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The SARS CoV-2 antibody and CD4+ T cell responses induced by natural

infection and/or vaccination decline over time and cross-recognize other viral

variants at different levels. However, there are few studies evaluating the levels

and durability of the SARS CoV-2-specific antibody and CD4+ T cell response

against the Mu, Gamma, and Delta variants. Here, we examined, in two

ambispective cohorts of naturally-infected and/or vaccinated individuals, the

titers of anti-RBD antibodies and the frequency of SARS-CoV-2-specific CD4+ T

cells up to 6 months after the last antigen exposure. In naturally-infected

individuals, the SARS-CoV-2 antibody response declined 6 months post-

symptoms onset. However, the kinetic observed depended on the severity of

the disease, since individuals who developed severe COVID-19 maintained the

binding antibody titers. Also, there was detectable binding antibody cross-

recognition for the Gamma, Mu, and Delta variants, but antibodies poorly

neutralized Mu. COVID-19 vaccines induced an increase in antibody titers 15-
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30 days after receiving the second dose, but these levels decreased at 6 months.

However, as expected, a third dose of the vaccine caused a rise in antibody titers.

The dynamics of the antibody response upon vaccination depended on the

previous SARS-CoV-2 exposure. Lower levels of vaccine-induced antibodies

were associated with the development of breakthrough infections. Vaccination

resulted in central memory spike-specific CD4+ T cell responses that cross-

recognized peptides from the Gamma and Mu variants, and their duration also

depended on previous SARS-CoV-2 exposure. In addition, we found cross-

reactive CD4+ T cell responses in unexposed and unvaccinated individuals.

These results have important implications for vaccine design for new SARS-

CoV-2 variants of interest and concern.
KEYWORDS

SARS-CoV-2, variants, natural infection, vaccination, antibody, CD4+ T cell, hybrid
immunity, breakthrough infections
1 Introduction

The COVID-19 pandemic, caused by the Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has been

present for more than three years, resulting in widespread

morbidity and mortality throughout the world (1). One of the

main measures to mitigate the impact of COVID-19 has been the

generation of vaccines targeting conserved viral epitopes. Most of the

current vaccine platforms that target the Spike (S) protein of SARS-

CoV-2, are based on the ancestral Wuhan variant, and aim to induce

virus-specific antibodies and T cells (1–9). However, new viral

variants may be differentially recognized by the immune system,

leading to decreased protection after natural infection and/or

vaccination (10–12). While current COVID-19 vaccines are highly

immunogenic and effective at preventing severe disease, several

questions remain unanswered (1): a) How do COVID-19 vaccines

induce protection and how can we asses this protection (i.e. what are

the correlates of protection); b) How effective are COVID-19 vaccines

against viral variants of concern (VOCs) or variants of interest

(VOIs), and at preventing breakthrough infections (BTI); c) Are

vaccine-mediated protection and its durability determined by the pre-

vaccination history of natural infection and/or the population´s

geographic region?

Although several studies have evaluated the presence of

neutralizing antibodies to viral variants (11–15), there are no

studies evaluating both the humoral and cellular responses

against the Mu variant, which circulated widely in Colombia in

2021 and has been shown to evade the humoral response (12). In

this regard, previous studies in US, British and Chinese populations

have observed that the T cell response is conserved for several

variants after natural infection and vaccination (3, 10, 16), but this is

not clear for the Mu variant. Moreover, it is incompletely known

whether immunity generated by vaccination and/or natural

infection with the ancestral variant persists over time and

whether it is effective in preventing BTI with new viral variants

(4, 11, 16).
02
An important aspect to consider regarding vaccine-induced

immunity against SARS-CoV-2 is preexisting immunity (both

previous natural exposure to SARS-CoV-2, and cross-reactive

responses to human “common cold” coronaviruses [HCoVs]). It

has been observed that multiple SARS-CoV-2 exposures enhance

the magnitude of IgG responses but cause a low impact on the

frequency of S-specific T cells (1). However, these T cells resulting

from hybrid immunity may exhibit a wider polyfunctional profile

than those from vaccination alone (17). Thus, the impact of

previous antigen exposure on the levels and durability of humoral

and cellular responses and the interplay of viral variants remain to

be fully evaluated.

In this study, we evaluated the levels and durability of the

receptor binding domain (RBD)-specific antibody and the CD4+ T

cell responses induced by natural infection and/or vaccination

against SARS-CoV-2 Wuhan, Gamma, Mu, and Delta variants, as

well as the impact of disease severity and the history of SARS-CoV-

2 exposure on such responses. Overall, our results indicate that both

natural infection and vaccination induce cross-reactive immune

responses for the Gamma, Mu, and Delta variants, and their levels,

durability, and or quality, are influenced by sequential

antigen exposure.
2 Methods

2.1 Cohorts of naturally infected and
vaccinated individuals

To assess the antibody response against SARS-CoV-2 Wuhan,

Gamma, Mu, and Delta variants, we assembled two ambispective

cohorts in Bogotá, Colombia, with adult donors from the

Universidad de Los Andes, Hospital Universitario San Ignacio

(HUSI) recruited by Pontificia Universidad Javeriana, and from

Hospital Universitario Mayor-Méderi and Clıńica del Occidente,

these last two being recruited by Universidad del Rosario. Cohort 1
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is composed of naturally infected individuals who underwent

follow-up and antibody measurements at approximately 1- and 6

– 8 months post-symptoms onset (PSO) to determine the

seropermanence of antibodies induced by natural infection.

