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neuronal system diseases
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Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University
of China, Beijing, China
MicroRNAs (miRNAs) are small non-coding RNAs with the unique ability to

degrade or block specific RNAs and regulate many cellular processes.

Neuroinflammation plays the pivotal role in the occurrence and development

of multiple central nervous system (CNS) diseases. The ability of miRNAs to

enhance or restrict neuroinflammatory signaling pathways in CNS diseases is an

emerging and important research area, including neurodegenerative diseases,

stroke, and traumatic brain injury (TBI). In this review, we summarize the roles and

regulatory mechanisms of recently identified miRNAs involved in

neuroinflammation-mediated CNS diseases, aiming to explore and provide a

better understanding and direction for the treatment of CNS diseases.
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1 Introduction

In 1993, a new class of small RNA molecules called miRNAs was first discovered in C.

elegans (1). MiRNAs are non-protein-coding RNAs that can degrade or sequester specific

RNA, prevent protein translation, and regulate myriad cellular processes (2). As reported,

more than 5,000 miRNAs can target up to 80% of protein-coding genes, each of which

regulates the translation of hundreds of different messenger RNAs (mRNAs) (3–6).

Therefore, it is important to understand how specific miRNAs regulate cellular processes.

In this review, we summarize how miRNAs affect inflammatory signaling pathways and

review their functions in the treatment and prognosis of neurological diseases.

Nervous system inflammation is a positive response caused by autoimmune defense

against injury; however, it usually aggravates pathological injury (7–10). In models of CNS

trauma, neuroinflammation can aggravate the injury and cause secondary injuries (11–14).

Therefore, it should take advantage of the beneficial aspects of inflammation while limiting
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its overreaction to aggravate the pathology and subtly improve

neurological function. In the immune inflammatory response of

CNS diseases, especially ischemic stroke (IS), intracerebral

hemorrhage (ICH), neurodegenerative diseases, and TBI, miRNAs

have been reported to promote or inhibit the nuclear factor kappa-B

(NF-kB) signaling, mitogen-activated protein kinases (MAPK)

signaling, and NOD-like receptor thermal protein domain

associated protein 3 (NLRP3) inflammasome, and these signaling

pathways are highly correlated with proinflammatory response.

Therefore, exploring the roles and regulatory mechanisms of

miRNAs in CNS diseases would be beneficial for drug discovery

and targeting therapies.
2 miRNA biogenesis and function

MiRNAs are one type of small RNAs encoded by endogenous

genes, which usually contain 20-24 nucleotides and regulate the

post-transcriptional gene expression. The biogenesis of miRNA has

been well described in several reviews (15, 16).

In animal cells, miRNA first transcribe longer primary miRNA

(pri-miRNA) in the nucleus. The pri-miRNA are then cleaved to be

precursors (pre-miRNA) by Drosha and Pasha/DGCR8 in the

nucleus (15, 17). Subsequently, the pre-miRNAs are transported

out of the nucleus with the help of the Exprotin-5 complex, and

cleaved by Dicer into mature miRNAs of 21-25 nucleotides in the

cytoplasm. Finally, with the help of miRNA-induced silencing

complex (miRISC), mature miRNAs binds to 3′-untranslated
regions (3′-UTRs) of target mRNAs and regulate gene expression

(17, 18) (Figure 1).

The presence of miRNAs was first discovered in C. elegans.

They can bind to the 3′-UTR of the target mRNA through partial

complementarity, inducing protein translation inhibition. With the

deepening of miRNA research, scientists are conscious of these

small molecules holding a variety of functions. Additionally, the

expression levels of miRNAs vary significantly at different time,

suggesting that miRNAs are crucial in regulating gene

expression (19).
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3 Inflammation contributes
to neuropathology

Neuroinflammation refers to the inflammatory response in the

CNS caused by pathological injuries, such as infection, trauma,

ischemia, and toxin accumulation, which can also lead to disease

exacerbation. As an immune-privileged tissue, CNS parenchyma is

generally not exposed to peripheral immune cells or robust

inflammatory responses in healthy condition. In the CNS of

healthy adults, microglia and astrocytes remain quiescent and

undergo immune surveillance. Upon infection or injury, these

cells transiently activate and increase inflammation. The activated

astrocytes and microglia trigger inflammatory response by

producing multiple chemokines and cytokines, such as chemokine

ligand (CCL1, CCL5), interleukin (IL-1b, IL-6, IL-18), tumor

necrosis factor (TNF), and small molecule messengers

(prostaglandins, NO, reactive oxygen species). These factors

contribute to the inflammatory response and subsequent

restoration of CNS homeostasis (20–22). Therefore, targeting

inflammation-related signaling pathways is a beneficial direction

for the treatment of CNS diseases.

Our previous work has shown that microglia Calhm2 played a

vital role in microglia activation, not only in chronic inflammatory

disease, but also in acute inflammatory responses (23). Knockout of

Calhm2 reduced the activation of NLRP3 inflammasome.

