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Serum pro-inflammatory
biomarkers associated with
improvement in quality of life
in pulmonary tuberculosis
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and Esmeralda Juárez2*
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Nacional de Enfermedades Respiratorias Ismael Cosı́o Villegas, Mexico, Mexico, 3Facultad de
Medicina, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico, 4Becario de la
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Introduction: Pulmonary dysfunction is an underestimated complication in

tuberculosis (TB) infection, affecting quality of life (QoL). Although respiratory

function tests objectively reflect lung disturbances in a specific moment,

predictors of illness severity at the time of diagnosis are still lacking.

Methods: We measured serum pro-inflammatory cytokines (TNF-a and IL-8),

eicosanoids (PGE2, LTB4, RvD1, Mar1, and LXA4), a marker of tissue damage (cell-

free nucleosomes), and indicators of redox status (malonaldehyde, 8-

isoprostane, total oxidants, and antioxidants), as well as a score of radiological

abnormalities (SRA) and a QoL questionnaire, in 25 patients with pulmonary TB at

the time of diagnosis (t0) and two months after the initiation of treatment (t2).

Results:We found higher antioxidant levels in the patients with the worst QoL at

t0, and all the indicators of the prooxidant state were significantly reduced at t2,

while the total antioxidant levels increased. LTB4, a pro-inflammatory

eicosanoid, was diminished at t2, while all the pro-resolutory lipids decreased

substantially. Significant correlations between the SRA and the QoL scores were

observed, the latter showing a substantial reduction at t2, ranking it as a reliable

tool for monitoring disease evolution during TB treatment.

Discussion: These results suggest that evaluating a combination of these

markers might be a valuable predictor of QoL improvement and a treatment

response indicator; in particular, the oxidation metabolites and eicosanoid ratios

could also be proposed as a future target for adjuvant therapies to reduce

inflammation-associated lung injury in TB disease.

KEYWORDS

tuberculosis, quality of life, eicosanoids, redox indicators, inflammation-associated
lung injury
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1 Introduction

Before the COVID-19 pandemic, the World Health

Organization recognized tuberculosis among the top 10 causes of

death in low and lower-middle-income countries (1). Despite the

efforts to develop a global strategy against tuberculosis, this

respiratory infection remains a public health crisis (2). Although

effective anti-tuberculosis treatment is available, social determinants

must be addressed to grant all patients access to medicines (2).

Calculation of TB-related disease burden should consider the

likelihood of a residual pulmonary disability.

One of the critical challenges in tuberculosis is the timely

detection of pulmonary dysfunction, which might impact the

patient’s quality of life after diagnosis. Pulmonary function tests,

such as spirometry, are standard evaluation methods to quantify the

precise air volume within the lungs, reflecting lung capacity and

function, allowing long-term monitoring for patients (3). However,

performing spirometry requires specific technical instruments, and

results depend on operator-dependent ability, expertise, and the

patient’s cooperation during the test (3). Pulmonary function in

patients with pulmonary TB may also be assessed indirectly by

health-related quality of life (HRQoL) questionnaires, such as the

St. George Respiratory Questionnaire (SGRQ) (4, 5). Higher SGRQ

scores at treatment initiation have shown to predict poor treatment

outcomes in Indian TB patients, and their increment during follow-

up has been related to the risk of TB recurrence (6); an

improvement in SGRQ scores has also been determined in

patients undergoing therapeutic surgery for pulmonary TB (7),

straightening out the consistency of the questionnaire.

Recent research points toward using biomarkers to improve

diagnostic accuracy in patients with lung dysfunction. For instance,

CT scans and other imaging technologies often identify biomarkers

extracted from 3D lung segmentations to follow the tuberculosis

progression (8); also, integrating metabolomics and transcriptomics

has improved biomarker discovery, leading to earlier detection and

treatment (9). However, these techniques can be expensive and

time-consuming, thus urging the need for non-invasive procedures

to evaluate low-cost biomarkers which can predict disease severity

and outcomes.

The severity of pulmonary TB has been associated with different

environmental factors: seasonality, latitude, photoperiod, radiation

(10), and also genetic variants related to vascular biology,

inflammation (11), and oxidative stress (12). Compared with

healthy controls, TB patients show severe oxidative stress through

higher levels of lipid peroxidation products, free radical activity, and

lower total antioxidant capacity (13, 14). The interplay between

oxidative stress, systemic inflammation, and tissue remodeling in

TB disease suggests that improving host antioxidant status may be a

reasonable strategy to ameliorate tissue damage after TB

treatment (15).