Cohort 2 is composed of vaccinated individuals, in whom

measurements of antibodies were performed during the pre-

vaccination, and at the early (15 – 30 days after the second dose),

and late post-vaccination periods (6 – 8 months and 12 months

after the second dose), to determine the seropermanence of

antibodies induced by vaccination. A fraction of the individuals

also received a third vaccine boost and a sample was also obtained

1-3 months after this dose. The CD4+ T cell response was evaluated

in a subgroup of individuals belonging to cohort 2.
2.2 Samples

For serological assays, whole blood was collected in clot

activator and gel separation tubes, and serum was collected and

stored at -80°C. To evaluate the CD4+ T cell response, whole blood

was collected in EDTA tubes, and the cellular fraction was separated

from plasma by centrifugation at 10,000 rpm for 10 minutes. Next,

peripheral blood mononuclear cells (PBMCs) were isolated by

density gradient centrifugation using Ficoll-Paque™ (Cytiva).

Isolated PBMCs were cryopreserved in cell recovery media

containing 90% fetal bovine serum (FBS) and 10% DMSO

(ATCC) and stored in liquid nitrogen until cellular assays

were performed.
2.3 Chemiluminescent assay

To evaluate if an individual was naturally infected by SARS-

CoV-2, an IgG test that recognizes the viral nucleoprotein was

performed (09203095190 – ROCHE), using a Roche Cobas e

analyzer, following the manufacturer’s protocol. The positive and

negative controls were performed at the beginning of each lot of

antibody testing for quality control. Samples with a cutoff index

(COI) ≥ 1 were considered positive. This assay was performed in a

commercial clinical laboratory.
2.4 Hemagglutination test

To assess the presence of RBD-specific antibodies induced by

natural infection or vaccination against SARS-CoV-2 Wuhan,

Gamma, Mu, and Delta variants, a hemagglutination Test (HAT)

that measures total antibodies (IgG, IgM, IgA) was employed (18,

19). O-negative red blood cells from a healthy volunteer were

isolated from whole blood by density gradient centrifugation

according to the manufacturer’s instructions. Red blood cells were

preserved in Alsever’s solution (Sigma Aldrich) at 2°C for up to 30

days. After standardization, the HAT was performed using red

blood cells from the same volunteer. For the HAT, codon-optimized

IH4-RBD sequences of VOC and VOIs containing amino acid

changes in the RBDs Gamma (K417T, E484K, N501Y), Mu (R346K
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E484K N501Y), and Delta (L452R, T478K) were expressed in

Expi293F cells and purified by their c-terminal 6xHis tag using

Ni-NTA chromatography (18, 19). The point HAT was performed

in a V-bottomed 96-well plate. Serum samples were double diluted

in duplicate from 1:40 in 50 μl of phosphate-buffered saline (PBS),

up to 1:1,280. Samples with titers >1:1,280 were re-tittered until

negative (1:10,240). Equal volumes of human O-negative red blood

cells and 1 μg/mL of IH4-RBD of Wuhan, Gamma, Mu, and Delta

variants were premixed, adding 100 μL per well, as described in our

previous publication (20). Plates were incubated for 1 hour at room

temperature to allow red blood cells to settle; then, the plate was

tilted for 30 seconds, read, and photographed. Positive

agglutination HAT titer (here reported as the reciprocal titer) was

defined as the last dilution in which the teardrop did not form.

Partial teardrops were considered negative (18). A representative

example of HAT is shown in Supplementary Figure 1. To validate

the assay, we tested reference serum samples with different levels of

antibodies against SARS-CoV-2, the serum 20/130 provided by

WHO, as well as the monoclonal antibodies CR3022 and EY-6A

(kindly provided by Dr. Alain Townsend), with expected

results (20).
2.5 Focus reduction neutralization assay

Serum samples were serially diluted in DMEM containing 5%

FBS and combined with ~100 focus forming units (FFU) of SARS-

CoV-2 variants Mu (BEI#NR-56225) and Gamma (BEI#NR-54982)

and allowed to complex at 37°C and 5% CO2 for 1 hour in a 96-well

round bottom plate. The antibody-virus complex was then added to

each well of a 96-well flat bottom plate containing a monolayer of

Vero-hACE2-TMPRSS2 cells. Following 1 hour of incubation at 37°

C and 5% CO2, the cells were overlaid with 2% methylcellulose and

returned to the incubator. After 24 hours of infection, the cells were

fixed with 5% electron microscopy grade paraformaldehyde in PBS

for 15 minutes at room temperature. The cells adherent to the plate

were then rinsed with PBS and permeabilized with 0.05% Triton-X

in PBS (FFAWash Buffer). Foci of infected Vero-hACE2-TMPRSS2

cells were stained with anti-SARS-CoV-2 human mAb 2165

(Leinco) overnight at 4°C and washed 3 times with FFA Wash

Buffer. Cells were then stained with horseradish peroxidase-

conjugated goat anti-human IgG for 2 hours at room

temperature. Cells were washed again with 0.05% FFA Wash

Buffer prior to the addition of TrueBlue KPL peroxidase

substrate, which allows the visualization of infected foci as blue

spots. The foci were visualized and counted using an ImmunoSpot

CTL Elispot plate reader. Percent infection was calculated by the

number of foci per wel l /number of foci in negat ive

control wells*100.
2.6 SARS-CoV-2 peptide mega pools

Spike mega pool (CD4S) sets consisting of 253 overlapping

peptides of 15-mer with 10 amino acid overlap were synthesized to

span the entire S protein of the Wuhan, Gamma, and Mu variants
frontiersin.org
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sequences, as previously reported (4). In addition, for the rest of the

Wuhan variant proteome (CD4R), a mega pool of 221 dominant

HLA class II predicted epitopes from the Immune Epitope Data

Base (IEDB) was used to assess the complete response against the

SARS-CoV-2 proteome, excluding the S protein.
2.7 Flow cytometry-based T cell assays