Mechanistically, Calhm2 not only regulated NF-kB signaling

pathway, but also regulated the interaction between P2X7 and

NLRP3. As a cationic channel, P2X7 could regulate NLRP3

inflammasome activation, and highly expressed in microglia (24–

26). Recently, we found that Calhm2 played a critical role in

Parkinson’s disease (PD) by regulating EFhd2 expression in

microglia (27). Moreover, in our another study, we found that

1,2,4-Trimethoxybenzene (1,2,4-TTB) could inhibit NLRP3

inflammasome activation to reduce clinical symptoms and

inflammation in experimental autoimmune encephalomyelitis

(EAE) (28), suggesting that 1,2,4-TTB might be used in the

treatment of inflammatory diseases driven by NLRP3

inflammasome. Moreover, NLRP3 inflammasome activation was
FIGURE 1

MiRNA biogenesis and function. Generally, miRNA first transcribe longer pri-miRNA, and pri-miRNA are then cleaved to pre-miRNA by Drosha and
Pasha/DGCR8 in the nucleus. Subsequently, the pre-miRNAs are transported to cytoplasm with the help of the Exprotin-5 complex, and cleaved by
Dicer into mature miRNAs. Finally, with the help of miRISC, mature miRNAs binds to 3′-UTRs of target mRNAs and regulate gene expression.
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also associated with the development of posttraumatic stress

disorder (PTSD). Inhibition of the NLRP3 inflammasome

remarkably attenuated PTSD-like behavior in mice (29). Besides

of NLRP3 inflammasome, NF-kB was another most studied

inflammatory factor, which was a prominent transcription factor

that aggravated neuroinflammation and could promote the

transcription of a range of inflammatory mediators. Our studies

showed that conditional deletion of microglial Dlg1 significantly

inhibited the NF-kB signaling activation in microglia, and alleviated

lipopolysaccharides (LPS)-induced and chronic restraint stress-

induced depression-like behaviors in mice (30, 31). Moreover,

treatment of Bergapten inhibited microglial activation and

alleviated LPS-induced depression-like behavior in mice (32).

Collectively, microglial activation-induced neuroinflammation

was critical in the development of these diseases, and targeting

neuroinflammation might be a promising strategy in the

clinical treatment.

It was reported that miRNAs could reduce the inflammatory

response by inhibiting TLR4 and the downstream MyD88/TRIF/

NF-kB inflammatory pathway (33). Moreover, miRNAs targeting

on the upstream and downstream of MAPK signaling pathway

could also reduce the inflammatory response. Increased MAPK

expression was important for the activation of inflammatory

processes, including three subfamilies: p38 mitogen-activated

protein kinase (p38), c-Jun-terminal kinase (JNK), and

extracellular signal-regulated kinase 1/2 (ERK1/2) (34). Therefore,

miRNA was closely associated with multiple inflammatory

signaling pathways. Here, we review the functions and

inflammatory targets of miRNA in different CNS diseases, aiming
Frontiers in Immunology 03
to understand the underlying mechanism and emphasize the

therapeutic application of miRNAs (Figure 2 and Table 1).
4 miRNA related inflammatory
responses in CNS diseases

4.1 miRNA related inflammatory
responses in AD

As an irreversible progressive neurodegenerative disease, AD is the

most common form of dementia in the elderly, accounting for 80% of

all diagnoses (80). Progressive deteriorated memory and other

cognitive abilities are clinical hallmarks, eventually leading to an

inability to live independently (81). The most known theory about

the pathogenesis of AD is the Ab toxicity hypothesis. Ab aggregation

(Ab42) is thought to be a major mediator and crucial driver in the

pathogenesis of AD (82, 83). Moreover, Ab is considered a neurotoxic

protein that causes an inflammatory response which accelerates cell

death (84, 85). Therefore, the onset and progression of AD is closely

associated with the activation of the brain’s inflammatory response.

Robust immune responses following Ab stimulation may lead to

undifferentiated damage of healthy neural tissues, resulting in

neuronal cell damage and cell death (86). Additionally, the blood-

brain barrier (BBB) fails to prevent the entry of lymphocytes and

inflammatory cytokines into the brain is another main cause of

inflammatory response. MiRNAs exert negative regulatory effects by

interacting with 3’‐UTR of target mRNA, degrading mRNA or

inhibiting protein translation. Moreover, miRNAs can influence the
FIGURE 2

The immune inflammatory response in CNS diseases. In the immune inflammatory response of CNS diseases, especially in IS, ICH, AD and TBI, the
NF-kB and MAPK signaling pathways and NLRP3 inflammasome were highly correlated with proinflammatory response.
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inflammatory responses in AD, which are closely associated with the

onset and progression of AD.

