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Simian immunodeficiency virus-
infected rhesus macaques with
AIDS co-develop cardiovascular
pathology and encephalitis
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Rachel Burrack4, Qingsheng Li4, Woong-Ki Kim5

and Kenneth C. Williams1*

1Department of Biology, Boston College, Chestnut Hill, MA, United States, 2Department of Biomedical
Sciences, Section of Anatomic Physiology, Cornell University College of Veterinary Medicine, Ithaca,
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4Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln,
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LA, United States
Despite effective antiretroviral therapy, HIV co-morbidities remain where central

nervous system (CNS) neurocognitive disorders and cardiovascular disease

(CVD)-pathology that are linked with myeloid activation are most prevalent.

Comorbidities such as neurocogntive dysfunction and cardiovascular disease

(CVD) remain prevalent among people living with HIV. We sought to investigate if

cardiac pathology (inflammation, fibrosis, cardiomyocyte damage) and CNS

pathology (encephalitis) develop together during simian immunodeficiency

virus (SIV) infection and if their co-development is linked with monocyte/

macrophage activation. We used a cohort of SIV-infected rhesus macaques

with rapid AIDS and demonstrated that SIV encephalitis (SIVE) and CVD

pathology occur together more frequently than SIVE or CVD pathology alone.

Their co-development correlated more strongly with activated myeloid cells,

increased numbers of CD14+CD16+monocytes, plasma CD163 and interleukin-

18 (IL-18) than did SIVE or CVD pathology alone, or no pathology. Animals with

both SIVE and CVD pathology had greater numbers of cardiac macrophages and

increased collagen and monocyte/macrophage accumulation, which were

better correlates of CVD-pathology than SIV-RNA. Animals with SIVE alone

had higher levels of activated macrophage biomarkers and cardiac

macrophage accumulation than SIVnoE animals. These observations were

confirmed in HIV infected individuals with HIV encephalitis (HIVE) that had

greater numbers of cardiac macrophages and fibrosis than HIV-infected

controls without HIVE. These results underscore the notion that CNS and CVD

pathologies frequently occur together in HIV and SIV infection, and demonstrate

an unmet need for adjunctive therapies targeting macrophages.
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Introduction

HIV-associated comorbidities affect 20-50% of people living

with HIV (PLWH) despite effective antiretroviral therapy (ART)

(1–6). Of these, cardiovascular diseases (CVD) and HIV-associated

neurocognitive disorders (HAND) are the most prevalent and are

likely linked, although this has not been thoroughly documented

(7–11). Traditional biomarkers of CVD are insufficient for

predicting CVD risk in HIV-infected individuals on ART,

highlighting the necessity to further investigate the etiologies of

HIV-associated CVD pathogenesis (2, 5, 12, 13). Anecdotally, it

appears that the incidence of cardiac and central nervous system

(CNS) pathologies, and of CVD and neurocognitive dysfunction

among HIV-uninfected individuals often are concomitant and are

linked; likely through systemic inflammation and cardiovascular

risk factors (14–21). Importantly, both are associated with increased

monocyte/macrophage activation and accumulation in tissues (22–

26). The development of pre-ART HIV encephalitis (HIVE) among

HIV-infected adults and children is associated with myocardial

dysfunction, underscoring the possible connection between cardiac

and CNS pathogenesis with HIV-infection (27–29).

Central to CVD and CNS pathologies in PLWH and SIV-

infected monkeys is myeloid cell activation. This has been

demonstrated in many ways including elevated plasma soluble

CD14 (sCD14) and CD163 (sCD163), increased numbers of

activated CD14+CD16+ monocytes, and the accumulation of

CD163+, CD206+, and MAC387+ macrophages (30–38).

Monocyte/macrophage activation and accumulation in the CNS

also are correlated with neuroinflammation, encephalitis, and

HAND with HIV and SIV infection (26, 32–34, 39–46). Whether

such cardiac inflammation and fibrosis, and HAND/HIVE and SIV

encephalitis (SIVE) pathogenesis co-occur and correlate with higher

levels of monocyte and macrophage activation have not been

thoroughly addressed. We and others have shown that blocking

monocyte traffic or inhibit ing macrophage activation

experimentally in SIV-infected macaques reduces cardiac

inflammation and CNS pathology, highlighting the importance of

monocytes and macrophages in the pathogenesis of both SIV

comorbidities (47–49). Plasma galectin-3 and -9, are b-
galactoside-binding lectins secreted, inpart, by activated

macrophages (50, 51) and correlate with HIV comorbidities (52,

53). Galectin-3 correlates with myocardial fibrosis and cardiac

inflammation in HIV-uninfected and HIV-infected cohorts, and

plasma and cerebrospinal fluid (CSF) galectin-9 correlates with

acute HIV-1 infection and HAND (50, 54–60). Plasma interleukin-

18 (IL-18) is an inflammatory cytokine associated with macrophage

activation and pyroptosis, plasma viral load, atherosclerosis, and

CVD in symptomatic, HIV-infected patients and SIV-infected

monkeys (61–64). In addition, sCD163 made solely by myeloid

cells correlates with CVD and non-calcified plaque, HAND, and

plasma virus in HIV-infected individuals on or off ART and SIV-

infected monkeys (30, 31, 39, 65).

In this study, we asked whether SIV infected animals with AIDS

codevelop CVD and SIVE, and whether animals that codevelop

CVD pathology and SIVE had more monocyte and macrophage

activation than animals with CVD pathology alone or SIVE alone,
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and animals with no significant cardiac pathology and SIV with no

encephalitis (SIVnoE). Twenty-three CD8+ T lymphocyte-depleted,

SIV-infected macaques with AIDS were examined for the

prevalence of cardiac fibrosis, inflammation, and cardiomyocyte

degeneration, and SIVE. We assessed the numbers of cardiac

macrophages, cardiac collagen, monocyte activation, productive

infection in the heart and CNS, and plasma sCD163, IL-18, and

galectin-3 and -9. Corollary, translational studies were done in

PLWH with and without HAND, where significantly increased

numbers of cardiac macrophages were found in HAND versus non

HAND individuals.
Results

A greater number of animals with AIDS co-
develop CVD pathology and SIVE than CVD
pathology or SIVE alone

Of twenty-three animals sacrificed with AIDS defining criteria

(weight loss, intractable diarrhea, recurrent secondary infections)

(Table 1), based on histopathology, 10 (43.5%) co-developed CVD

pathology (macrophage accumulation, collagen deposition,

cardiomyocyte degeneration) and SIVE [SIV-RNA, macrophage

accumulation, multi-nucleated giant cells (MNGC)], 6 (26.1%) had

CVD pathology or SIVE alone, and 7 (30.4%) had no significant

histopathological findings (NSF) and SIV no encephalitis (SIVnoE).