The Activation-Induced Markers (AIM) assay has been

previously described in detail (4). The PBMCs that were

preserved in liquid nitrogen were thawed by diluting the cells in

10 mL of complete RPMI 1640 (Invitrogen) with 5% human AB

serum (Gemini Bioproducts) in the presence of benzonase-nuclease

(Merck Millipore). The PBMCs were cultured in the presence of

SARS-CoV-2 Wuhan, Gamma, and Mu variants peptide mega

pools (at 1 μg/mL) in 96 well U bottom plates, at 1x106 PBMCs/

200 μL/well. DMSO was used as a negative control, while

Staphylococcal Enterotoxin B (SEB, at 4 μg/mL) was used as a

positive control. Cells were stimulated for 24 hours at 37°C, and 5%

CO2. Upon incubation, cells were washed with PBS, and stained for

20 minutes at 4°C with the viability marker Live/Dead Aqua

(Invitrogen, at 1/40 dilution). Next, the cells were washed with

PBS, and incubated for 30 minutes at 4°C with fluorochrome-

labeled antibodies against human CD19, CD14, CD3, CD4, CD8,

CD134 (OX40), CD137, CD45RA, and CCR7 (Supplementary

Table 1). Next, the cells were washed with FACS buffer (PBS and

3% FBS) and fixed with paraformaldehyde 1%. Cells were acquired

on an Aurora spectral flow cytometer (Cytek) and analyzed in

SpectroFlo software (v.3.0). Gates for AIM+ cells (OX40+ CD137+)

were set according to the negative and positive controls for each

donor. A representative example of the gating strategy is shown in

Supplementary Figure 2. For the resulting AIM data, the

background of AIM+ cells in the DMSO condition of each sample

was removed, with a minimal DMSO level set to 0.005%. A positive

response was defined as a stimulation index (SI) >2, and above 2

times the standard deviation of DMSO values (6). In SEB-

stimulated cells from all the samples included the geometric mean

(95% CI) was 3.89% (3.38-4.47%).
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2.8 Statistical analysis

Data were analyzed and plotted in GraphPad Prism software,

version 9.3.1. In all the cases, the geometric mean and 95% confidence

intervals (CI) are shown. To determine statistical differences between

the groups studied, non-parametric tests were performed. TheMann-

Whitney and Wilcoxon tests were used for the comparison of two

unpaired and paired groups, respectively. The Kruskal-Wallis and

Friedman tests were used for the comparison of three or more

unpaired or paired groups, respectively. The Dunn test was applied

to correct for multiple comparisons. In all the cases, a p-value <0.05

was considered as significant.
3 Results

3.1 Cohorts of naturally infected and
vaccinated donors

In this study, 549 participants were enrolled and classified into

naturally infected (Table 1) and vaccinated cohorts (Table 2), according

to medical records and study surveys. Naturally infected donors

(n=113) included adults with a history of mild (Javeriana and Andes

participants from cohort 1) and severe hospitalized (Rosario

participants from cohort 1) SARS-CoV-2 infection confirmed by

PCR and/or serologic tests. Samples from these individuals were

collected at 1- and 6-month PSO (Table 1). The vaccinated cohort

has donors with and without a history of natural SARS-CoV-2

infection. The part of the cohort recruited by Javeriana (HUSI from

cohort 2) had individuals vaccinated with two doses of the BNT162b2

vaccine, in whom samples were collected at pre-vaccination, at 15-30

days, and 6-8 months after the second vaccine dose (Table 2). The part

of cohort 2 recruited by El Rosario- consisted of individuals who, in

addition to two doses of the BNT162b2 vaccine, also received a third

dose of mRNA-1273, ChAdOx1 nCoV-19, or Coronavac vaccines

(approximately 10 months after the second vaccine dose). Samples

from these donors were collected 15-30 days after the second vaccine

dose, and 1-3 months after the third dose (Table 2). A fraction of these

individuals also had pre-vaccination samples (Table 2). Nucleoprotein-
TABLE 1 Demographic characteristics of the natural infection cohort.

Cohort Javeriana Andes Rosario

Time point 1 month
PSO

6 months
PSO

1 month
PSO

6 months
PSO

6 month-
follow-ups
negative at
baseline *

1 month
PSO

6 months
PSO

Number of donors 12 12 26 21 29 13

Age 36 (26–50) 32 (26 – 47) 36.6 (21 – 59) 38 (21 – 59) 37 (23 – 57) 52.6 (40 – 67)

% Sex (M/F) (58/42) (67/33) (58/42) (57/43) (69/31) (62/38)

Sample collection date
June – July

2020
December 2020
– January 2021

November-
December 2020

May – June
2021

May 2021
August –
October
2020

March –

April
2021

Symptoms Mild Mild Severe
* Individuals who were seronegative at baseline and seroconverted during recruitment period. PSO, Post-symptoms onset.
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specific IgG antibodies were assessed to determine asymptomatic and

BTI in the vaccination cohort, as previously reported (17). The

characteristics of the subgroup of individuals belonging to cohort 2,

to whom the CD4+ T cell response was evaluated, are summarized in

Supplementary Table 2.
3.2 The duration of RBD-specific
antibodies is associated with COVID-19
severity in naturally infected individuals

We first evaluated the durability of RBD-specific antibodies

against the Wuhan, Gamma, Mu, and Delta variants in naturally

infected individuals, according to disease severity. One-month PSO

in individuals with mild (Figures 1A, B) or severe disease

(Figure 1C), the antibody response against the Wuhan variant

was predominant. However, most of the participants also showed

RBD recognition for the viral variants, indicative of a cross-reactive
Frontiers in Immunology 05
antibody response. Interestingly, while RBD-specific antibody titers

decreased (3.3 to 6.3-fold) at 6 months PSO in donors who

developed mild disease (Figures 1A, B), the individuals who

suffered severe disease maintained this response over time

(Figure 1C), and indeed, antibody titers for the Wuhan variant

tended to increase at 6 months PSO in them (Figure 1C). Our

results showed that mild COVID-19 subjects reduced the RBD-

specific antibody levels at 6 months PSO compared to 1-month

PSO, but subjects who presented severe COVID-19 maintained

antibody levels, suggesting that the durability of anti-RBD

antibodies upon natural infection depends on disease severity.
3.3 Divergent humoral response against
the Mu and Gamma variants

