production (148). Th2 can secrete IL-4, IL-5, and IL-

13, thus contributing to the activation of eosinophils, mucus

production and macrophage stimulation (149), thereby potentially

leading to the production of several growth factors that can initiate

tissue repair mechanisms. The Th17 subpopulation can activate

neutrophils and monocytes to stimulate the secretion of IL-17A, IL-

17F, and IL-22 (2). Most of T cells accomplish their objectives by

producing a wide array of cytokines, which have been discussed in

detail above in part two of this article.

Innate lymphoid cells (ILCs) are a subpopulation of innate

immune cells that can produce a variety of cytokines that are

compatible with the Th subpopulation of adaptive immune cells.

These cytokines have been found to be crucial for the coordination

of innate and adaptive immune responses. ILCs are also referred to

as intrinsic immune cells, which are a subset of lymphocytes that are

distinct from T and B cells and are primarily found in the mucosal

barrier tissues. ILCs play a vital role in inflammatory diseases of the

respiratory system by promoting lymphoid organ formation,

enhancing immune responses and maintaining mucosal integrity

(150). Moreover, based on the transcription factors and the

cytokines produced, ILCs have been divided into three subtypes,

ILC1s, ILC2s, and ILC3s (151), and these three cell subtypes

produce high levels of the similar cytokines as TH cells, such as

ILC1 secretes IFN-g, ILC2 produces IL-5 and IL-13, and ILC3

secretes IL-17 as well as IL-22 (152), and thus play an important

role in the pathogenesis of CRS.
3.5 Fibroblasts and goblet cells

The pathological development of CRS involves the epithelium,

which can serve as the primary barrier by defending the host from

external physical, chemical, and immune stimuli (153). Fibroblasts

and goblet cells have been identified as significant contributors to

the epithelium in this process. It has been reported that in

comparison to CRSwNP, which exhibits more edema and less

fibrosis, remodeling of CRSsNP can display a marked feature of

BMT, fibrosis, and goblet cells proliferation (154). The contribution

of fibroblasts and goblet cells to remodeling is undeniable, but more

studies are needed to fully understand how inflammation can

potentially modulate these cells.

Extracellular matrix that is rich in collagen is typically deposited

concomitant with excessive fibroblast proliferation is considered as

a symptom of fibrosis (26), and fibroblasts function as the primary

effector cells that can promote fibrosis. For example, in organ

related diseases like those of the lung, liver, and kidney, anti-

fibrosis has been a hot topic of research. The complex mechanism

of inflammation and remodeling of the nasal mucosa by fibroblasts

in CRS has been thought to play an important role in the etiology

and persistence of nasal polyps (155). However, because the

proportion of fibroblasts in nasal polyps is significantly higher

than that in the healthy nasal mucosa, in addition to promoting

fibrosis, they can also release eochemokine, which plays an

important role in stimulating eosinophil recruitment in nasal

polyps (156), and also can mediate the release pro-inflammatory
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IL-6 and IL-8 cytokines (155). Therefore, it has been speculated that

they may serve as the key source of inflammatory mediators (157).