Of the sixteen animals with AIDS defining histopathology (Table 1),

10 (62.5%) co-developed CVD pathology and SIVE, and 6 (37.5%)

had CVD pathology or SIVE alone (Table 1). There were greater

percentages of animals with a) cardiomyocyte degeneration [NSF

and SIVnoE (0/7), CVD-pathology or SIVE alone (1/6) and CVD

pathology and SIVE (5/10)]; b) degree of cardiac fibrosis [NSF or

SIVnoE (0/7), CVD-pathology or SIVE alone (3/6; 1 severe), CVD

pathology and SIVE (6/10; 2 severe)]; and c) cardiac inflammation

[NSF and SIVnoE (0/7), CVD pathology or SIVE (3/6, 1 mild) and

CVD pathology and SIVE (9/10; moderate-to-severe)] in animals

that co-developed CVD pathology and SIVE. There were no

significant differences in the average survival days post infection

(dpi) among animals with CVD and SIVE (104.8 ± 9.4 dpi), CVD or

SIVE alone (99.8 ± 10.9 dpi), and NSF and SIVnoE (168.6 ± 47.2

dpi) nor in age or weight among CVD pathology and SIVE (7.7 ±

0.9 years, 10 ± 0.8 kg), CVD pathology or SIVE alone (6.9 ± 0.7

years, 8.6 ± 1.6 kg), and NSF and SIVnoE (5.7 ± 1.5 years, 7.3 ± 1.2

kg) (Supplementary Table 1).
Animals with CVD pathology and SIVE have
greater numbers of cardiac macrophages
than animals with NSF and SIVnoE

Animals with CVD and SIVE had increased numbers of CD68+

(2.5-fold), CD163+ (2.7-fold), CD206+ (2.5-fold), and MAC387+

(1.8-fold) cardiac macrophages, compared to animals with NSF and

SIVnoE (one-way Kruskal-Wallis ANOVA, p<0.05, with Dunn’s

multiple comparisons) (Table 2). There were similar numbers of
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cardiac CD163+, CD206+, CD68+, and MAC387+ macrophages in

animals with CVD and SIVE compared to animals with CVD or

SIVE alone, and similar numbers of cardiac CD3+ T

lymphocytes (Table 2).
Animals with CVD pathology and SIVE have
greater cardiac collagen deposition than
animals with NSF and SIVnoE

Animals with both CVD and SIVE (2.5-fold; 20 ± 1.5%), and

CVD or SIVE alone (1.9-fold; 15.4 ± 2.1%) had similar areas of

collagen deposition, but greater percent of collagen deposition than

animals with NSF and SIVnoE (7.9 ± 0.5%) (one-way Kruskal-

Wallis ANOVA, p<0.05, with Dunn’s multiple comparisons)

(Figure 1). There were no correlations between the numbers of
Frontiers in Immunology 03
cardiac macrophages and percent area of cardiac collagen

deposition in any of the groups.
Animals with SIVE alone have greater
cardiac inflammation and collagen
deposition than animals with SIVnoE

Animals with SIVE alone had greater numbers of CD68+ (1.9-

fold), CD163+ (2.1-fold), CD206+ (2.4-fold), and MAC387+ (1.9-

fold) cardiac macrophages compared to animals with SIVnoE alone

(Mann-Whitney t-test, p<0.05) (Supplementary Table 2A). SIVE

alone animals had more cardiac collagen deposition (1.8-fold) than

SIVnoE animals (Mann-Whitney t-test, p<0.01) (Supplementary

Table 2B). There were no significant differences between the

numbers of cardiac CD3+ T lymphocytes in these groups.
TABLE 1 CVD pathology and SIVE develop together more frequently than does CVD pathology or SIVE alone.

Group Animal ID Cardiac
inflammation

Cardiac fibrosis Cardiomyocyte
degeneration

CNS pathology

NSF and SIVnoE 186-05 NSF NSF NSF SIVnoE

NSF and SIVnoE 168-05 NSF NSF NSF SIVnoE

NSF and SIVnoE 288-07 NSF NSF NSF SIVnoE

NSF and SIVnoE FT73 NSF NSF NSF SIVnoE

NSF and SIVnoE FG73 NSF NSF NSF SIVnoE

NSF and SIVnoE JR51 NSF NSF NSF SIVnoE

NSF and SIVnoE JR93 NSF NSF NSF SIVnoE

CVD or SIVE alone FD37 Mild Mild NSF SIVnoE

CVD or SIVE alone FC42 Mild Mild Moderate SIVnoE

CVD or SIVE alone FB92 Mild Severe NSF SIVnoE

CVD or SIVE alone FD80 NSF NSF NSF SIVE

CVD or SIVE alone IK28 NSF NSF NSF SIVE

CVD or SIVE alone KN69 NSF NSF NSF SIVE

CVD and SIVE JD29 NSF NSF Mild SIVE

CVD and SIVE JE87 Mild NSF NSF SIVE

CVD and SIVE DB79 Mild Mild NSF SIVE

CVD and SIVE FR56 Mild Mild Mild SIVE

CVD and SIVE LB12 Mild NSF Mild SIVE

CVD and SIVE KT79 Mild NSF NSF SIVE

CVD and SIVE CM07 Mild Moderate NSF SIVE

CVD and SIVE 244-96 Moderate Mild NSF SIVE

CVD and SIVE 55-05 Moderate Severe Mild SIVE

CVD and SIVE FD05 Severe Severe Moderate SIVE
Twenty-three SIV-infected, CD8+ T-lymphocyte depleted rhesus macaques were used in this study, all of which were sacrificed with AIDS. Sections of left ventricular tissue (cardiac tissue) were
examined blindly by a veterinary pathologist and the presence and severity of cardiac inflammation, cardiac fibrosis and cardiomyocyte degeneration was determined. Animals were scored with
no significant findings (NSF), mild, moderate, or severe CVD pathology. Ten animals were found to have NSF, and 13 animals were found to have CVD pathology. SIVE was diagnosed
postmortem and based on the presence of SIV virus in the CNS and MNGC. Thirteen animals had SIVE and ten animals had SIVnoE. Animals were grouped by the presence of CVD and SIVE
together (CVD and SIVE, n = 10), one of either CVD or SIVE alone (n = 6), or NSF and SIVnoE (n =7).
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Animals with both CVD and SIVE have
more SIV-RNA+ and SIV-gp41+ cells in the
CNS and heart than animals with CVD or
SIVE alone, and NSF and SIVnoE animals

Overall, we found a greater number of SIV-RNA+ cells (3.8-

fold) (Mann-Whitney t-test, p<0.05) and SIV-gp41+ cells (8.2-fold)

in the CNS compared to the cardiac tissues in all animals. Animals

with CVD pathology and SIVE had a greater number of SIV-RNA+

(3.6-fold) and SIV-gp41+ cells (8.7-fold) in the CNS compared to

the heart. Animals with CVD and SIVE had a trend of increased
Frontiers in Immunology 04
numbers of CNS SIV-RNA+ cells (3.8-fold), CNS SIV-gp41+ cells

(1.7-fold), cardiac SIV-RNA+ (2.7-fold), cardiac SIV-gp41+ cells

(3.6-fold) than animals with CVD or SIVE alone (Table 3). All

cardiac SIV-RNA+ cells were CD68+ and CD206+ macrophages

not CD3+ T lymphocytes (Figure 2).
Animals with SIVE alone have increased
numbers of CNS SIV-RNA+ macrophages
compared to SIVnoE animals

Animals with SIVE alone had increased numbers of CNS SIV-

RNA+ cells (18.4-fold), but similar, low numbers of cardiac SIV-

RNA+ cells and SIV-gp41+ cells, and CNS SIV-gp41+ cells

compared to animals with SIVnoE alone (Mann-Whitney t-test

p<0.01) (Supplementary Table 3). Animals with CVD-pathology

alone had similar numbers of CNS SIV-RNA+ cells, cardiac SIV-

RNA+ cells, and CNS SIV-gp41+ cells compared to NSF animals

(Supplementary Table 3).
Animals with CVD-pathology and SIVE
have greater numbers of CD14+CD16+
monocytes compared to NSF and
SIVnoE animals

Animals with CVD and SIVE had increased numbers of CD14

+CD16+monocytes early [8 dpi (81.3 ± 13.4 CD14+CD16+monocytes;