4.1.1 miRNAs in NF-kB signaling pathway in AD
MiR-29a, miR-29b, and miR-29c were belong to the miR-29

family, and the levels of miR-29a and miR-29b-1 were decreased in

AD patients (87). Srivastava et al. (2016) predicted miR-29a could

target key members of the TNF-mediated pathway, including

TRAF3, TRAF4, TRAF5, TNFRSF1A, LTBR, TNFAIP1, and

TNFAIP3 (35). Moreover, Sedighi et al. (2019) reported that

TNF-a receptor expression in AD was negatively correlated with

miR-29a levels. Therefore, miR-29a may be associated with AD by

regulating the neuroinflammation levels (36).

MiR-34a, a miRNA regulated by NF-кB, was upregulated in the

hippocampal CA1 region of AD patients. Bhattacharjee et al. (2016)

found that miR-34a modulated TREM2 (a microglial receptor that

triggers expression inmyeloid cells), a crucial molecule of Ab42 peptide
Frontiers in Immunology 04
clearance in AD. Downregulation of TREM2 levels was observed in the

CA1 region in AD patients (37, 38). Rare variants R47H of TREM2

have been linked to an increased risk of AD, indicating that targeting

miR-34a might be a therapeutic strategy for AD treatment (39).

MiR-126 regulated inflammation by targeting NF-kB pathway

components and vascular cell adhesion molecule 1 (VCAM-1). The

VCAM-1 mRNA was not expressed in quiescent endothelium cells,

but pro-inflammatory cytokines could activate NF-kB and IRF-1,

thereby inducing the transcription of VCAM-1. Overexpression of

miR-126 could decrease VCAM-1 levels, suggesting miR-126

regulated VCAM-1 levels in quiescent cells (40). Moreover,

elevated levels of miR-126 increased Ab42-induced toxicity and

interfered with the neuroprotective effects of IGF-1 by inhibiting

PI3K and ERK pathways (41), suggesting miR-126 may be a

potential molecular target for AD treatment.

MiR-146a was another NF-kB-dependent miRNA, that targeted

transmembrane b-amyloid precursor protein (APP) associated
TABLE 1 The miRNAs associated with neuroinflammation-related neurological diseases.

MicroRNA Expression pattern Related diseases Target/Signaling pathway Reference

miR-29a down AD TNF-a/NF-кB (35, 36)

miR-34a up AD TREM2/NF-кB (37–39)

miR-126-3p up AD VCAM-1/NF-кB (40, 41)

miR-146a up AD IRAK-1/NF-кB (42)

miR-155 up AD, IS,
ICH

c-Jun/NF-кB,
TLR4/MyD88/NF-кB, BMAL1/Nrf2

(43–47)

miR-132 up AD MAPK1/MAPK (48)

miR-223-3p down AD NLRP3 (49–55)

miR-101 down AD COX2 (56, 57)

miR-181 up, down AD, IS c-Fos, CXCL1 (58–61)

miR-22 down IS p38 MAPK/NF-kB (62)

miR-195 down IS, ICH CD40/NF-kB, CX3CR1, IKKa/NF-kB (63–65)

miR-203 – IS MyD88/NF-kB (66)

miR-1202 – IS TLR4/Rab1A/NF-kB (67)

miR-20b up IS NLRP3 (68)

miR-140-5p – ICH MyD88/TRIF/NF-kB (33)

miR-181c down ICH MLL1/NF-kB (69)

miR-152 down ICH TXNIP/NLRP3 (70)

miR-194-5p down ICH TRAF6/NLRP3 (71)

miR-223 – ICH NLRP3 (72)

miR-183-5p down ICH HO-1/Nrf2 (73)

miR-21-5p up ICH,
TBI

p-ERK/HO-1, NF-kB (74, 75)

miR-132 down ICH AChE (76)

miR-590-5p down ICH Peli1 (77)

miR-23a-3p down TBI AKT/mTOR (78)

miR-200b down TBI cJun/MAPK (79)
f
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1238930
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1238930
TSPAN12, and inflammatory mediators interleukin receptor-

associated kinase IRAK-1 (42). Therefore, miRNA-146a could be

used as a potential diagnostic biomarker for AD and other age-

related neurological disorders.

MiR-155 was also a known target for NF-кB pathway. Guedes

et al. (2014) found that miR-155 was increased in the brains of AD

animals. Moreover, the levels of miR-155 depended on the

transcription factor c-Jun, which preceded extracellular Ab
accumulation and concomitant hyperactivation of microglia and

astrocytes (43). Interestingly, Song and Lee (2015). found that miR-

155 could regulate T lymphocyte function, suggesting that miR-155

was an immune-related miRNA associated with AD (44).

Therefore, miR-155 may not only be a valuable candidate

biomarker of AD, but also a therapeutic target for AD.

4.1.2 miRNAs in MAPK signaling pathway in AD
It has been reported that miR-132 improved cognitive function

in AD rats by inhibiting the MAPK1 signaling pathway.