Because of their role in modulating the immune response

during TB infection, several cytokines have also been proposed as

potential biomarkers to predict disease severity. For instance, IL-3,

IL-12p40, LIF (leukemia inhibitory factor), IFN-a2, IL-2ra, IL-13,
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b-NGF (nerve growth factor), SCF (stem cell factor), TNF-b, TRAIL
(tumor necrosis factor-related apoptosis-inducing ligand), IL-2,

IFN-g, IP-10, and MIG (membrane-bound immunoglobulin) were

significantly higher in both active and latent TB compared to other

respiratory infections, while MIF (macrophage migration inhibitory

factor) was significantly lower in active TB patients only (16).

Likewise, IL-17F, MIP-3a, IL-13, IL-17A, IL-5, IL-9, IL-1b, IL-2,
and IFN-g identify TB and distinguish between latent and active

stages (17). In animal TB models, severe TB infection induces up-

regulation of genes involved in Th1 and Th17 responses, and tissue

overexpression of IL-22, MIP-1a, CCL27, IP-10, CCR4, CCR5,
CXCR3, PD-1, PDL-2, IL-3, IFN-b, TIM-1, and TLR-2 associated

with low TB-specific cellular responses (18).

Nevertheless, follow-up of these potential biomarkers is not

feasible in every socioeconomic condition. More conventionally

available reagents, such as C reactive protein (CRP), IL-6, IP-10,

and TNF-a exhibit a promising position for the TB treatment

monitoring (19), while TSP4 (thrombospondin 4), TIMP-2 (tissue

inhibitor of metalloproteinase-2), SEPR (fibroblast activation

protein a), MRC-2 (mannose receptor C type 2), antithrombin

III, serum amyloid A, CRP, phospholipase A2, hepcidin, and LPS-

binding protein exhibit significant expression differences during the

intensive phase of TB therapy (20).

Eicosanoid modulation is a potential target for therapeutic

intervention in TB due to the role of these molecules during TB

infection. Mycobacterium tuberculosis inhibits apoptosis and

promotes necrotic cell death by disrupting prostaglandin E2

(PGE2) production, which delays T-cell priming and favors

mycobacterial immune evasion (21). Moreover, eicosanoid levels

are increased in individuals with TB and TB-diabetes comorbidity,

where eicosanoid ratios can reflect disease severity and extent (22).

The balance between lipoxin A4 (LXA4) and PGE2 is critical for

controlling TB immunopathology, and PGE2 signaling via EP2

receptor is a host-protective pathway for M. tuberculosis

infection (23).

In this study, we evaluated the oxidative response and lipid

mediators and their interrelationships as immunological

biomarkers, combined with a radiological score and an HRQoL

questionnaire, seeking a functional clinical tool to predict severity in

pulmonary TB patients.
2 Materials and methods

2.1 Study settings

This study was conducted at the Instituto Nacional de

Enfermedades Respiratorias Ismael Cosıó Villegas (INER), a third-

level institution providing specialized care for tuberculosis and other

respiratory diseases. The institution offers immediate care for

patients’ needs and then refers them to first-level attention centers

to supervise their direct observed therapy. Upon request, some

patients may be called back for a subsequent visit. The Institutional

Review Board approved the study, approval number C53-17.
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2.2 Study participants

Twenty- five persons aged 18-65 with pulmonary TB who

requested attention at INER between February 2022 and March

2023 and had been on treatment for no more than two weeks were

eligible to participate in the study. Patients with chronic

inflammatory diseases, asthma, chronic obstructive pulmonary

disease (COPD), and cancer, and those pregnant or living with

HIV were ineligible. All patients were diagnosed with active

pulmonary TB after a sputum smear-positive test or Xpert®

MTB/RIF assay, further confirmed by M. tuberculosis culture.

The subjects undertook radiological and clinical examinations.

Disease severity was evaluated considering the smear report,

laterality of the lung lesions, presence of cavities, and the score of

radiographical abnormalities (SRA), as previously reported (24, 25).