2.8-fold) and 19 dpi (104.8 ± 23.6 CD14+CD16+ monocytes; 3.1-fold)]

and terminally (223.6 ± 63.1 CD14+CD16+ monocytes; 5.9-fold)

compared to animals with NSF and SIVnoE (29.5 ± 5.1, 34 ± 11.7,

and 37.8 ± 3.1 CD14+CD16+ monocytes, respectively) (one-way

Kruskal-Wallis ANOVA, *p<0.05, with Dunn’s multiple comparisons)

(Figure 3A). Animals with CVD and SIVE had similar numbers of

CD14+CD16+ monocytes early (8 dpi; 1.3-fold) and a trend of

increased CD14+CD16+ monocytes terminally (2.9-fold) compared to

CVD-pathology or SIVE alone animals (62.5 ± 15.9 and 78.1 ± 18.6

respectively) (Figure 3A). There was a correlation between the

numbers of CD14+CD16+ monocytes early (8 dpi; r= 0.70, p<0.01
TABLE 2 Animals with CVD pathology and SIVE had increased numbers of cardiac macrophages compared to animals with CVD pathology or SIVE
alone, and NSF and SIVnoE animals.

Pathology CD68+
Macrophage
(cells/ mm²)

CD163+
Macrophage
(cells/mm²)

CD206+
Macrophage
(cells/mm²)

MAC387+
Macrophages
(cells/ mm²)

CD3+ T lymphocytes
(cells/ mm²

CVD and SIVE 143.1 ± 19.6 325.3 ± 36.8 202 ± 19 31,4 ± 8.8 23.1 ± 4.7

CVD or SIVE
alone

107,6 ± 14.6 ** 229 ± 34.4 ** 116 ± 26.5 ** 22.3 ± 5.4 * 22.1 ± 8.3

NSF and
SIVnoE

56.6 ± 8.2 122.1 ± 22.9 82.5 ± 16.6 17,4 ± 5.1 10.9 ± 4.2

ANOVA p< 0.01 p< 0.001 p< 0.01 p< 0.05 p= 0.11
Animals were grouped based on the development of both CVD and SIVE (n=8), CVD or SIVE alone (n=5), or NSF and SIVnoE (n=7). Sections of cardiac tissue were stained
immunohistochemically with antibodies recognizing CD163+, CD68+, MAC387+, or CD206+ macrophages (A-D) and CD3+ T-lymphocytes (E). Twenty random, non-overlapping images
were sampled at 200x fields of view and the average number of cells/mm2 were expressed as plus or minus the SEM. P-values were calculated using a one-way Kruskal-Wallis ANOVA, *p< 0.05,
with Dunn’s multiple comparisons (*p<0.05, **p<0.01).
FIGURE 1

Animals with CVD-pathology and SIVE had a greater percentage of
area of cardiac collagen deposition than animals with CVD-
pathology or SIVE alone, and NSF and SIVnoE animals. Left ventricle
sections from animals grouped as having NSF and SIVnoE (n=7,
circles), CVD or SIVE alone (n= 5, squares) and CVD and SIVE (n=8,
triangles) were assessed for cardiac collagen deposition using a
Massons trichrome stain. Fibrosis was determined as the percentage
of collagen per total tissue area and was quantified for each animal
using ImageJ Analysis software (non-parametric, one-way ANOVA,
Dunn’s multiple comparisons (**p<0.01).
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TABLE 3 Animals with CVD pathology and SIVE had more productively infected cells in the CNS compared to animals with CVD-pathology or SIVE
alone, and NSF and SIVnoE animals.

Pathology
Cardiac SIV-DNA+

(cells/mm²)
CNS SIV-RNA+
(cells/mm²)

Cardiac SIV-RNA+
(cells/mm²)

CNS SIV-gp41+
(cells/mm2)

Cardiac SIV-gp41+
(cells/mm²)

CVD and
SIVE

0.4 ± 0.2 19.3 ± 2.3
*

5.40 ± 2.4 31.5 ± 11.2 3.6 ± 1.9

CVD or SIVE
alone

0.7 ± 0.4 5.1 ± 3.1 0.45 ± 0.4 18.5 ± 8.8 0

NSF and
SIVnoE

1.7 ± 0.3 0.7 ± 0.2 2.7 ± 1.9 8.1 ± 2.3 4.1 ± 1.3

ANOVA p= 0.24 p< 0.05 p= 0.20 p= 0.67 p= 0.15
F
rontiers in Immu
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Animals were grouped based on the development of both CVD and SIVE, CVD or SIVE alone, and NSF and SIVnoE. The average number of SIV-DNA+ cells in the heart and, SIV-RNA+ and
SIV-gp41+ cells in CNS cortical and cardiac tissues are reported. One section of center ventricle and three sections of CNS cortical from SIV-infected macaques (n=10) were assessed for SIV-
RNA+ cells/mm2. Measurements of CNS SIV-RNA+ cells/mm2 were determined by averaging counts from three CNS cortical sections. One section of CNS cortical and cardiac tissues (n=13)
were assessed for SIV-gp41+ cells/mm2 plus or minus SEM. Twenty, random, non-overlapping 400x fields of view were sampled for each section per animal and the average number of SIV-gp41
+ cells/mm2 were determined. P-values were calculated using a one-way Kruskal-Wallis ANOVA, *p< 0.05, with Dunn’s multiple comparisons. (*p<0.05).
FIGURE 2

CD68+ and CD206+ cardiac macrophages are SIV-RNA+ in SIV infected monkeys. Sections of left ventricle were stained immunohistochemically for
CD68+ and CD206+ macrophages. Cardiac SIV-RNA was detected using RNAscope in situ hybridization. Images were digitally merged using
Aperio’s Specturm Plus analysis program. Data here are from n=2 animals and representative of n=20 animals.
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and 19 dpi; r= 0.57, p<0.05) and terminally (r= 0.61, p<0.05) with

cardiac collagen deposition (Spearman’s correlation, p<0.05)

(Figures 3B–D).
Animals with CVD and SIVE have increased
plasma biomarkers associated with
monocyte and macrophage activation

Animals with CVD and SIVE had a trend of increased plasma

sCD163 (2.6-fold) and IL-18 (2.4-fold), galectin-3 (1.2-fold) and

galectin-9 (1.5 fold) compared to animals with CVD or SIVE along,

and NSF and SIVnoE animals (one-way Kruskal-Wallis ANOVA,

*p<0.05, with Dunn’s multiple comparisons) (Table 4). Plasma

sCD163 positively correlated with galectin-3 (r= 0.74, p<0.05) and
Frontiers in Immunology 06
IL-18 (r= 0.93, p<0.001), and trended to correlate with galectin-9