In Colombia, in 2020, the circulation of the Gamma, Mu, and

Delta variants was absent or low, and then, during 2021 these
B CA

FIGURE 1

The durability of cross-reactive anti-RBD antibody responses upon natural infection is impacted by disease severity. Anti-RBD antibody titers against the
Wuhan, Gamma, Mu, and Delta variants, in naturally-infected individuals who developed mild (A, B) or severe disease (C). Each circle represents an
individual sample. The height of the bars and the numbers over them indicate the geometric mean titer. The 95% CI is also shown. The Wilcoxon test was
performed. The dotted line represents the limit of detection of the assay. In (A), the Javeriana cohort is shown (n=12). In (B), the Andes cohort is shown
(1-month n=26 and 6-month PSO n=21). In (C), the El Rosario cohort is shown (n=13). ns, Not statistically significant. *p-value <0.05; **p-value <0.01;
***p-value <0.001.
TABLE 2 Demographic characteristics of the vaccination cohort.

Cohort
Javeriana
n= 224

Rosario

Sub-cohort 1 (CDO)
n= 47

Sub-cohort 2 (Méderi)
n=75

Time point Pre-
vaccine

15-30 days
after second

dose¹

6-8 months
after second

dose

15-30 days
after second

dose

1-3 months
after third
dose²

Pre-
vaccine

15-30 days
after second

dose

1-3 months
after third
dose³

Number of
donors

68 213 224 47 44 75 73 38

Age
37.3 (19
– 52)

40.1 (19 – 64) 39.9 (19-64) 43 (22 – 60) 43 (22 – 60)
36.8 (22 –

57)
37 (22 – 57) 39 (25 – 56)

% Sex (M/F) (12/88) (17/83) (17/83) (23/77) (25/75) (35/65) (36/64) (24/75)

Sample collection
date

March
2021

April –
June 2021

October –
November 2021

May 2021
February
2022

November
2020

April 2021 April 2022

# of positive
Nucleoprotein
antibody responders

28 72 84 23 25 ND 24 ND
¹All individuals received the BNT162b2 vaccine. ² Vaccines received: 33 mRNA-1273, 6 ChAdOx1 nCoV-19, and 5 BNT162b2. ³ Vaccines received: 36 mRNA-1273, 1 BNT162b2, and 1
Coronavac. CDO, Clıńica de Occidente; ND, Not determined.
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variants circulated, with Mu predominating during the third wave

of the pandemic (21). Thus, we aimed to further evaluate the anti-

RBD antibody cross-recognition in naturally-infected individuals

during these two periods using the HAT. Despite the low or absent

circulation of these viral variants (Gamma, Mu, and Delta) in the

first period, there was antibody cross-recognition of all variants,

with Delta exhibiting the highest recognition. Notably, Mu

exhibited a significantly higher antibody cross-recognition than

the Gamma variant (Figure 2A). During the period of active

circulation of Gamma and Mu, the pattern seemed similar,

although differences between Gamma and Mu did not differ

statistically (Figure 2B). We were also able to evaluate the RBD

antibody binding in serum from an individual with a confirmed

infection by the Gamma variant, obtained 1-month PSO.

Expectedly, we obtained high antibody titers against Gamma;

although there was some level of cross-recognition for the

Wuhan, Mu, and Delta variants, the antibody titers for these

variants were lower than for Gamma (Supplementary Figure 3).

These results further confirm the reproducibility and specificity of

the HAT, as well as the cross-reactive nature of anti-RBD antibodies

following natural infection with SARS-CoV-2. Moreover, these

results suggest that natural infection with heterologous viruses

elicits binding antibodies that are more cross-reactive for the

RBD of the Mu than for the RBD of the Gamma variant.

Importantly, while we observed a higher antibody binding to Mu

than to Gamma (Figures 2A, B), previous studies have shown that the

Mu variant has higher antibody evasion than Gammawhen evaluated

by neutralizing assays (12). Thus, to extend the findings obtained by

the HAT, we evaluated the neutralizing capacity of antibodies against

the Gamma and Mu variants in serum samples obtained at 1-month

PSO from SARS-CoV-2 naturally-infected individuals (Figure 2C).

Interestingly, despite the higher antibody binding for the Mu variant
Frontiers in Immunology 06
(Figures 2A, B), the antibodies against Mu had a lower neutralizing

capacity relative to Gamma (Figure 2C). Moreover, we observed a

weak positive correlation between the neutralizing and binding

antibodies for both variants (rho=0.30, p-value=0.02 for Gamma;

and rho=0.30, p-value=0.03 for Mu). Thus, there is a weak correlation

and a different pattern of response between the binding and

neutralizing antibodies against the Mu and Gamma variants in

Colombian individuals with natural SARS-CoV-2 infection.
3.4 Vaccination induces a SARS-CoV-2
specific antibody response, and its
durability depends on previous
virus exposure

We also evaluated antibody levels before and after vaccination. A

first analysis including 57 individuals from cohort 2 recruited by the

Javeriana, indicated that vaccination induced an increase in antibody

titers at 15 – 30 days after receiving the second dose of the BNT162b2

vaccine, but they decreased at 6 months post-vaccination, showing at

this time point similar titers to the pre-vaccination period

(Supplementary Figure 4A). On the other hand, 38 individuals

from cohort 2 recruited by El Rosario who received a third dose of

the vaccine exhibited high antibody titers 1-3 months after the boost,

which were comparable to those observed 15-30 days after the second

vaccine dose (Supplementary Figure 4B). These results are consistent

with a transitory boosting effect on the humoral response by

sequential immunizations against SARS-CoV-2.