Bioinformatics analysis revealed a target inhibitory relationship

between miR-132 and MAPK1. It was found that upregulation of

miR-132 reversed the negative effects of MAPK1 silencing in AD

rats. Mechanistically, miR-132 inhibited the expression of iNOS and

oxidative stress in the hippocampus by inhibiting the expression of

MAPK1, and improved the cognitive function of AD rats, which

was helpful for understanding the pathogenesis of AD and

developing new clinical treatments (48).

4.1.3 miRNAs in NLRP3 signaling pathway in AD
Multiple studies have showed that some miRNAs, including

miR-223, were dysregulated in AD and played important roles in

AD pathogenesis (49, 50). MiR-7-5p, miR-22-3p, and miR-30-5p

could bind to the NLRP3-mRNA, hindered protein translation, and

prevented the formation of inflammasome protein complexes. In

the brains of AD patients, other studies have also found

downregulation of miR-7 and miR-30e as well as low levels of

circulating miRNA-22 (51, 52). La Rosa et al. (2021) analyzed the

expression of miRNAs in AD patients, and found that miR-223-3p

and miR-7-5p levels were increased in AD patients, but failed to

downregulate NLRP3 and proinflammatory cytokines (53). In

particular, miR-223-3p bound to the highly conserved 3’UTR of

NLRP3 and acted as a NLRP3 miRNA inhibitor (54, 55).

4.1.4 miRNAs in other inflammatory molecular
pathways in AD

MiR-101 was downregulated in temporal and parietal regions of

human AD cortex (56). Downregulation of miR-101 leaded to

upregulation of COX2 in AD and induced inflammatory

responses in the brain, thus significantly promoting AD

pathology (57).

The miR-181 family was also involved in neuroinflammation

and is associated with AD (58). Rodriguez-Ortiz et al. (2014) found

that miR-181a was significantly upregulated in the hippocampus of

12-month-old AD mice. Enhancement of the expression of miR-

181 in SH-SY5Y cells significantly reduced SIRT1 and c-Fos levels

(59). Moreover, miR-181 family have been linked to the stress
Frontiers in Immunology 05
responses, in which miR181d was discovered to target multiple

stress and metabolic related signaling pathway. Collectively, these

results suggest a possible between the miR-181 family in stress

response and neuroinflammation in AD (60).

Together, miRNAs could participate in the regulation of MAPK

pathway, NF-kB signaling, NLRP3 inflammasome, and other

inflammatory molecular pathways to regulate neuroinflammation.

Among them, NF-kB signaling related miRNAs include miR-29

family, miR-34a, miR-126-3p, miR-146a and miR-155. These

miRNAs may not only be valuable candidate biomarkers but also

therapeutic targets for AD.
4.2 miRNAs related neuroinflammation
in ischemic stroke

Ischemic stroke (IS) is a neurovascular event with high

morbidity, mortality, and disability and is a great threat to the

health of society and individuals. Currently, stroke is mainly cause

of mortality in China and the second leading of death in the world

(88–90). Neuroinflammation is an important hallmark of IS. In IS,

interactions between inflammatory and non-inflammatory cells,

brain cells such as neurons, are complex and extensive, with both

deleterious and beneficial outcomes (91). With extensive research

on neuroinflammation and IS, miRNAs have been recognized as

promising novel regulators of neuroinflammation associated with

IS (92). Notably, the relative stability, specificity and reproducibility

make miRNAs possible to become good biomarkers in clinical

treatment of diseases. Here, we summarize the miRNAs associated

with neuroinflammation in IS.

4.2.1 miRNAs in NF-kB signaling pathway in IS
MiR-22 alleviated inflammation in IS by inhibiting the p38

MAPK/NF-kB pathway (62). Dong et al. (2019) found that

downregulation of miR-22 upregulated inflammatory factors and

overexpression of miR-22 decreased inflammatory factors

expression in vitro, suggesting that targeting miR-22 might be

beneficial for the prevention and treatment of IS.

MiR-155 participated in cell damage by regulating the

expression of TLR4 and MyD88, which might be important for

the diagnosis and treatment of IS. Moreover, the miR-155

expression level was found to be higher in the serum of IS

patients, but it decreased after treatment (45). Chen et al. (2021)

found that the knockout of miR-155 improved the neurological

function of mice and inhibited TLR4 and MyD88 protein levels.

Additionally, miR-155 inhibition enhanced the proliferation of SH-

SY5Y cells, reduced apoptosis levels, and increased the expression of

TLR4 and MyD88. Interestingly, treatment with TLR4/MyD88

pathway inhibitors completely reversed the effects of miR-155

(46), indicating that miR-155 could regulate disease by targeting

the TLR4/MyD88 pathway in IS.