(r= 0.67, p= 0.06). Consistent with previous studies in HIV infected

individuals (60, 66), there was a positive correlation between plasma

galectin-9 and plasma viral load (r= 0.76, p<0.01) (Spearman’s

correlation, p<0.05) (Figure 4) but there were no significant

correlations between plasma virus and galectin-3, IL-18, and

sCD163. Animals with CVD-pathology alone had a trend of

increased plasma sCD163 (2.2-fold) and similar levels of IL-18,

galectin-3, and galectin-9 compared to NSF animals (Mann-

Whitney t-test p<0.05) (Table 5). SIVE alone animals had greater

plasma IL-18 (2.9-fold) and a trend of increased galectin-3 (1.5-

fold) and galectin-9 (2.1-fold). There were similar levels of sCD163

between animals with SIVE and SIVnoE (Table 5). Animals with

CVD-pathology alone had similar levels of sCD163, IL-18 and

galectin-9 compared as NSF animals (Table 5).
A

B DC

FIGURE 3

Animals with CVD and SIVE had increased numbers of CD14+CD16+ monocytes early and terminally compared to animals with CVD or SIVE alone,
and NSF and SIVnoE animals. (A). Absolute numbers of CD14+CD16+ monocytes, as determine by flow cytometry and CBC, were assessed early (8
dpi and 19 dpi) and terminally in animals with NSF and SIVnoE (n=4, circle), CVD or SIVE alone (n= 5, square and CVD and SIVE (n=8, triangle). The
pre-infection baseline was 19.38 CD14+CD16+ monocytes (one-way ANOVA, post-hoc, non-parametric, Mann-Whitney t-test, *p<0.05 (B-D). The
absolute numbers of CD14+CD16+ monocytes at early infection (8 dpi and 19 dpi) and terminally from animals with NSF and SIVnoE (n=4, circle),
CVD or SIVE alone (n= 5, square), and CVD and SIVE (n= 8, triangle) positively correlated with the percent cardiac collagen per tissue area (non-
parametric, Spearman’s correlation, p< 0.05).
TABLE 4 Plasma sCD163, IL-18, galectin -3 and -9 are higher in animals with CVD-pathology and SIVE than animals with CVD–pathology or SIVE
alone.

Pathology Plasma sCD163 (ng/mL) Plasma IL-18 (pg/mL) Plasma galectin-3 (ng/mL)
Plasma galectin-9

(ng/mL)

CVD and SIVE 879 ± 232 1859 ± 500 60.2 ± 11.4 76.5 ± 14.7

CVD or SIVE alone 334 ± 76.7 1018 ± 250 50.3 ± 8.6 52.5 ± 16.1

NSF and SIVnoE 1052 ± 551 299 20.5 62.6

ANOVA p= 0.07 p= 0.27 p= 0.24 p= 0.6
Terminal plasma sCD163, IL-18, galectin-3 and galectin-9 were measured in animals with NSF and SIVnoE, CVD or SIVE alone, and CVD and SIVE. ELISAs were performed according to the
manufacturer’s protocol. P-values were calculated using a one-way Kruskal-Wallis ANOVA, *p< 0.05, with Dunn’s multiple comparisons (*p<0.05).
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HIV-infected individuals with HIVE have
greater cardiac inflammation and fibrosis
than HIVnoE individuals

We next sought to determine whether HIV-infected individuals

with HIVE (n =11) had increased cardiac inflammation and fibrosis

over that seen in HIV infected individuals without encephalitis

(HIVnoE) (n =11) (Table 6). In age-, race- and sex-matched

individuals, we found that the HIVE group had greater numbers

of CD68+ (1.7-fold, 200.62 ± 12.41 cells), CD163+ (1.5-fold, 254.29

± 8.05 cells), and MAC387+ (1.7-fold, 78.52 ± 4.94 cells) cardiac

macrophages compared to individuals with HIVnoE (120.49 ± 8.44

CD68+ macrophage, 173.42 ± 7.55 CD163+ macrophage, and 46.58

± 4.29 MAC387+ macrophage) (Mann-Whitney t test, p<0.05)

(Figures 5A-C). There were similar numbers of cardiac CD3+ T

lymphocytes in individuals with HIVE (28.15 ± 6.97 cells)

compared to individuals with HIVnoE (22.11 ± 5.39 cells)
Frontiers in Immunology 07
(Figure 5D). Additionally, there was a higher percentage of

cardiac collagen deposition (1.8-fold, 29.87 ± 1.63%) in the HIVE

group compared to the HIVnoE group (17.06 ± 1.26%) (Mann-

Whitney t test, p<0.05) (Figure 5E). These data are similar to the

results we find in SIV infected monkeys, supporting the

translational nature of the monkey data.
Conclusion- Discussion

Monocyte and macrophage activation and accumulation in the

heart or the CNS are consistently correlated with the development

of CVD and CVD pathology, HAND and HIVE, and SIVE (22, 67–

70). Less is known or reported about the frequency that CVD, CVD

pathology, HIVE and HAND with AIDS in humans and animal

models, and in PLWH (27–29), or whether co-development is

associated with increased monocyte activation, macrophage
TABLE 5 Animals with SIVE alone had more plasma sCD163, IL-18, and galectin-3 and -9 than animals with SIVnoE.

SIVE Pathology
Plasma sCD163

(ng/mL)
Plasma IL-18

(pg/mL)
Plasma galectin-3

(ng/mL)
Plasma galectin-9

(ng/mL)

SIVE 782 ± 200 1814 ± 385
*

55.9 ± 9.7 75 ± 12.9

SIVnoE 689 ± 309 619 ± 183 37.8 ± 8.5 37.8 ± 9.2

Cardiac Pathology Plasma sCD163 (ng/mL) Plasma IL-18 (pg/mL) Plasma galectin-3 (ng/mL) Plasma galectin-9 (ng/mL)

CVD 779 ± 200 1437 ± 362 48.9 ± 8.3 66.7 ± 12.1

NSF 697 ± 312 1202 ± 473 51.2 ± 17.2 63.4 ± 0.8
Terminal plasma sCD163, IL-18, galectin-3 and galectin-9 were measured in animals with SIVnoE or SIVE alone., and NSF or CVD alone. P-values were calculated using non-parametric Mann-Whitney
T-tests with significance accepted at p< 0.05. NSF, no significant findings. CVD-pathology, cardiovascular pathology. SIVnoE, SIV with no encephalitis. SIVE, SIVE encephalitis (*p<0.05).
A B

D E F G

C

FIGURE 4

Plasma sCD163 correlates with galectins- 3 and -9, and IL-18 in SIV infected monkeys. (A-C). Spearman’s correlation was used to assess the
relationship between terminal levels of plasma galectins -3 and -9, and IL-18, and terminal plasma sCD163. (D-G). Spearman’s correlation was used
to assess the relationship between terminal levels of plasma galectins-3 and -9, IL-18, and sCD163, and plasma viral load. Data generated here were
from n=23 animals. P-values accepted at Spearman’s p< 0.05.
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accumulation, or HIV and SIV infection. Here, we find that animals

with AIDS co-developed CVD pathology and SIVE more frequently

than CVD pathology or SIVE alone, and individuals with HIVE

have increased numbers of cardiac macrophages and fibrosis

compared to age- and sex-matched non-HIVE controls. We

report that animals that co-developed CVD-pathology and SIVE

have higher numbers of CD14+CD16+ monocytes, and plasma

sCD163, IL-18, and galectin-3 and -9, and cardiac macrophage

accumulation/collagen deposition than animals with CVD or SIVE

alone, and NSF and SIVnoE animals. These observations support

the notion of increased monocyte activation and cardiac

macrophage accumulation with the co-development of cardiac

inflammation and fibrosis and SIVE, and underscore the

translational findings in the monkey studies with those in HIV

infected individuals.