Next, we evaluated the antibody response pattern according to

the antecedent of SARS-CoV-2 natural infection before receiving

the first vaccine dose (Figure 3). As expected, individuals with a

preceding infection had detectable antibody titers that cross-
B CA

FIGURE 2

Divergence between the binding and neutralization potential of human sera against SARS-CoV-2 Mu and Gamma. (A) Anti-RBD antibody titers
against the Wuhan ancestral strain, as well as Gamma, Mu, and Delta variants, in naturally-infected individuals (n=50, both mild and severe disease) at
1-month PSO between June and December 2020 (period of low/absent circulation of Gamma and Mu). (B) Anti-RBD antibody titers against the
Wuhan ancestral strain, as well as Gamma, Mu, and Delta variants in samples from 29 individuals (Los Andes cohort) who were seronegative up to
December 2020 and seroconverted 6 months later in May 2021, during an active circulation of Gamma and Mu variants. Each circle represents an
individual sample. The height of the bars and the numbers over them indicate the geometric mean titer. The 95% CI is also shown. The Friedman
test was performed. ns, Not statistically significant. (C) Neutralization of infectious SARS-CoV-2 by human sera was determined by Focus
Neutralization Reduction Test (FRNT). FRNT50 values for SARS-CoV-2 Gamma and Mu were determined by non-linear regression analysis for SARS-
CoV-2 naturally-infected subjects (samples at 1-month PSO). Each circle represents an individual sample. The bars indicate the geometric mean. The
Wilcoxon test was performed. The dotted lines represent the limit of detection of the assays. *p-value <0.05; **p-value <0.01; ***p-value <0.001;
****p-value <0.0001.
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recognized all SARS-CoV-2 variants before vaccination, while most

individuals without a preceding infection had undetectable anti-

RBD antibodies (Figure 3A). Of note, in a few individuals that did

not have a history of infection before vaccination and had a negative

IgG nucleoprotein test, we could detect low levels of HAT

antibodies against the viral variants RBD (Figure 3A), which may

be indicative of a previous infection that was not detected by the

nucleoprotein IgG assay, or of potential cross-reactivity with

other HCoVs.

One month after the second vaccine dose, individuals with a

history of infection generated higher levels of anti-RBD antibodies

relative to those without a history of infection (Figure 3B). At 6

months after the second dose, antibody titers in individuals without

a history of infection returned to almost undetectable levels, but

those with previous infection were still able to maintain antibody

titers comparable to those observed 1 month after the second dose

(Figure 3C). There were no differences in antibody titers after a

third vaccine dose when comparing those with and without pre-

vaccination infection (Figure 3D). These results indicate that the

durability of the anti-RBD response to vaccination depends on the

history of pre-vaccination SARS-CoV-2 infection and a vaccine
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boost. Finally, as seen after natural infection, a higher cross-

recognition of the Mu versus the Gamma variant was observed

after vaccination (Figures 3B–D).
3.5 SARS-CoV-2 BTIs are associated with
lower levels of vaccine-induced antibodies
against viral variants

To determine whether vaccine-elicited antibody levels

measured 15-30 days after the second vaccine dose are associated

with protection against SARS-CoV-2 infection, we classified

individuals according to the occurrence or not of a BTI up to 6-8

months after vaccination. BTI that occurred after vaccination were

identified based on clinical records of mild infections and

seroconversion in SARS-CoV-2 nucleoprotein-specific IgG

between samples taken 15-30 days and 6-8 months after the

second vaccine dose. As shown in Figure 4, individuals with BTIs

had lower antibody titers against the Gamma, Mu, and Delta

variants in comparison with individuals without BTI. No

statistical differences were observed for antibodies against the
B
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FIGURE 3

The durability of vaccine-induced anti-RBD antibodies depends on the history of natural infection. Anti-RBD antibody titers against the Wuhan,
Gamma, Mu, and Delta variants, in BNT162b2-vaccinated individuals with or without history of natural infection. Data from individuals from the
Javeriana cohort 2 (n=57) at the pre-vaccination (A), 15-30 days post-vaccination (B), and 6-8 months post-vaccination period (C), or 1-3 months
after a vaccine boost in individuals from the Rosario cohort 2 (n=38; D), are shown. Each circle represents an individual sample. The height of the
bars and the numbers over them indicate the geometric mean titer. The 95% CI is also shown. The Mann-Whitney test was performed. The dotted
line represents the limit of detection of the assay. ns, Not statistically significant. ***p-value <0.001; ****p-value <0.0001.
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Wuhan variant (Figure 4). These results indicate that the levels of

RBD-specific antibodies post-immunization are associated with

protection against SARS-CoV-2 BTI.
3.6 The BNT162b2 vaccine induces
virus-specific CD4+ T cells that cross-react
with viral variants

We next evaluated the CD4+ T cell response in individuals before

and after receiving the BNT162b2 vaccine. Using the AIM assay, we

measured the frequency of SARS-CoV-2-specific CD4+ T cells (defined

as OX40+ CD137+ cells) for S peptides of theWuhan, Gamma, andMu

variants, in 20 donors pre-vaccination, and 16 of them 1 - 2 months

after the second vaccine dose (Figure 5). In the pre-vaccination group,

we included four samples of individuals (represented with uncolored

squares) obtained before the onset of the pandemic (Figure 5). Of note,

in the cohort of individuals in whomwe performed cellular analyses, 13

out of 20 donors exhibited an antibody response against the Wuhan,

Gamma, or Mu variants, indicative of previous coronavirus exposure.