Yang et al. (2021) found that the decreased expression of miR-

195 and increased NF-kB expression were occurred in oxygen–

glucose deprivation (OGD)-treated HUVECs. Importantly, miR-

195 overexpression inhibited apoptosis and promoted cell
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proliferation by regulating IKKa-mediated NF-kB signaling

pathway, suggesting that miR-195 inhibited the IKKa-mediated

NF-kB pathway to have a protective role, offering a novel possible

strategy for the clinical treatment of IS (63). In addition, CD40, a

protein expressed in nerve and blood vessel cells in the brain, could

stimulate the NF-kB pathway, but its activity could be directly

inhibited by miR-195. CD40 levels increased in the cerebral

apoplexy hemisphere, and its level was associated with the post-

ischemic inflammation. CD40 deficiency reduced cell adhesion,

reduced NF-kB signaling pathway, and increased iNOS level.

Intravenous injection of nanoparticle-carried miR-195 into rats at

the acute stage of IS reduced the volume of the injured brain by up

to 45% and improved functional recovery (64), suggesting that

treatment with miR-195 was beneficial for treating acute IS, which

might act as a new target of IS.

MiR-203 protected microglia-mediated brain injury by

inhibiting NF-kB signaling pathway during ischemia. Z. Yang

et al. (2015b) found that miR-203 directly bound to the 3’UTR of

MyD88 to inhibit its expression, which suppressed neurological

inflammatory response and improved neuronal functions (66). This

finding suggests that miRNA-203 is a novel target that can attenuate

inflammatory response in IS and reduce neuronal damage.

Overexpression of miR-1202 inhibited the activation of the TLR4/

NF-kB inflammatory signaling pathway, thereby exerting a

neuroprotective effect. Song et al. (2020) found that miR-1202

expression was downregulated and Rab1a expression was

upregulated in OGD/R-induced human microglial cell line. Rab1a

(NF-kB upstream signaling protein) could up-regulate the expression

level of TLR4 in OGD/R-treated cells, and promoted the activation of

NF-kB signaling pathway (67). Interestingly, miR-1202 directly

targeted Rab1a to inhibit NF-kB signaling pathway, and reduced

inflammatory response and apoptosis, exhibiting a protective effect.

4.2.2 miRNAs in NLRP3 signaling pathway in IS
Reportedly, miR-20b was involved in cerebral ischemia-induced

inflammation by targeting NLRP3. Downregulation of miRNA-20b

inhibited the NLRP3 signaling pathway and the downstream IL-1b
and IL-18 levels, and reduced ATP and ROS levels, thereby

mitigating inflammatory damage after IS (68).

4.2.3 miRNA in other inflammatory molecular
pathways in IS

MiR-181 was highly expressed in healthy human brains and was

downregulated in acute ischemic stroke (AIS) patients. Ma et al.

(2016) found that downregulated miR-181c-3p levels observed in

OGD-treated cortical neurons and OGD-treated exosomes. CXCL1

and inflammatory cytokine expression in astrocytes were decreased

by OGD-treated cortical neuronal exosomes. Moreover, the miR-

181c-3p mimics against CXCL1 inhibited astrocytic inflammation

levels by downregulating CXCL1 (61).

In addition, the expression of miR-195 was significantly

downregulated in the plasma samples of AIS patients, with a

significant negative correlation with Stroke Scale score. Consistently,
Frontiers in Immunology 06
miR-195 levels were also decreased in the plasma in MCAOmice, and

intracerebral injection of miR-195 lentivirus inhibited inflammatory

signal transduction. Mechanistically, the authors found that miR-195

could directly target both CX3CL1 and CX3CR1, and inhibited

CX3CR1-mediated neuroinflammation (65).

In conclusion, miRNAs can directly or indirectly regulate

several inflammatory pathways, such as NF-kB signaling pathway

and NLRP3. Targeting the regulation of miRNA facilitates the

diagnosis and treatment of IS.
4.3 miRNAs related neuroinflammation
in ICH

ICH is associated with massive hemorrhage, resulting in

decreased regional cerebral blood flow, inflammation, and immune

responses (93), which has two types-primary and secondary ICH. Its

pathogenic mechanism is complex and diverse; however, most ICH

cases cause devastating damage to patients (94). Primary injury is

mainly caused by the rapid formation of hematomas and hematoma

mass effect caused by physical damage. Secondary damage evolves

into an overlapping continuum with primary damage, caused by

extravasation of blood components and associated neurotoxicity.

Neuroinflammation, oxidative stress, apoptosis, and excitotoxicity

are involved in the secondary brain damage (95).

Reportedly, therapeutically targeting neuroinflammation can

modulate the potential for brain injury and repair following ICH.

Peripheral immune cells are rapidly activated after vascular

extravasation, releasing a series of toxic mediators and triggering

an inflammatory cascade reaction. Both immediate local damage

and long-term impairment of brain function can be induced by

neuroinflammatory reactions (96). Additionally, miRNAs could

regulate neuroinflammation after ICH by affecting various

inflammatory components (97). The discovery of the function

and regulatory mechanism of miRNAs in ICH is beneficial for

the exploration of new strategy in the clinical therapies.