Macrophages are key regulators of fibrogenesis through their

interactions with myofibroblasts, wound healing responses, and

production of profibrotic factors like galectin-3, osteopontin, and

transforming growth factor- beta (TGF-b) (71–74). We and others

have previously shown that CD163+ and CD206+ cardiac
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macrophage accumulation and monocyte activation correlates

with cardiac inflammation and fibrosis with HIV and SIV

infection (38, 75–77). Similarly, CD163+ and CD206+

perivascular macrophages and 5-bromo-2’-deoxyuridine-labeled

(BrdU+) MAC387+ macrophage accumulation in the CNS are

major components of HIVE and SIVE lesions (43–46). These

observations are consistent with the notion that macrophage

accumulation in the heart and CNS correlate with cardiac and

SIVE pathogenesis. Our findings extend those observations to

suggest that higher levels of monocyte activation, biomarkers of

myeloid cell activation in plasma, and macrophage accumulation in

the heart correlate with the co-development of cardiac

inflammation and fibrosis and SIVE. We have previously shown,

by blocking macrophage accumulation with the anti-alpha-4

integrin antibody (47, 48), the polyamine biosynthesis inhibitor

methylglyoxal-bis-guanylhydrazone (MGBG) (37) or minocycline

(49) correlates with decreased cardiac and CNS inflammation,

cardiac fibrosis and tissue histopathology further supporting the

role that macrophage accumulation has in the development of CVD

alone and SIVE alone (37). Here, we report that animals with CVD
TABLE 6 Patients from the Manhattan HIV Brain Bank (MHBB) were examined for the prevalence of HIVE.

MHBB ID AGE SEX RACE CD4+ T lymphocytes (< 200 cells/mL) HIVE

MHBB552 47 m W YES HIVnoE

MHBB558 51 m h YES HIVnoE

MHBB625 48 m b YES HIVnoE

010003 45 m W NO HIVnoE

010011 42 m h YES HIVnoE

MHBB532 47 m h YES HIVnoE

010171 45 m b YES HIVnoE

MHBB533 41 m h NO HIVnoE

030025 46 m b YES HIVnoE

020025 37 m h YES HIVnoE

030024 43 m b YES HIVnoE

MHBB509 46 m W NO HIVE

MHBB519 50 m h YES HIVE

MHBB540 47 m b YES HIVE

010017 43 m W YES HIVE

010026 37 m h YES HIVE

010065 46 m h YES HIVE

010070 37 m b YES HIVE

010103 40 m h YES HIVE

010129 43 m b YES HIVE

010231 47 m h YES HIVE

030015 43 m b YES HIVE
front
Twenty-two HIV infected males from the MHBB were assessed. Eleven individuals had HIV with no encephalitis (HIVnoE) and an average age of 44.7± 1.15 years. Nine HIVnoE individuals had
a CD4+ T lymphocyte count <200 cells. Eleven individuals have HIV encephalitis (HIVE) and an average age of 43.5± 1.27 years. Ten HIVE individuals had a CD4+ T lymphocyte count <200
cells. Each individual with HIVE was matched in sex, race, and age to an individual with HIVnoE.
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and SIVE had more CD68+, CD163+, CD206+, and MAC387+

cardiac macrophages, and cardiac collagen deposition than animals

with CVD or SIVE alone, demonstrating that concomitant CVD-

pathology and SIVE correlates with higher levels of cardiac

macrophage activation, plasma markers of myeloid activation and

cardiac fibrosis than CVD-pathology or SIVE alone. We report that

animals with CVD alone had more cardiac macrophages and

collagen deposition than animals with NSF alone, consistent with

previous reports (71, 76, 78). We demonstrate parallel observations

in an HIVE cohort compared to age- and sex-matched controls with

HIV infection without HIVE, that have increased cardiac

macrophages and collagen. Increased cardiac collagen deposition

is linked to cardiac macrophage accumulation, although we did not

find a statistically significant correlation between macrophage

accumulation and percent collagen in the CVD-pathology and

SIVE groups. It is possible that we did not find a correlation

between the numbers of cardiac macrophages and cardiac

collagen in this study due in part to the CD8+ T lymphocyte-

depletion model of rapid AIDS. SIV infected macaques with CD8+

T lymphocyte-depletion are more likely to develop AIDS and SIVE

and CVD-pathology within 3-4 months, as opposed to 1-3 years,

but do not develop chronic cardiovascular diseases (79, 80). Indeed,

Shannon et al. (2000) found that acutely infected rhesus macaques

did not develop contractile dysfunction and cardiac pathology when
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compared to chronically infected macaques (81), suggesting that

rapid AIDS pathogenesis in macaques does not consistently result

in severe cardiomyopathy. We found that animals with SIVE alone

had a greater number of cardiac macrophages and collagen

deposition than animals with SIVnoE alone, and we found higher

numbers of cardiac macrophages and fibrosis in individuals with

HIVE, than age and sex matched HIV infected controls without

HIVE. Overall, these findings suggest that increased cardiac

macrophage accumulation and fibrosis correlate with HIVE in

HIV infected individuals and SIVE in SIV infected macaques.

Kuroda et al. (2019), demonstrated that CD163+ and CD206+

cardiac macrophages are the most abundant cardiac macrophage

subsets in uninfected rhesus macaques with severe cardiac

inflammation (82). We report that CD163+ and CD206+ cardiac

macrophage subsets are the most abundant cardiac in SIV infected

macaques with AIDS. We found that animals with CVD-pathology

and SIVE have higher numbers of CD163+ and CD206+ cardiac

macrophages than animals with NSF and SIVnoE, indicating that

CD163+ and CD206+ cardiac macrophage subsets are correlated

with the severity of CVD and SIVE pathologies. Similarly, we find

that CD163+ cardiac macrophages are the most abundant cardiac

macrophage subset in HIV infected individuals with HIVE,

suggesting that CD163+ cardiac macrophage accumulation is

associated with HIVE pathogenesis.
A B

D E

C

FIGURE 5

Individuals with HIVE had greater numbers of cardiac macrophages and collagen deposition than HIVnoE individuals. (A-D). Increased CD68+,
CD163+, and MAC387+ cardiac macrophages in individuals with HIVE. Trend of increased numbers of cardiac CD3+ T lymphocytes regardless of
HIVE. Sections of cardiac tissue were stained immunohistochemically with antibodies recognizing CD68+, CD163+, or MAC387+ macrophages, and
CD3+ T-lymphocytes. Twenty random, non-overlapping images were sampled at 200x fields of view, and the data was expressed as the average
number of cells/mm2 plus or minus the SEM. (E). Increased cardiac collagen deposition in individuals with HIVE. Cardiac collagen deposition was
assessed using a Masson’s trichrome stain. Fibrosis was determined as the percentage of cardiac collagen per total tissue area and was quantified for
using ImageJ Analysis software with twenty random, non-overlapping images sampled at 200x fields of view. Cardiac tissues were supplied by the
Manhattan HIV Brain Bank. Data was presented as the average percentage of collagen plus or minus the SEM. P-values were calculated using a
nonparametric, Mann-Whitney t test, HIVnoE (circles); HIV with no encephalitis. HIVE (squares); HIV encephalitis (****p<0.0001).
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We found that higher numbers of activated CD14+CD16+

monocytes occur with the co-development of CVD pathology and

SIVE. The CD14+CD16+ monocyte subset normally comprises 5-

10% of the total monocyte population, but their expansion with SIV

infection and AIDS correlates with the development of CVD-

pathology alone, or SIVE alone (32, 69, 83–85). Moreover,

animals with CVD and SIVE had greater numbers and

percentages of CD14+CD16+ monocytes early in infection and

terminally compared to CVD or SIVE alone animals, and animals

with NSF and SIVnoE, suggesting that CD14+CD16+ monocyte

activation is a biomarker of AIDS pathogenesis and concomitant

CVD pathology and SIVE similar to CVD with HIV and HAND in

humans (67, 86–88). Prior reports have shown that CD14+CD16+

monocytes are increased/associated with HAND alone (89), and

CVD-pathology alone (35, 90). These blood monocytes are thought

to be a mature subset of activated monocytes (84, 91) that are

persistently activated and are more susceptible to HIV and SIV

infection (92, 93). Indeed, early infection and trafficking of C-C

chemokine receptor 2 (CCR2)-positive CD14+CD16+ monocytes

into the CNS correlates with the development of HIVE and SIVE

(93–95). Further, increased CD14+CD16+ monocyte activation

correlates with cardiovascular and cerebrovascular inflammation

in HIV infected individuals on ART, suggesting that monocyte

activation persists despite ART and is linked to the development of

CVD and vasculopathy with infection (36, 90, 96). Here, we show

that numbers of CD14+CD16+ monocytes early and terminally also

correlate with the percentage of cardiac collagen deposition in all

animals with AIDS, indicating that increased CD14+CD16+

monocytes correlate with cardiac fibrogenesis. Together our

findings suggest that the development of concomitant CVD-

pathology and SIVE with AIDS is correlated with increased levels

of CD14+CD16+ monocyte activation, and plasma biomarkers of

monocyte activation.