We first performed an analysis with all the donors included. As

expected, the frequencies of SARS-CoV-2-specific CD4+ T cells were

low during the pre-vaccination period, while the frequencies of S-

specific, but not R-specific CD4+ T cells increased upon vaccination

(Figure 5A). Importantly, the CD4+ T cell response cross-recognized

peptides from the Gamma and Mu variants (Figure 5A). We next

assessed the impact of natural infection before vaccination on the
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dynamics of the SARS-CoV-2-specific CD4+ T cell response. We

classified the individuals as those with or without a history of natural

infection, based on the detection of nucleoprotein-specific IgG

antibodies in samples before and after vaccination. Of note, we

observed detectable SARS-CoV-2-specific CD4+ T cells for the

Wuhan S and R proteins in the pre-vaccination samples of some

individuals without a history of natural infection and in some pre-

pandemic samples (Figure 5B). This result might be explained by

undetected asymptomatic SARS-CoV-2 infections and/or cross-

reactive responses to previous infections with HCoVs. Interestingly,

while unexposed individuals exhibited an increase in the frequencies

ofWuhan, Gamma, andMu S-specific CD4+ T cells upon vaccination

(Figure 5B), this was not the case for individuals with a history of

natural infection, since they exhibited high frequencies of Wuhan,

Gamma, and Mu S-specific CD4+ T cells during the pre-vaccination

period, and only had a modest increase in the frequency ofWuhan S-

specific CD4+ T cells upon vaccination (Figure 5C). These results

indicate that the dynamic of the SARS-CoV-2-specific CD4+ T cell

response is dependent on the history of SARS-CoV-2 exposure.
3.7 Dynamics of the memory profile of
SARS-CoV-2-specific CD4+ T cells
according to the history of viral exposure

To assess the quality of the SARS-CoV-2-specific CD4+ T cell

response, we analyzed the memory phenotype (CD45RA and
FIGURE 4

Lower vaccine-induced anti-RBD antibody titers are associated with the development of SARS-CoV-2 BTI. Anti-RBD antibody titers against the
Wuhan, Gamma, Mu, and Delta variants were measured at 15-30 days after the second BNT162b2 vaccine dose in individuals with or without a
history of BTI (n=21). BTI were determined by clinical records or seroconversion in nucleoprotein antibodies measured 6-8 months after the second
vaccine dose. Each circle represents an individual sample. The height of the bars and the numbers over them indicate the geometric mean titer. The
95% CI is also shown. The Mann-Whitney test was performed. The dotted line represents the limit of detection of the assay. ns, Not statistically
significant; BTI, Breakthrough infection. *p-value <0.05; **p-value <0.01.
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CCR7) of AIM+ (OX40+ CD137+) CD4+ T cells in response to

peptide stimulation. The analysis of all the individuals included

showed that peptide-responding cells at the pre-vaccination

assessment had predominantly a central memory phenotype

(TCM; CD45RA- CCR7+), followed by an effector memory

phenotype (TEM; CD45RA- CCR7-), and these profiles were

higher than those found in bulk CD4+ T cells (Supplementary

Figure 5A). This pattern was similar for cells specific for S-derived

peptides from Wuhan, Gamma, and Mu variants, as well as for

Wuhan R-derived peptides (Supplementary Figure 5A). Upon

vaccination, SARS-CoV-2-specific CD4+ T cells were enriched in

a TEM and TCM phenotype relative to bulk CD4+ T cells, but the

TCM profile (suggestive of long-lived responses) predominated

along CD4+ T cells specific for the Wuhan, Gamma, and Mu

variants (Supplementary Figure 5B). Low frequencies of naïve/T

stem cell memory (CD45RA+ CCR7+) and TEMRA (CD45RA+

CCR7-) SARS-CoV-2-specific CD4+ T cells were observed at both

time points (Supplementary Figure 5).

We observed that during the pre-vaccination period, some

individuals without a history of natural infection had detectable

SARS-CoV-2-specific CD4+ T cells (Figure 5B). Thus, we aimed to

evaluate the phenotype of these potentially SARS-CoV-2 cross-

reactive CD4+ T cells. Interestingly, SARS-CoV-2-specific CD4+ T

cells, including those specific for R-derived peptides, in individuals

without a history of natural infection were enriched in a TEM

phenotype, when compared with bulk CD4+ T cells, while a high

proportion also exhibited a TCM phenotype (Figure 6A). These data

support that these cross-reactive cells are part of the memory

compartment. On the other hand, SARS-CoV-2-specific CD4+ T

cells at the pre-vaccination time point from donors with a history of

natural infection were enriched in a TCM phenotype, further

supporting the notion that they are long-lived memory cells

(Figure 6B). Finally, we evaluated the changes in the memory

phenotype of SARS-CoV-2-specific CD4+ T cells upon

vaccination. Interestingly, we noted that in individuals without a

history of SARS-CoV-2 infection, the phenotype of SARS-CoV-2-

specific CD4+ T cells tended to augment in a TCM profile after

vaccination, relative to pre-vaccination values (Figures 6A, C). On

the other hand, in individuals with a history of infection, the

proportion of TEM among SARS-CoV-2-specific CD4+ T cells
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tended to increase upon vaccination (Figures 6B, D), and this

increment was statistically significant for S Wuhan-specific cells

(p-value=0.03). These data indicate that the number of exposures to

the viral antigens induces changes in the memory profile of SARS-

CoV-2-specific CD4+ T cells.
4 Discussion

In this study, we evaluated the SARS-CoV-2-specific humoral

and the CD4+ T cell response to selected viral variants upon natural

infection and following vaccination in a Colombian population.