The SRA evaluates the presence, distribution, and extent of

consolidation, fibrosis, lung distortion, bronchiectasis, and

parenchymal abnormalities by quadrants in the chest X-ray. The

score denotes the percentage of lung parenchyma involvement; the

maximum score was 20 points, and a specialized pulmonologist

performed the measurement.

All participants gave written informed consent and provided a

blood sample at recruitment (t0). Eleven patients were willing to give a

second sample two months after the first visit (t2), and three patients

provided a third sample six months after the first visit (t6). Serum

obtained by centrifugation was cryopreserved at -80°C until use.
2.3 St. George’s respiratory questionnaire

All participants completed the HRQoL questionnaire at each

visit. The SGRQ weighted responses produce a score for each of

three sections (symptoms, activities, and impact), which are then

combined to obtain a total score. The symptoms section assesses the

frequency and severity of respiratory symptoms; the activities

section estimates the weakening of mobility or physical activity;

the impact component evaluates the social and psychological effects

of pulmonary dysfunction. The SGRQ is scaled from 0 to 100 (best

and worst quality of life, respectively); we used the SGRQ scoring

calculator app developed at the University Hospital of Copenhagen

(26). For comparison and analysis, the total score was used; the

impact score was used where indicated. To prevent bias from

different levels of reading comprehension, the otherwise self-

administered questionnaire was read to participants by trained

physicians using the questionnaire manual. We used the Mexican

Spanish version of the questionnaire (27). Subjects answered all

questions. For comparison purposes, ten healthy individuals with

normal chest X-ray images and laboratory results were included

exclusively for SGRQ scoring.
2.4 Measurement of serum metabolites

2.4.1 Eicosanoids
PGE2, LTB4, RvD1, Mar1, and LXA4 concentrations were

quantified using commercial EIA kits (Cayman Chemical, Ann
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Harbour, MI, US). All assays were performed in duplicates

according to manufacturer’s instructions. Serum samples

underwent extraction using ethanol precipitation before analysis.

Optical density was determined at 450 nm using a microplate reader

(MultisKan Ascent, Agilent Technologies Inc., Santa Clara,

CA, US).

2.4.2 Cytokines
TNF-a was measured as previously reported (28); IL-8

quantification was measured by ELISA, according to the kit

manufacturer’s instructions (Mabtech, Nacka Strand, SE).

2.4.3 Nucleosomes
Cell-free nucleosomes were measured using the Cell Death

Detection ELISA Plus kit (Roche Diagnostics, Indianapolis, IN,

US), which detects DNA and histones for specific mono- and

oligonucleosomes detection, following the manufacturers’

instructions. Results are reported as a percentage of the positive

control included in the kit as reported elsewhere (25, 29).

2.4.4 Lipid peroxidation indicators
Malonaldehyde (TBARS) and 8-isoprostane concentrations

were quantified in duplicates using commercial kits, following the

manufacturer’s instructions (Cayman Chemical).

2.4.5 Total oxidants
Measurement was performed using the Total Oxidant Status

(TOS) Colorimetric Assay Kit (Elabscience, Houston, TX, US). The

detection principle is based on the ability of the contents of the

sample to oxidize Fe2+ to Fe3+, which binds xylenol orange to

produce a blue-purple complex. The color intensity was directly

proportional to absorbance at 590 nm, proportional to the sample’s

oxidative substances content.

2.4.6 Total antioxidants
Measurement was performed using the Total Antioxidant

Status (TAS) Colorimetric Assay Kit (Elabscience). Briefly, ABTS

is oxidized to ABTS•+ (green), which can be reduced to a colorless

ABTS in the presence of antioxidants. The TAS of the sample was

calculated by measuring the absorbance of ABTS•+ at 660 nm.

Trolox was used as a reference substance.
2.5 Statistical analysis

The baseline characteristics of the TB patients included in the

analysis were presented as numbers and percentages or medians

with range. These results are descriptive, and no comparison test

was performed. Correlations were determined using Spearman

correlation. A two-way analysis of variance with between-group

comparisons was performed with a post hoc significance set at 0.05.