We find that animals with concomitant CVD-pathology and

SIVE had more SIV-RNA+ and SIV-gp41+ cells in the CNS and

heart than animals with CVD-pathology or SIVE alone, and NSF

and SIVnoE animals. We note that in all SIV infected monkeys with

AIDS, there are far fewer SIV-RNA+ and SIV-gp41+ cells in the

heart than the CNS suggesting that macrophage accumulation more

so than SIV-RNA+ and SIV-gp41+ cells, are linked to the co-

development of CVD pathology and SIVE. This remains the case

when plasma virus is undetectable with ART because both CVD-

pathology, and HAND persists in the post-ART era, and correlates

with markers of monocyte/macrophage activation like plasma

sCD163 and sCD14, IL-18, galectin -3 and -9 (30, 39, 41, 97).

This is consistent with previous studies showing few SIV-RNA+

cells in the heart regardless of the severity of cardiac inflammation

(76, 98). Conversely, other studies have shown that myocardial SIV-

RNA correlates with diastolic dysfunction (99, 100). We found that

cardiac SIV-RNA+ cells are CD68+CD206+ macrophages and not

CD3+ T lymphocytes in all animals, suggesting that a small

population of macrophage are productively infected in the heart.

We found little to no SIV-DNA+ latently infected cells in the heart.

We postulate that the difference of magnitudes in SIV-DNA+, SIV-

RNA+, and SIV-gp41+ cells is likely due to the sensitivity of the

assays used. We and others have previously shown that productively
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infected, CD14+CD163+ perivascular macrophages and

multinucleated giant cells (MNGCs) comprise the main

population of infected macrophages in the brain and correlate

with the development of SIVE lesions (43, 46, 69, 83, 101, 102).

Overall, our findings support the notion that animals with

concomitant CVD-pathology and SIVE have more SIV-RNA+

macrophages and SIV-gp41+ productively infected cells in the

heart and CNS than animals with CVD-pathology or SIVE alone.

We found higher levels of biomarkers of plasma sCD163 and

IL-18 in animals with CVD and SIVE compared to animals with

CVD or SIVE alone, and animals with NSF and SIVnoE consistent

with the notion that concomitant CVD and SIVE is correlated with

higher monocyte/macrophage activation, and numbers of CD14

+CD16+ monocytes. We and others have previously reported that

increased plasma sCD163 correlates with non-calcified coronary

plaque (30), HAND (39), and all-cause mortality (65) in HIV

infected individuals on ART, and in SIV infected rhesus

macaques (39, 103). Similarly, plasma IL-18 is produced by

macrophages and is also increased with atherosclerosis and CVD

in HIV infected individuals (64, 104, 105), and SIV infected

macaques (63). Increased NLR Family Pyrin Domain-Containing

3 (NLRP3) inflammasome activation occurs in macrophages with

HIV-infection and drives IL-18 and IL-1b production. NLRP3

inflammasome activation is correlated with macrophage

activation and pyroptosis (106, 107), disease progression in gut-

associated lymphoid tissues (62), neuroinflammation (108, 109)

and atherosclerosis in HIV infected individuals (110). This data,

and that of others show higher levels of plasma IL-18 in animals

that co-developed CVD-pathology and SIVE, suggesting that

NLRP3 inflammasome activation may drive both cardiac

inflammation and SIVE pathogenesis. We also found similar

levels of plasma galectin-3 and -9 in all animals regardless of

pathology. Other studies have shown that plasma galectin-3 is

increased with HIV-infection (54) and correlates with non-

calcified coronary plaque in HIV infected individuals (55); and

increased plasma galectin-9 correlates with acute HIV-infection (59,

60, 66), neurocognitive dysfunction (58), and all-cause mortality

(111). We found increased galectin-3 and -9 in animals with SIVE

alone animals compared to SIVnoE animals. Studies in mice show

that increased galectin-3 expression in the brain correlates with

microglia activation and neuroinflammation post-CNS injury (112–

115), suggesting that there may be a connection between increased

galectin-3 and SIVE pathogenesis. We did not find increased

plasma galectin-3 in animals with CVD alone likely because of

the acute nature of our rapid AIDS model. Previous studies have

shown that increased plasma galectin-3 correlates with cardiac

inflammation and fibrosis in the uninfected population (116–121)

and may correlate with cardiac pathogenesis in HIV infected

individuals (54, 55, 68). Our findings indicate that plasma

galectin-3 and -9, biomarkers of myeloid cell activation, are

higher in animals with SIVE and may correlate with the severity

of AIDS pathologies. We also find that plasma sCD163 correlates

with plasma galectin-3 and -9, and IL-18 in all animals, and plasma

galectin-9, but not sCD163, galectin-3, and IL-18, correlates with

plasma viral load. This is consistent with recent reports showing

that plasma galectin-9 correlates with plasma viral load in HIV
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infected individuals (66). Together, these data demonstrate that

plasma IL-18 and galectin-3 and -9, are better correlated with

monocyte/macrophage activation than plasma viral load. Our

findings are consistent with previous data from the Multicenter

AIDS Cohort Study (MACS) showing that subclinical

atherosclerosis and cognitive dysfunction are correlated with

increased biomarkers of monocyte/macrophage activation despite

plasma HIV suppression with ART (88, 122, 123).

The concept of the “heart-brain axis,” in which pathogenesis in the

heart and CNS are linked, has been discussed in the uninfected

population (17, 20, 124), but has not been thoroughly studied with

HIV- or SIV- infection. In this study, we report that animals with AIDS

co-developed CVD and SIVE and had higher levels of CD14+CD16+

monocyte activation, plasma biomarkers of myeloid cell activation,

cardiac inflammation and fibrosis, and SIV-RNA+ and SIV-gp41+ cells

in the CNS and heart than animals with CVD or SIVE alone, and

animals with NSF and SIVnoE. We also show that cardiac SIV-RNA+

cells are CD68+CD206+ cardiac macrophage. Importantly, we show

that HIV infected individuals with HAND also have more cardiac

inflammation and fibrosis than individuals with no HAND. This study

sheds further light on the importance of monocyte and macrophage

activation in AIDS pathogenesis, and suggests that the development of

future therapies in HIV infected individuals should target and inhibit

myeloid cell activation in the heart and CNS together.
Materials and methods

Animals, SIV-infection, and CD8+ T-
lymphocyte depletion

Twenty-three rhesus macaques were utilized in this study. Five

were housed at Harvard University’s New England Primate

Research Center (NEPRC) and eighteen were housed at Tulane

University’s Tulane National Primate Research Center (TNPRC) in

accordance with standards of the American Association for

Accreditation of Laboratory Animal Care. This was a

retrospective study using all male Rhesus macaques (Macaca

mulatta). Animals were experimentally infected intravenously (i.v)

by inoculation with bolus of SIVmac251 viral swarm (20 ng of SIV

p28) provided by Ronald Desrosiers, over a 5 minute time-period.