Our data show that the immune response induced either by natural

infection with the Wuhan variant and/or vaccination generates

SARS-CoV-2-specific antibodies and CD4+ T cells that cross-react

with the VOIs/VOCs Gamma, Mu, and Delta. In addition, we

evidenced that the durability of anti-RBD antibodies is associated

with the severity of COVID-19 in individuals with a history of

natural infection, while the humoral response induced by

vaccination changes according to the number of exposures to

viral antigens. Lower levels of antibody titers against viral variants

after vaccination were observed in individuals who developed a BTI.

Also, the frequency of S-specific CD4+ T cell response is influenced

by previous natural infection. Interestingly, we identified

individuals with no history of SARS-CoV-2 infection in whom

their CD4+ T cells recognized predominantly R-derived peptides

which exhibited a central and effector memory phenotype,

suggesting cross-reaction with endemic HCoVs. Finally, S-specific

CD4+ T cells found upon vaccination also showed a central memory

phenotype, suggestive of long-lived responses.

A primary objective of our study was to evaluate the durability

of the humoral response upon natural infection and/or vaccination,

and the influence of sequential antigen exposures. Consistent with

previous studies, our results showed that the durability of the SARS-

CoV-2 RBD-specific antibodies in naturally infected individuals

depends on the severity of the disease (22, 23). We observed that

individuals who had a mild SARS-CoV-2 infection had high titers of

RBD-specific antibodies at 1-month PSO, but they decreased at 6

months PSO. However, it has been reported that despite the

decrease in antibody titers, they can be detected in most
B CA

FIGURE 5

The magnitude of vaccine-induced SARS-CoV-2 specific CD4+ T cell responses depends on the history of natural infection. Frequencies of Wuhan S or R-
specific CD4+ T cells, as well as Gamma and Mu S-specific CD4+ T cells, evaluated by the AIM assay (OX40+CD137+ CD4+ T cells), at the pre-vaccination
or post-vaccination period, in all the individuals analyzed (A), or in those without (B) or with history of natural infection (C). Each symbol represents an
individual sample and open squares represent samples obtained from individuals before the beginning of the pandemic. Cells were stimulated with one or
more peptide pools depending on the availability of cells per sample. The geometric mean and 95% CI are shown. The Mann-Whitney test was performed.
The dotted line represents the threshold of positivity. ns, Not statistically significant. *p-value <0.05; **p-value <0.01; ***p-value <0.001.
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individuals up to 15 months PSO, including neutralizing antibodies

(24–26). In contrast, convalescent donors who experienced severe

disease maintained high antibody titers, probably related to an

increased or more sustained antigen exposure during acute

infection in comparison with individuals who experienced mild

disease (27). In addition, previous studies have shown that

individuals with severe disease develop higher titers of low-

affinity antibodies in comparison with individuals with mild

disease (28, 29). This lower affinity may impair the neutralization

capacity of these antibodies, which in turn could contribute to more

severe disease. Another possibility is that individuals who suffered a

severe SARS-CoV-2 infection are poised to generate robust

extrafollicular B cell responses, that have been shown to correlate

with anti-SARS-CoV-2 antibody titers (30). In the case of vaccine-

induced antibodies, we observed that mRNA-based vaccines

induced an increase in antibody titers 15 – 30 days after receiving

the second dose, but these levels decreased at 6 months, as occurred

in individuals who experienced a mild SARS-CoV-2 infection.

However, a third dose of the vaccine caused a rise in antibody

titers, indicative of a boosting effect on the humoral response upon

sequential antigen exposure (17, 31). Notably, the dynamics of the

antibody response upon vaccination depended on the previous

SARS-CoV-2 exposure. As such, individuals with hybrid
Frontiers in Immunology 10
immunity were able to maintain high anti-RBD antibody titers up

to 6 months post-vaccination. These data are in line with previous

studies showing that hybrid immunity potentiates the magnitude,

breadth, and neutralizing activity of SARS-CoV-2-specific

antibodies (17, 32, 33). Thus, hybrid immunity seems to better

promote the maintenance of the SARS-CoV-2-specific antibody

response than vaccination alone. Nonetheless, unexposed

individuals benefit from sequential vaccine boosters.

The emergence of viral variants has been one of the major

concerns affecting the measures implemented to contain the SARS-

CoV-2 pandemic. Hence, it is important to determine the capacity

of antibodies to cross-recognize other viral variants distinct from

those responsible for an infection episode or used in a particular

vaccine. Here we evaluated responses to the Gamma, Mu, and Delta

variants as they contributed to a significant disease burden during

their active circulation in Colombia. In agreement with previous

studies (16, 34, 35), the Wuhan variant showed the highest antibody

titers in all our study cohorts, followed by the Delta variant.

Importantly, our results also indicated that the Mu variant is

recognized at higher levels than the Gamma variant both after

natural infection and vaccination. This seems at odds with what has

been shown for neutralizing antibodies (11, 12, 14, 15, 36): In

studies in which they have been directly compared, the levels of
B
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FIGURE 6

Changes in the phenotype of SARS-CoV-2 specific CD4+ T cells according to the history of antigen exposure. Phenotype of SARS-CoV-2-specific
CD4+ T cells evaluated by the AIM assay (OX40+CD137+ CD4+ T cells) in pre-vaccination (A, B) or post-vaccination (C, D) samples from individuals
without (A, C) or with history of SARS-CoV-2 natural infection (B, D). Each symbol represents an individual sample. The geometric mean and 95% CI
are shown. The Kruskal-Wallis and Dunn post-hoc tests were performed. ns, Not statistically significant. *p-value <0.05; **p-value <0.01.
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neutralizing antibodies induced by natural infection (11–14), as well

as vaccination (15, 36–40), are higher against Gamma than against

Mu, suggesting that the latter has a particular immune evasion

capacity. Moreover, serum from hamsters previously infected with

an early isolate of SARS-CoV-2 neutralized Mu to a low degree (39).