Nonparametric test statistics were performed: Friedman’s followed

by Dunn’s tests for related data and Kruskal-Wallis’ followed by

Dunn’s test for unrelated data; for comparison between two

variables, we used Wilcoxon’s rank sum or Mann-Whitney U,
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depending on the pairing. For comparisons at t0, t2, and t6, we first

confirmed normality with Shapiro Wilk’s test; then we performed

One-way ANOVA followed by Geisser-Greenhouse’s epsilon and

Holm-Šıd́ák’s multiple comparisons tests. Principal component

analysis (PCA) was performed on multiple variables, and PC

scores and loadings plots were displayed. All analyses used

GraphPad Prism version 9.5.1 (GraphPad Software, La Jolla,

CA, US).
3 Results

3.1 Characteristics of the patients

We included 25 patients with confirmed pulmonary TB; no sex

predominance was observed in this group (Table 1). In 84% of

cases, drug-susceptible M. tuberculosis was identified, and the

patients received a WHO-recommended regimen (isoniazid,

rifampicin, pyrazinamide, and ethambutol). Multidrug-resistant

TB was found in three cases, and one patient had monorresistant

TB; their individualized treatment was established by

specialized pulmonologists.

Table 1 depicts certain features of disease severity, which were

further analyzed for this study. Because diabetes, M. tuberculosis

drug resistance, and smoking potentially affect our results, we

performed formal hypothesis tests to assess whether the variables

were associated with the outcome. We found that none of these

variables affected the levels of the biomarkers (data not shown).
3.2 Exploring interrelationships
between circulating resolution of
inflammation lipids, pro-inflammatory
cytokines, and redox biomarkers in
pulmonary tuberculosis

To identify the presence and strength of associations between

variables, we calculated correlation coefficients for each pair of

variables in Spearman’s correlation and visualized them in a matrix

heatmap. We analyzed lipids involved in inflammation and its

resolution, pro-inflammatory cytokines TNF-a and IL-8, cell-free

nucleosomes, indicators of lipid peroxidation (MDA and 8-

isoprostane), total oxidants and antioxidants, quality of life (QoL)

SGRQ scores, and indicators of lung involvement such as the score

of radiologic abnormalities (SRA), the laterality of the damage, and

the smear grade (BK) obtained at the first visit of the patients to the

clinic (t0). We included calculations for the pro-resolutory/pro-

inflammatory lipids ratio, considering that eicosanoid effects may

depend more on their relative contribution rather than on their

absolute levels (30). The correlation matrix (Figure 1A) showed

whether they were positively or negatively related or had no

significant relationship: shades of blue represented positive

correlations, while shades of red represented negative correlations,

and the color intensity corresponds to the strength of

the correlation.
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We observed patterns and clusters in the heatmap. The lipids

involved in the inflammation and its resolution were highly

correlated with the lipid peroxidation markers, while the QoL and

lung damage indicators did not correlate well with other variables.

All Spearman’s Rho and p values can be found in Supplementary

Material 1. Although QoL scores lacked correlation with the serum

metabolites, we found significant correlations between SGRQ scores

and the SRA, depicted in additional correlation graphs including 24

patients, as one of them did not have a corresponding chest X-ray

(Figures 1B, C). These results suggest that the measurement of QoL

indicators may help understand the connection between lung

damage and the impact of the respiratory symptoms on everyday

life. Variables that exhibited a strong correlation with each other

merit further investigation.
TABLE 1 Demographic and clinical characteristics of the tuberculosis
patients.

Characteristic N=25

Women, n (%) 13 (52)

Age, years, median (range) 47 (19-61)

BMI kg/m2, median (range) 21.62 (14.86-42.69)

Treatment days, median (range) 1 (0-14)

Comorbidities:

Diabetes, n (%) 9 (36)

Smoking, n (%) 4 (16)

Rheumatic diseases, n (%) 2 (8)

Hypertension, n (%) 1 (4)

Recent drug history*:

NSAIDs, n (%) 7 (28)

Metformin, n (%) 4 (16)

Insulin, n (%) 3 (12)

Aspirin, n (%) 1 (4)

Sulfonylurea, n (%) 1 (4)

Antihypertensive medication, n (%) 1 (4)

Disease severity:

Bilateral, n (%) 14 (56)

Cavities, n (%) 16 (64)

SRA, median (range) 10 (0-20)

SGRQ total score, median (range) 62 (5.92-97.67)

Smear grade (BK), n (%)

0 11 (44)

1+ 2 (8)