Animals were adult (3.6-12.6 years old). Animals with the Mamu

B*08 and B*17 alleles were excluded. Blood samples were taken

prior to, on the day of infection, and weekly thereafter. Animals

underwent CD8+ T-lymphocyte depletion for rapid AIDS and

consistent SIVE. CD8+ T-lymphocyte depletion was achieved

with subcutaneous administration of human anti-CD8 antibody,

cM-T807 (10 mg/kg) at day 6 post-infection, and i.v. administration

(5 mg/kg) on days 8 and 12 post-infection. Simian AIDS was

determined postmortem by the presence of opportunistic

infections, tumors, and the development of SIV giant cell

pneumonia, cytomegalovirus pneumonia, SIVE with giant cells,

pneumocystis jirovecii, or lymphoma. With the presence of AIDS,

animals were anesthetized with ketamine-HCl and euthanized with

i.v. pentobarbital overdose and exsanguinated.
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Plasma viral load

Plasma SIV-RNA was quantified using real-time PCR, as

previously describe (125–127). Five hundred µL of EDTA plasma

was collected and SIV virions were pelleted by centrifugation at

20,000 g for 1 hour. The PCR assay targets conserved sequences of

SIV-gag The threshold sensitivity was 100 copy Eq/mL, with an

average inter-assay coefficient variation of less than 25%. The CT

cut off for SIV DNA is 39-40 cycles.
Assessment of inflammation and fibrosis in
cardiac tissues and CNS SIVE

Following exsanguination, a standard necropsy was performed

and lymph nodes and parenchymal organs including heart and

brain, were fixed in 10% neutral buffered formalin. Tissues were

paraffin embedded, sectioned at 5µm, and stained with hematoxylin

and eosin. Sections of cardiac (left ventricle) and central nervous

system (CNS) cortical tissues were analyzed blindly by a veterinary

pathologist. Ten randomly selected images of cardiac and CNS

cortical tissues were taken using an Olympus BX43 Light

Microscopy (Evident, Tokyo, Japan) at 400x fields and graded

subjectively and blindly by an ACVP certified Veterinary

Pathologist, and categorized based on the degree of cardiac

inflammation, cardiac fibrosis, and cardiomyocyte degeneration as

having: A) no significant findings (NSF), B) mild, C) moderate, or

D) severe pathology. SIVE was diagnosed based on the presence of

MNGCs, accumulation of perivascular macrophages, and

productive SIV infection (103, 128–130).
Single-label immunohistochemistry of
cardiac tissues

Sections of formalin-fixed, paraffin-embedded cardiac tissues

were immunohistochemically assessed for numbers of macrophages

and CD3+ T-lymphocytes, as previously described (48).

Macrophages were identified using monoclonal antibodies against

CD163 (clone EdHu-1, Serotec; Oxford, UK), CD68 (clone KP1,

Dako; Glostrup, Denmark), Myeloid/Histiocyte Antigen (clone

MAC387, Dako), and CD206 (clone 685645, R&D Systems;

Minneapolis, MN); T-lymphocytes were identified using a

polyclonal antibody against CD3 (Agilent- cat A0452, Dako,

Santa Clara, CA). Data are presented as the mean positive

number of cells/mm2 from 20 non-overlapping fields of view plus

or minus the standard error of the mean (SEM). SIV-productively

infected cells in cardiac and CNS cortical tissues were

immunohistochemically stained for SIV-gp41+ cells (clone: KK41,

NIH AIDS Reagent Program; Germantown, MD). Quantitation of

SIV-gp41+ cells/mm2 was achieved by counting SIV-gp41+ cells

from 20 random, non-overlapping images of brain and cardiac

sections at 400x total magnification using the Zeiss Axio Imager.M1

m i c r o s c op e and Ax i oV i s i o n (V e r s i o n 4 . 8 , Z e i s s ;

Oberkochen, Germany).
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Measurement of myocardial fibrosis

Cardiac collagen deposition was measured using a modified

Massons Trichrome stain, as previously described (48). Tissue

sections were imaged using a Zeiss Axio Imager M1 microscope

with Plan-Apochromat x20/0.8 Korr objectives. The percent

collagen per total tissue area was determined using ImageJ

Analysis software from 20 non-overlapping 200x microscopic

fields (field area= 0.148mm2) and data are presented as the

percent collagen per total tissue area plus or minus the SEM.
Immunohistochemical analysis of samples
from the Manhattan HIV Brain Bank cohort

Sections of cardiac tissues were examined post-mortem, from

n=22 individuals from the Manhattan HIV Brain Bank (MHBB)

cohort. All HIV infected individuals were ART naïve and matched

with regard to age, race, and sex. All individuals examined were

male. Eleven patients had HIV no encephalitis (HIVnoE) and

eleven patients had HIV encephalitis (HIVE). HIVnoE patients

had an average age of 44.7 ± 1.15 years, and HIVE patients had an

average age of 43.5 ± 1.27 years. Four patients were white, ten were

Hispanic, and eight were black. Nine HIVnoE patients, and ten

HIVE patients had CD4+ T cell counts < 200 cells. Single-label

immunohistochemistry was performed on formalin-fixed, paraffin-

embedded sections of cardiac tissues. Macrophages were identified

with monoclonal antibodies against CD68 (KP1, Bio-RaD), CD163

(EDHU, Bio-Rad), CD206 (MMR/CD206, RD Systems), and

Myeloid/Histiocyte Antigen MAC387 (MAC387, Bio-Rad) cardiac

macrophages. Cardiac T-lymphocytes were identified using the

polyclonal antibody against CD3. Data are presented as the mean

number of positive cells/mm2 from 20 non-overlapping 200x fields

of view plus or minus the SEM. Cardiac collagen deposition was

measured using a modified Massons Trichrome stain. Tissue

sections were imaged using a Zeiss Axio Imager M1 microscope

with Plan-Apochromat x20/0.8 Korr objectives. The percent

collagen per total tissue area was determined using ImageJ

Analysis software from 20 non-overlapping 200x microscopic

fields (field area = 0.148mm2) and data are presented as the

percent collagen per total tissue area plus or minus the SEM.
SIV-RNA and SIV-DNA detection using
RNAscope and DNAscope

SIV-RNA was detected in situ using the RNAscope ® 2.5 HD

Assay-Red (Advanced Cell Diagnostics [ACD]; Newark, CA) on

formalin-fixed, paraffin-embedded, 5-µm thick sections of three

CNS cortical and one cardiac tissue per animal, as previously

described (131). Sections were deparaffinized in xylenes and 100%

ethanol and air dried. Antigen retrieval with boiling citrate buffer

for 15 min and protease digestion at 40°C for 30 min was performed

(131). SIV-RNA-specific probes targeting SIVmac239 envelope

(ACD), RNAscope® positive control Mmu-PPIB (ACD) or
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RNAscope® negative control DapB (ACD) were applied to

sections. Quantitation of SIV-RNA+ cells/mm2 in the CNS and

heart were achieved by counting and averaging the numbers of SIV-

RNA+ cells from 20 random, non-overlapping images taken from

three CNS cortical sections and one cardiac section, respectively, at

400x total magnification using the Zeiss Axio Imager.M1

microscope and AxioVision. SIV-DNA was detected in situ using

an SIV-DNA sense probe (ACD) for RNAscope® Assay on one

cardiac section per animal. DNAscope was performed, as previously

described (25, 132). To reduce non-specific signal, heart tissues

were pre-treated with 2N HCL for 30 min at room temperature.