Notwithstanding, hamsters were partially protected from

rechallenge with the Mu variant, suggesting that the immune

response to the first infection was sufficient to protect against Mu

(39). On the other hand, although vaccination is efficient against

infection with the Mu variant (41), BTIs with Mu have been

reported (42). Here we further demonstrate that, although

naturally-induced binding antibodies against Mu were higher

than for Gamma, these antibodies possess a poor neutralizing

capacity, consistent with previous reports (11–14). However, we

observed that binding antibodies were lower in vaccinated

individuals who developed BTI than in those who did not,

suggesting that these antibodies can protect against COVID-19

despite a relatively poor neutralizing capacity. Recent studies have

shown that relatively high protection against symptomatic COVID-

19 can be achieved at low serum neutralizing antibody titers in

vaccination settings (43). A good correlation has been found

previously between HAT and neutralizing antibody titers to the

Alpha, Beta, Delta, and Wuhan variants (19, 44). The Gamma and

Mu RBD (that both share the E484K, N501Y mutations) may

represent a particular example for which a poor correlation exists

between binding and neutralizing antibodies. Collectively, these

observations highlight the complexity and dynamic role of humoral

immunity against SARS-CoV-2 emerging variants. The effector

mechanisms of protective SARS-CoV-2-specific antibodies remain

to be further defined.

At the level of the cellular immune response, we assessed the

frequency of SARS-CoV-2-specific CD4+ T cells against theWuhan,

Gamma, and Mu variants, before and after BNT162b2 vaccination.

To our knowledge, this is the first study that evaluates the CD4+ T

cell response against the Mu variant after natural infection (pre-

vaccination samples) in a period of active circulation of this variant,

and the second after vaccination (4). The S-specific CD4+ T cell

response induced by vaccination cross-recognized peptides from

the Wuhan, Gamma, and Mu variants, in line with previous studies

(3, 4, 16). This cross-recognition phenomenon of the SARS-CoV-2

variants is likely a result of the large conservation of T cell epitopes

(3, 4). In the case of CD4+ T cells, it has been reported that 93% of

the epitopes are fully conserved in the SARS-CoV-2 variants (3).

Interestingly, R-derived peptides from the Wuhan variant showed

AIM+ CD4+ T cells during the pre-vaccination period, suggesting

either asymptomatic SARS-CoV-2 infections or past infections with

HCoVs (6, 45). These findings led us to evaluate if preexisting

immunity could modulate the CD4+ T cell response induced by

vaccination. In individuals without previous natural infection, the

CD4+ T cell response to the S proteins exhibited an increase in

magnitude upon vaccination. However, except for the Wuhan S

peptides, this was not the case for individuals with a history of

natural infection, since they already exhibited high frequencies of

cells reactive to Gamma and Mu variants, that were not boosted by

the vaccine. In this regard, it has been reported that although SARS-

CoV-2 exposure does not impact the magnitude of S-specific CD4+
Frontiers in Immunology 11
T cells upon COVID-19 vaccination, it can induce functionally

distinct antigen-specific cells relative to naïve individuals, and this

factor might contribute to disease protection (46). Moreover, SARS-

CoV-2-specific CD8+ T cells are also modulated by hybrid

immunity (47, 48), but the clinical significance of this aspect

remains to be addressed.

We also determined the memory phenotype of S-specific CD4+

T cells according to the infection background. Like a previous

report (45), cross-reactive SARS-CoV-2-specific CD4+ T cells from

donors without a history of infection exhibited a TCM and TEM

phenotype, indicating that they are most probably memory cells

elicited by previous exposure to HCoVs. In addition, the SARS-

CoV-2-specific CD4+ T cell response from individuals with a

history of natural infection, displayed primarily a TCM phenotype,

like previous reports (49, 50). However, it was interesting to observe

that antigen re-exposure with vaccination in this group of

individuals induced an increase in TEM responses, comparable to

what has been observed for CD8+ T cells (48). While the

development of TCM responses could contribute to longer-lived

CD4+ T cell responses, as well as lymph node homing that might

contribute to the promotion of the B cell antibody response (49),

terminal differentiation upon iterative antigen exposures might lead

to a decrease in the lifespan of SARS-CoV-2-specific memory CD4+

T cells. These data suggest that sequential immunizations impact

the phenotypic (and likely the functional) profile of SARS-CoV-2-

specific T cells. Thus, our results have implications for the design of

vaccine schemes and boosters.

This study has limitations. The HAT assay measures total

antibodies, and we did not determine the isotypes of the

antibodies in the samples. Additionally, we were not able to

evaluate the kinetics of antibodies at 6 months after the second

vaccine dose in individuals from El Rosario cohort 2. On the other

hand, the sample size for the analysis of the CD4+ T cell response

was low, and for these individuals, we were not able to identify BTIs

or evaluate samples at late time points after vaccination. Moreover,

the number of cells recovered from some volunteers was low,

limiting the evaluation of T cells specific for all peptide mega

pools. Finally, the functionality of SARS-CoV-2-specific CD4+ T

cells remains to be evaluated.
5 Conclusions

The humoral and CD4+ T cell response induced by natural

infection and/or vaccination with the Wuhan variant can cross-

recognize several viral variants of interest and concern that

circulated in Colombia during the second and third waves that

occurred in the country. The durability of RBD-specific antibodies

induced by infection depends on the severity of the disease, while

the humoral response induced by vaccination is modulated by the

number of vaccine doses. The Gamma and Mu RBDs may be an

example of a poor correlation between binding and neutralizing

antibodies. Similarly, the frequency of vaccine-induced S-specific

CD4+ T cells is influenced by previous natural infection. These

results have important implications for vaccine design to prevent

the dissemination of new viral variants in Colombia.
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