4.3.1 miRNAs in NF-kB signaling pathway in ICH
It was reported that overexpression of miR-140-5p decreased

TLR4 levels, and inhibited MyD88/TRIF/NF-kB inflammatory

signaling pathway, thereby reduced brain injury and

neuroinflammation after ICH (33), suggesting that targeting miR-

140-5p is beneficial to therapeutic treatment of ICH.

Moreover, thrombin-induced downregulation of miR-181c

promoted MLL1 levels, and increased the activity of NF-kB
signaling (69). These results suggest that proinflammatory NF-kB
activity stimulated by thrombin is involved in the pathology of ICH,

which could be inhibited by overexpression of miR-181c. Therefore,

miR-181c mimic therapy holds promise for regulating thrombin-

driven microglial activation after ICH.

MiR-195 inhibited NF-kB signaling, including IKKa and p-IkB,
which could affect the reduction of ubiquitin-dependent IkB
degradation, leading to the inhibition of nuclear translocation of
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p65/p50 and RelB/p52, and downregulation downstream pro-

inflammatory cytokine levels in the rat brain, suggesting that

miR-195 has anti-inflammatory effects. Moreover, experimental

results showed that miR-195 carried by nanoparticles and injected

intravenously into rats at the acute stage of hemorrhagic stroke

could reduce about 30% of the damaged brain volume (64). In

conclusion, miR-195 could be used to treat ICH, since it directly

blocks the NF-B pathway to exhibit its anti-inflammatory effects.

4.3.2 miRNAs in NLRP3 signaling pathway in ICH
MiR-152 regulated the thioredoxin-interacting protein

(TXNIP)-mediated NLRP3 act ivat ion , and inhib i ted

neuroinflammation and neuronal death after ICH. Previous

studies have shown that downregulated miR-152 was observed in

ICH patients. Hu et al. (2020) found that miR-152 was

downregulated in both collagenase-induced rat ICH model and

hemin exposure model. Overexpression of miR-152 significantly

alleviated hematoma, brain edema, and neurological deficits in rats

with ICH. Mechanistically, overexpression of miR-152 blocked the

interaction between TXNIP and NLRP3, and inhibited the

activation of NLRP3 inflammasome (70), indicating that miR-152

played an active role in NLRP3 activation.

Wan et al. (2021) found that injecting miR-194-5p agomir into

the brain tissue significantly inhibited NLRP3-mediated

inflammation and alleviated the neuropathological damage in

ICH rats. TRAF6 was further discovered to be one target of miR-

194-5p. Overexpression of miR-194-5p reduced the interaction

between NLRP3 and TRAF6, thereby reducing NLRP3

inflammasome-mediated neuroinflammation (71).

Moreover, miR-223 could directly bind to the 3’UTR of mRNA

of NLRP3, and inhibit NLRP3 expression, thereby reducing neuronal

inflammation and improving neuronal function. The pathology of

ICH was characterized with inflammation, nerve damage, and

increase of brain water content in mice, and miR-223 could reduce

these changes by down-regulation of NLRP3 inflammasome (72).

4.3.3 miRNAs in Nrf2 signaling pathway in ICH
Inhibition of miRNA-155 promoted the BMAL1 levels, which

further activated the nuclear factor erythroid 2-related f actor 2

(Nrf2) to alleviate ICH-induced secondary brain injury (SBI). Gong

et al. (2021) established a rat model of ICH using autologous blood

injections and found that BMAL1 protein levels were decreased in

the ICH group. Moreover, ICH-induced oxidative stress,

inflammation, brain edema, BBB damage, neuronal cell death,

and neurological dysfunction were alleviated by overexpressing of

BMAL1 (47). Therefore, the upregulation of BMAL1 could activate

the Nrf2 signaling pathway to attenuate SBI after ICH, and the miR-

155/BMAL1 might be a promising therapeutic target.

Overexpression of miR-183-5p reduced HO-1 expression and

thus alleviated early injury after ICH. Y. Wang et al. (2020) found

that miRNA-183-5p levels were significantly reduced after ICH

occurrence in mice. Injecting miRNA-183-5p agomir reduced

oxidative stress and neuroinflammatory responses by inhibiting

the expression of HO-1 mRNA in ICH mice (73).
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SerummiR-21-5p levels were increased and were correlated with

NIHSS scores. Inhibition of miR-21-5p could attenuate

inflammatory damage, thereby alleviating neurological deficits after

ICH via targeting with dual-specificity phosphatase 8 (DUSP8) (74).

It was reported that miR-132 enhanced cholinergic blockade of

inflammatory responses and protected against ischemia-induced

neuronal cell death by targeting acetylcholinesterase (AChE).

Zhang et al. (2017) found that overexpression of miR-132 in the

mice brain reduced neurological impairment and inflammatory

damage. Consistently, the downregulation of miR-132 increased

inflammation and apoptosis (76). In conclusion, the protective effect

of miR-132 in ICH mouse models provides new opportunities for

therapeutic interventions.