2+ 3 (12)

3+ 9 (36)
*Patients were asked about taking these drugs in the two weeks before blood sampling.
SRA: score of radiographic abnormalities, SGRQ: St. George’s Respiratory Questionnaire.
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3.3 Comparative analysis of
serum metabolite levels concerning
disease severity

Because correlations do not imply causation, and the heatmap

may not adequately capture non-linear relationships, investigating
Frontiers in Immunology 05
their interrelationships is still crucial for understanding the

connections between different circulating metabolites and lung

damage. We divided the group according to various severity

indicators, namely, the laterality of the lung damage, the presence

of cavities, and the smear grade. In addition, we divided the group

according to the SGRQ total score, using a cut-off of 23 points.
B

C

A

FIGURE 1

Associations between circulating biomarkers and disease severity in pulmonary tuberculosis. (A) Heatmap showing the correlation between various
biomarkers, including lipid mediators, tissue damage markers, pro-inflammatory cytokines, redox state indicators, quality of life (QoL) indicators, and
lung damage indicators in patients with pulmonary tuberculosis evaluated at the time of recruitment (t0); the Spearman’s Rho heatmap is depicted.
(B, C) Correlation of the St. George’s Respiratory Questionnaire (SGRQ) scores with the damage of lung parenchyma measured by the Score of
Radiologic Abnormalities (SRA) (B), and 8-isoprostane and IL-8 (C). The Spearman’s Rho and p values are depicted, n=25.
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Although people in good health, whose pulmonary functions are

optimal, usually yield SGRQ total scores lower than 12 (4), we chose

23 as this fits the lowest values for Mexican COPD patients and

would be suggestive of the most severe respiratory distress (31, 32).

This last classification was challenging because our study group

consisted of patients whose QoL was poor at baseline. Thus, the

SGRQ total score classification grouped only four patients with

scores lower than 23; the other categories produced more evenly

distributed groups.

While investigating the association of eicosanoids circulating

levels with the severity of the disease, we found that LTB4 tended

to be higher in those patients with bilateral lung involvement;

however, none of the lipids were significantly associated with the

severity of the disease (Supplementary Figure 1). Eicosanoid

balance may be affected during tuberculosis infection, but the

ratios of pro-resolutory/pro-inflammatory eicosanoids showed no

association with disease severity (Supplementary Figure 2). When

analyzing the cytokine results, two outcomes were surprising: the

circulating TNF-a levels were undetectable (data not shown), and

IL-8 levels were significantly lower in patients with a diminished

QoL (Figure 2A). We also analyzed the cell-free nucleosomes,

which have been proposed as tissue damage indicators and

surrogates of neutrophil extracellular traps (NETs) (33) and

expected to circulate in patients with severe systemic

inflammation (34). However, we found no association with

disease severity (Figure 2B). Similarly, we found that the levels

of biomarkers related to the redox state were the same for all

patients, regardless of the classification of disease severity

(Figures 3A-D), except for the total antioxidant levels, which

were higher in the patients with the worst QoL (Figure 3D).

The group was highly homogeneous, which explains the

inability to associate the circulating metabolites with the severity

of the disease. Nonetheless, identifying common trends highlights
Frontiers in Immunology 06
interesting relationships or dependencies between variables. One of

them was observed between pro-inflammatory lipids such as PGE2

and LTB4 ratios and lipid peroxidation indicators such as MDA and

8-isoprostane (Figures 4A, B). Because lipid peroxidation marker

MDA inversely correlated with the SRA (Figure 4B, right), this

relationship merited further investigation.
3.4 Dynamic changes in inflammatory and
redox biomarkers during antituberculosis
treatment: unexpected findings and
alterations in pro-resolutory/pro-
inflammatory ratios