The proliferation of goblet cells, a type of nasal mucosal

epithelial cell whose primary function is to secrete plenty of

mucus, can increase the secretion of mucin, the primary

component of the mucus in the nasal membrane (158). Goblet

cells are presence in abundance to secrete mucin in excess and

hypersecretion of mucin is associated with pathological changes in

CRS (159). In addition, increased mucus volume and viscosity

arising as a result of hypersecretion by goblet cells can cause

mucociliary dysfunction (160), mucus retention, and aggravation

of inflammation (161). In addition, numerous proinflammatory

cytokines have been demonstrated to control the goblet cells

metaplasia and excessive mucin secretion (162), thereby creating

a vicious cycle that can exacerbate the inflammatory response of

CRS. As a result, some researchers have concluded that important

pathogenic mechanisms of CRS include the proliferation and

metaplasia of glandular cells and goblet cells as well as the

promotion of sinusitis mucin expression (163).
4 Discussion

CRS is a highly heterogeneous disease with a relatively high

prevalence. Its pathogenesis involves several factors, including

microbial infection, immune dysfunction, sinus anatomy and

concomitant diseases. The primary strategies employed for

treating CRS are pharmacological drugs and surgical treatments,

but given the complex heterogeneity of CRS, formulating

universally applicable treatment modalities poses a significant

challenge. All these factors inevitably lead us back to the core of

CRS pathophysiology-inflammation and remodeling. In recent

years, there has been growing interest in the area, yet surprisingly

few reviews have explored this burgeoning field. Recently, Wang

et al. (164) stratified CRS endotypes by amalgamating inflammatory

biomarkers with typical remodeling factors, identified five clusters

and subsequently classified them into endotypes: non-type 2

inflammation (clusters1 and 2) and type 2 inflammation (clusters

3, 4, and 5). However, like most of the previous studies in this field,

this research has not delved deeply into the complex relationship

reported between inflammation and remodeling. Moreover,

relationship between inflammation and remodeling has been

drawn from experiences related to asthma and other upper

respiratory diseases, but there is no consensus in the academic

community on whether CRS follows identical mechanisms and

whether its internal remodeling is reversible. Additionally, while

pharmacological drugs that are effective against CRS inflammation

have been identified, their role in remodeling is not clearly defined.

Therefore, this dearth of comprehensive reviews presents an

opportunity for our article to fill a significant research gap and

provide a fresh, novel perspective on inflammation and remodeling

in CRS.

We have explored the complex roles of cytokines, immune cells

and remodeling factors in CRS inflammation and remodeling in the

present study, which led us to recognize that in the pathological

setting of CRS, inflammation as well as remodeling are closely
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interrelated, and that they promote each other to form positive

feedback thereby exacerbating the pathology. It is therefore

reasonable to assume that inflammation and remodeling in CRS

are in a dynamic equilibrium that is clearly interrelated. Although

the interactions between immune cells and cytokines and their roles

in different environments can make it difficult to comprehend this

complex relationship, a clear understanding of their relationship as

an important feature of CRS is of key importance for our in-depth

interpretation of the pathological mechanisms of CRS. In addition,

precision medicine which has been developed for the inflammatory

and molecular features of CRS subtypes has been regarded as an

important avenue for CRS research. The various biologics

developed for targeting specific immune cells or cytokines have

opened up the possibility of individualized and targeted therapy for

CRS, leading the way for future research, although their general use

is limited by high cost and insufficient evidence. Therefore, in future

studies, one should utilize advanced technologies such as multi-

omics analysis, single-cell RNA sequencing, and artificial

intelligence analysis to completely elucidate of the role of different

inflammatory cells, cytokines, and remodeling-associated factors on

inflammation and remodeling, and thus promote the effectiveness

and precision of the treatment.
5 Limitations

First, given the limited data available related to the relationship

between inflammation and remodeling, the majority of literature

covered in our study is relatively outdated, and may not completely

represent current research findings and perspectives. Second, a large

body of the evidence presented has not undergone meta-analysis, a

type of aggregate statistical analysis that can facilitate the extraction

and reanalysis of data from the multiple studies to obtain a more

profound and conclusive understanding. In the absence of meta-

analysis, the validity, consistency and reliability of the provided

evidence may be a little hard to determine. Thus, although our study

furnishes a plethora of evidence, the lack of meta-analysis might

limit its overall utility. Finally, the sheer breadth of topics covered in

our study could impose limitations on the depth and scope of the

discussion. The detailed content segmentation might aid in better

understanding and investigating a particular topic, but excessive

subdivision could also render the research fragmented and

disjointed, thereby potentially impinging on the integrity and

coherence of the theory. Overall, these limitations could affect the

reliability and validity of our study. Future directions in

inflammation and remodeling research should aim to provide

high-quality randomized controlled trials, which can lead to the

creation of robust evidence-based guidelines to assist the clinicians.
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6 Conclusions

Our preliminary research has elegantly unveiled the intricate

interplay between inflammation and remodeling in CRS, where

typical inflammatory cells and cytokines, along with the several

remodeling-associated factors, exhibit a complex pattern of mutual

enhancement or suppression, thus posing significant challenges for

precision medicine. This necessitates more research related to

different advanced technologies such as multi-omics analysis,

single-cell RNA sequencing, and artificial intelligence analytics

which can effectively aid to deepen our understanding of the

relationship between inflammation and remodeling. This

enhanced knowledge could provide novel strategies both for the

prevention and personalized treatment of CRS.
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