Wang et al. (2021) used collagenase-induced ICH mouse

models and miR-144/451 knockout mice, and found that

knockout of miR-144/451 increased TNF-a and IL-1b levels, and

oxidative stress in ICH mice. Furthermore, the authors found that

deletion of miR-144/451 suppressed the activity of the miR-451-14-

3-3z-FoxO3 regulatory axis in ICH mice. Moreover, compared with

miR-144, miR-451 was dominant in regulating ICH (98).

Overexpression ofmiR-590-5p significantly improved brain edema

and neurological function and reduced neuroinflammation in ICH

mice. Guo et al. (2018) showed that pelino-1 (Peli1) could be directly

targeted by miR-590-5p. Overexpression of miR-590-5p significantly

decreased Peli1 levels. Meanwhile, overexpression of Peli1 partially

eliminated the inhibitory effect of miR-590-5p mimic (77).

In summary, multiple miRNAs have been demonstrated to hold

therapeutic effects in ICH by targeting NF-kB signaling pathway, or

directly binding to the 3’UTR of NLRP3 to inhibit its activation.

Alternatively, miRNAs can activate Nrf2 signaling pathway to

attenuate ICH-induced SBI.
4.4 miRNAs related neuroinflammation
in TBI

Globally, nearly 300 in every 100,000 people suffer from TBI.

According to the pathological process, TBI can be divided into two

types: primary injury and secondary injury (99, 100). In addition to

primary brain mechanical damage, a number of accompanying

mechanisms lead to morbidity and mortality, including BBB

dysfunction, mitochondrial dysfunction, inflammation, and

excitotoxicity (101). Notably, brain inflammation in TBI patients has

still been identified after a long time of being injury, leading to a

persistent cognitive dysfunction (102). Neuronal survival and function

are closely associated with inflammatory factors (103, 104). Therefore,

targeting neuroinflammation may be important for improving TBI

prognosis. It is reported that some miRNAs such as miR-21, miR-146,

miR-155 and miR-223 could be induced by inflammatory stimuli.

Moreover,multiple researches have shown thatmiR-21 played a role in

neuroprotection and BBB integrity after TBI, indicating that miRNAs

could affect the prognosis of TBI (105–107).
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4.4.1 miRNAs in NF-kB signaling pathway in TBI
Ge et al. (2016) found that miR-21-5p could regulate NF-kB

signaling pathway to inhibit inflammation. In vitro experiments,

miR-21-5p has been found to promote the activation of the

angiopoietin 1 (Ang-1)/tyrosine kinase receptor 2 (Tie-2)

pathway, thus promoting angiogenesis and repair of brain tissue.

This study suggested that miR-21-5p not only inhibited

inflammation by affecting the NF-kB signaling pathway, but was

also closely related to apoptosis and vascular repair (75).

4.4.2 miRNAs in AKT/mTOR signaling pathway in
TBI

Li et al. (2020) showed that the upregulation of miR-23a

inhibited neuroinflammation and improved long-term neural

function. Overexpression of miR-23a inhibited caspase 3 activity

and the release of inflammatory mediators, suggesting miR-23a

could inhibit the apoptosis and inflammatory responses. Moreover,

miR-23a could directly target the phosphatase and tensin

homologue (PTEN). Overexpression of miR-23a activated the

AKT/mTOR pathway in TBI mouse models, as evidenced by the

increased levels of p-AKT and p-mTOR (78).

4.4.3 miRNAs in MAPK signaling pathway in TBI
MiR-200b was reported to regulate the inflammatory response

by modulating the MAPK pathway in microglia. The miRNA-200b

levels were downregulated in activated microglia. Jadhav et al.

(2014) found that the transcription factor c-Jun was the target of

miR-200b, and inhibition of miR-200b in microglia enhanced JNK

activity modulated microglial inflammatory process, and increasing

neuronal apoptosis (79).

In summary, miR-200b targeted the cJun/MAPK signaling

pathway and reduced the inflammatory response of activated

microglia, indicating that miR-200b is a possible intervention target

in chronic neuroinflammation. miRNA targeting neuroinflammation

and its downstream effects, including NF-kB signaling pathway,

MAPK signaling pathway and NLRP3 inflammasome, have

important implications for improving the prognosis of TBI.
5 Therapy targeting miRNA
in CNS diseases

Here, we summarized the role of miRNA in CNS diseases, and

discussed the regulatory molecular mechanism of immune

inflammatory response, involving the NF-kB signaling pathway,

MAPK signaling pathway, and NLRP3 inflammasome.

Interestingly, we found that some miRNAs played roles in more

than one CNS disease, suggesting a critical role for these miRNAs in

CNS diseases (Figure 3). For example, miR-21-5p, miR-155,

miR181, and miR-195 were each involved in two or more CNS

diseases. Mechanistically, MiR-155 regulated the c-Jun/NF-kB
signaling pathway, is involved in AD, regulates the expression of
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TLR4 and MyD88 proteins, and is involved in IS. In hemorrhagic

stroke, antagomir-155 inhibited miRNA-155 and promoted the

expression of BMAL1, thus activated Nrf2 signaling pathway and

alleviated brain injury after cerebral hemorrhage, suggested therapy

targeting miRNA is benefit for the treatment of CNS diseases.