Following DNAscope, cardiac sections were scanned and digitized

with Aperio CS2 Scanscope. SIV-DNA+ cells/mm2 were quantified

using a positive pixel count algorithm in Aperio’s Spectrum Plus

analysis program (version 9.1, Aperio ePathology Solutions, Leica

Biosystems; Wetzlar, Germany), as previously described (133).
Plasma biomarker ELISAs

Plasma IL-18 (R & D Systems; Minneapolis, MN), galectin-3 (R

& D Systems), galectin-9 (R & D Systems) and soluble CD163

(sCD163) (IQ Products; Groningen, Netherlands) concentrations

were analyzed with ELISAs according to the manufacturer’s

protocol. Concentrations of galectin-3 and galectin-9 were

measured using BioTek Powerwave 340 (BioTek; Winooski, VT)

at a wavelength of 450 nm and a correction wavelength of 540 nm.

Concentrations of plasma galectin-3 and -9, and sCD163 were

presented as ng/mL. Concentrations of plasma IL-18 were

presented as pg/mL.
Flow cytometry

Flow cytometric analysis was conducted on 100 ml aliquots of
whole blood collected in EDTA-coated tubes. Blood samples were

taken at 0, 8, 19 days post infection (dpi) and terminally. Samples

from animals housed at the NERPC were shipped and analyzed the

same day and samples from animals at the TNPRC were shipped

overnight. Erythrocyte lysis was performed (ImmunoPrep Reagent

System, Beckman Coulter; Brea, CA), followed by 2 washes with

PBS, and incubation with fluorochrome-conjugated antibodies

including anti-CD14-APC (clone: M5E2, BD Pharmingen; San

Diego, CA), anti-CD16-PE (clone: 3G8, BD Pharmingen) anti-

HLA-DR-PerCP-Cy5.5 (clone: L243, BD Pharmingen). All

samples were fixed in 2% paraformaldehyde and results were

acquired on a BD FACS Aria (BD Biosciences; San Jose, CA) and

analyzed with Tree Star Flow Jo version 8.7. Monocytes were first

selected based on size and granularity (FSC vs SSC) followed by

selection of HLA-DR+ CD14+ cells. From this acquisition gate the

percentage of monocyte subsets expressing CD14 and/or CD16

could be determined. The absolute number of peripheral blood

monocytes for each animal was calculated by multiplying the total

white blood cell count by the total percentage of monocytes

determined by flow cytometry.
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Statistical analysis

Statistical analyses were done using Prism version 10 software

(GraphPad Software, Inc.; San Diego, CA). Comparisons between

animals with CVD and SIVE, animals with CVD or SIVE alone, and

NSF and SIVnoE animals were made using a one-way analysis of

variance (ANOVA) with Dunn ’s multiple comparisons.

Comparisons between CVD only and NSF only, and SIVE only

and SIVnoE only animals were made using a non-parametric

Mann-Whitney t-test. A Spearman rank test was used for all

correlations. Statistical significance was accepted at p< 0.05.
Study approval

Animals were housed at Harvard University’s New England

Regional Primate Research Center (NEPRC) or Tulane University’s

National Primate Center (TNPRC) and handled in strict

accordance with Harvard University’s and Tulane University’s

National Primate Research Center Institutional Animal Care and

Use Committee (IACUC). Animal IACUC approval from NEPRC

and TNPRC was granted for all procedures: The NERPC protocol

number for this study was 04420 and the animal welfare assurance

number was A3431-01. The TNRPC the protocol number is 3497

and the animal welfare assurance number is A4499-01. All human

cardiac tissues from the Manhattan HIV Brain Bank cohort were

obtained and examined with the written informed consent of all

individuals prior to participation in this study. These were de-

identified post mortem tissue specimens and were therefor

IRB exempt.
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SUPPLEMENTARY TABLE 1

Characteristics of the rhesus macaques examined in this study. N=23 SIV-

infected, CD8+ T-lymphocyte depleted rhesus macaques were used in this

study, all of which were sacrificed with AIDS. Sections of left ventricular tissue
(cardiac tissue) were examined blindly by a veterinary pathologist and the

presence and severity of cardiac histopathology was scored as no significant
cardiac pathology (findings) (NSF) or cardiac pathology was present (CVD).

SIV encephalitis (SIVE) was diagnosed postmortem and based on the
presence of SIV virus in the CNS and MNGC. All animals were males and

were euthanized following the development of simian AIDS.

SUPPLEMENTARY TABLE 2

Animals with SIVE alone had greater numbers of cardiac macrophages and
cardiac collagen deposition compared to animals with SIVnoE. Animals were

grouped based on SIVnoE alone (n=10) and SIVE alone (n=10). (A). Sections of
cardiac tissue from all animals were stained immunohistochemically with

antibodies recognizing CD163+, CD68+, MAC387+, or CD206+
macrophages and CD3+ T-lymphocytes. Twenty random, non-overlapping

images were sampled at 200x fields and the average number of cells/mm2

were calculated and expressed as plus or minus the SEM. (B). Left ventricle
sections were assessed for cardiac collagen deposition using a Massons

trichrome stain. The percentage of collagen per total tissue area was
Frontiers in Immunology 14
averaged from 20 non-overlapping 200x fields of view and expressed as
the average plus or minus the standard error of the mean. Fibrosis,

determined as the percentage of collagen per total tissue area, was

quantified for each animal using ImageJ Analysis software. P-values were
calculated using a non-parametric, Mann-Whitney t-tests with significance

accepted at p<0.05.
SUPPLEMENTARY TABLE 3

Animals with SIVE alone had greater numbers of SIV-RNA+ and SIV-gp41+
cells in the CNS. Animals were grouped based on the development of CVD

and no significant findings (NSF) in cardiac tissues, or SIVE alone and SIVnoE.

The average number of cardiac SIV-DNA+ cells, SIV-RNA+ and SIV-gp41+
cells in CNS cortical and cardiac tissues were reported plus or minus the SEM.

One section of left ventricle was assessed for cardiac SIV-DNA+ cells in
animals with CVD (n=4) compared to NSF (n=3), and in animals with SIVE

(n=5) compared to SIVnoE (n=2). One section of left ventricle was assessed
for cardiac SIV-RNA+ cells in animals with CVD (n=6) compared to NSF (n=3),

and in animals with SIVE (n=5) compared to SIVnoE (n= 4). Three sections of

CNS cortical tissues were assessed for CNS SIV-RNA+ cells in animals with
SIVE (n=7) compared to SIVnoE (n=4), and in animals with CVD (n=8)

compared to NSF animals (n=3). One section of left ventricle was assessed
for cardiac SIV-gp41+ cells and were compared between animals with CVD

(n=8) and animals with NSF (n=4), and between animals with SIVE (n=7) and
animals with SIVnoE (n=5). One section of CNS cortical tissue was assessed

for CNS SIV-gp41+ cells and were compared in animals with SIVE (n= 8)

versus SIVnoE (n =5), and in animals with CVD (n=9) versus NSF (n=4). P-
values were calculated using a nonparametric, Mann-Whitney t-test, p< 0.05,

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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