Furthermore, we summarized the therapies targeting miRNAs

in CNS diseases (Table 2). Among them, antiretrovirals D4T

reduced the activation of NLRP3 inflammasome, and inhibited

the levels of downstream NLRP3 inflammasome molecules (53).

Moreover, Klotho improve cellular inflammation by inhibiting

cytokine release and upregulating miR-29a (36), suggesting that

Klotho and the antiretroviral drug D4T may have beneficial

therapeutic potential for attenuating neuroinflammation in AD.

High-frequency repetitive transcranial magnetic stimulation

(rTMS) inhibited microglia activation through the let-7b-5p/

HMGA2/NF-kB signaling pathway, and protected against IS

(108). In addition, some of the neuroprotective effects of DEX in

several disease models were discovered to be mediated by various

miRNAs, such as LPS-induced neuroinflammation, brain ischemic-

reperfusion injury, and b-amyloid-induced dysfunction (111).

Sevoflurane prevented ICH by miRNA-133b/FOXO4/BCL2 axis

(109). Ginsenoside Rg1 ameliorated BBB breakdown and TBI by

attenuating the release of macrophage-derived exosome miR-21

(110). In LPS-induced inflammation rat models, DEX was involved

in the process of inflammation, autophagy, and apoptosis through

the regulation of miR-21-5p and miR-155. In summary, these

results suggest that a combination of drug therapy and specific

miRNAs could play a broader and prospective role in the treatment

of CNS diseases. At the same time, combining drug therapy with

specific miRNAs to treat CNS diseases still has some limitations.

For example, how to increase the stability of miRNA analogs in vivo

application, and how to address the potential immunostimulatory

effects. In addition, how to increase the concentration of combining

drug therapy with specific miRNAs in lesion-specific area is another

big challenge. Moreover, as usually more than one miRNA targeted

for one gene in the CNS disease model, the combination and the

therapeutic effects of drug-miRNA need to be further investigated.
6 Conclusion

Cur r en t l y , t h e po t en t i a l e ff e c t s o f miRNAs on

neuroinflammatory regulation have been widely demonstrated.

Moreover, inflammatory-miRNAs are significantly differentially

expressed in the peripheral circulation in CNS patients.

Therefore, miRNAs are promising biomarkers for the diagnosis

and prognosis of these CNS diseases, and are potential therapeutic

targets. Nevertheless, the role and regulatory mechanisms of

inflammatory-miRNAs in neuroinflammation need to be further

investigated. First, as most studies on miRNA in the treatment of

chronic inflammation-mediated nervous system diseases focus on

NF-kB signaling, MAPK signaling, and NLRP3 inflammasome

pathways, more attention should be paid to discover new
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signaling pathways. Second, the ability of multiple miRNA

combinations to treat diseases should be studied. For example,

miR-29, miR-126-3p, and miR-146a may synergistically regulate

neuroinflammation and affect treatment of inflammation-mediated
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nervous system diseases. Third, although some miRNAs are highly

correlated with the inflammation-mediated nervous system

diseases, whether these miRNA act as biomarkers in the diagnosis

and progresses of these diseases are still to be validated.
TABLE 2 miRNA-related therapy in neurological diseases.

MicroRNA Related disease Target Treat manner Reference

miR-29a AD TNF-a/NF-кB Klotho (36)

miR-223-3p AD NLRP3 D4T (53)

let-7b-5p IS HMGA2/NF-kB rTMS (108)

miR-195 IS CD40/NF-kB, CX3CR1 Nanoparticle
Intraventricular lentivirus injection

(64, 65)

miR-133b ICH FOXO4/BCL2 axis Sevoflurane (109)

miR-21 ICH Rg1 exosome (110)

miR-152 ICH TXNIP/NLRP3 Intraventricular lentivirus injection (70)

miR-194-5p ICH TRAF6/NLRP3 Injection of miR-194-5p agomir (71)

miR-183-5p ICH HO-1/Nrf2 Injection of miR-183-5p agomir (73)

Multiple miRNAs ICH – DEX (111)
f

FIGURE 3

MiRNA dysregulation in neuronal system diseases. MiRNAs regulated a wide range of physiological and pathological processes. In
immunoinflammatory responses in CNS diseases, miRNAs could be classified into anti-inflammatory and pro-inflammatory miRNAs. In this review,
we summarized the targeted genes and signaling pathways of dysregulated miRNAs in different CNS diseases. As shown that miR-155 was involved
in AD, IS and ICH. In addition, miR-21-5p, miR-181 and miR-195 were also involved in the inflammatory effects of multiple diseases. These results
indicated that multiple miRNAs synergistically regulated neuroinflammation and affected the outcome of treatment of inflammation-mediated
nervous system diseases.
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