Furthermore, we investigated inflammatory and redox

biomarker changes at the end of the intensive phase of

antituberculosis treatment. Two months after the initial visit (t2),

we measured the levels of molecules denoting inflammation and

redox state overall. Surprisingly, while the levels of pro-

inflammatory eicosanoids only showed a reduction in LTB4

(Figure 5A), all the pro-resolutory lipids decreased significantly

(Figure 5B). This outcome was unexpected, as we initially

anticipated an increase in pro-resolutory lipids by the end of the

intensive treatment phase. To gain more insights, we calculated the

pro-resolutory/pro-inflammatory eicosanoid ratios and found that

the LXA4/LTB4 ratio was the only one that increased after two

months of treatment (Figure 5C, lower left). However, due to the

persistently high levels of PGE2, all pro-resolutory lipids to PGE2

ratios were reduced. Other pro-inflammatory mediators, such as IL-

8 and cell-free nucleosomes, remained unchanged after two months

of treatment (t2) (Figures 6A, B), whereas TNF-a remained

undetectable (data not shown). Moreover, all indicators of the

prooxidant state showed significant reductions, while the total
B

A

FIGURE 2

Pro-inflammatory mediators across disease severity indicators. The circulating levels of the cytokine IL-8 (A) and cell-free nucleosomes (B) were
measured by ELISA in patients with pulmonary tuberculosis at the time of recruitment (t0), n=25. The patients were categorized into two groups
according to the extent of lung damage (extreme left), the presence of cavities (center left), the smear grade (BK, center right), and the SGRQ total
score (extreme right). Individual values with median and interquartile ranges are depicted; ns= not significant; * p<0.05, Mann-Whitney U test.
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B

C

D

A

FIGURE 3

Redox state mediators across disease severity indicators. The circulating levels of malonaldehyde (MDA) (A), 8-isoprostane (B), total oxidants (C), and
total antioxidants (D) were measured by ELISA in patients with pulmonary tuberculosis at the time of recruitment (t0), n=25. The patients were
categorized into two groups depending on the extent of lung damage (extreme left), the presence of cavities (center left), the smear grade (BK,
center right), and the SGRQ total score (extreme right). Depicted are individual values with median and interquartile ranges. **p<0.01, Mann-Whitney
U test.
B

A

FIGURE 4

Correlation of lipid peroxidation markers with pro-inflammatory mediators and lung parenchyma damage. Serum biomarkers were measured by
ELISA at the time of recruitment (t0); lung parenchyma damage was estimated by the Score of Radiologic Abnormalities (SRA). Correlation graphs of
8-isoprostane (A) and MDA (B) with PGE2 (left), Mar1/LTB4 ratio (center), and LXA4/LTB4 ratio or SRA (right) are displayed; the Spearman’s Rho and p
values are depicted, n=25.
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antioxidant level increased (Figure 6C). The SGRQ total score,

which reflects the overall quality of life, showed a substantial

reduction at t2 (Figure 6D, left). To better understand the extent

of this reduction, we compared the patients’ scores with that of a
Frontiers in Immunology 08
group of ten healthy individuals who had recovered from COVID-

19 without residual lung damage (Figure 6D, right). Despite

continuous treatment, TB patients still experienced poorer quality

of life.
B

C

A

FIGURE 5

Eicosanoid modulation after two months of treatment. Pro-inflammatory (A) and pro-resolutory lipids (B), and pro-resolutory to pro-inflammatory
ratios (C) were measured at recruitment (t0) and two months after the first visit (t2). The graphs compare each individual’s before/after levels, n=11;
ns= not significant, *p<0.05, **p<0.01, Wilcoxon’s Rank sum.
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3.5 Longitudinal dynamics of eicosanoids,
oxidative stress biomarkers, and quality of
life in tuberculosis patients

Three patients returned for a six-month follow-up (t6). We

observed a continued decrease in eicosanoids and 8-isoprostane

during this period, indicat ing reduced inflammation

(Supplementary Figure 3). However, only one biomarker, MDA,

along with total oxidants and the SGRQ total score, showed

significant reductions (Figure 7A). We initially aimed to explore

how circulating biomarkers correlated with the quality of life. Still,

those associations could not be established due to a lack of patients

with medium or low SGRQ scores at the initial visit. To gain a

broader understanding, we created a correlation matrix including

results from t0, t2, and t6 (Figure 7B). This analysis revealed
Frontiers in Immunology 09
strengthened correlations and similar patterns to our previous

findings (Figure 1A, Supplementary Material 1). Notably, we

found a significant correlation between the SGRQ total score and

total oxidants, supporting the stratification of SGRQ scores

(Figure 7C). An inverse correlation between SRA and MDA was

also observed (Figure 7D). Furthermore, we confirmed that higher

SGRQ scores were associated with lower levels of IL-8 (Figure 7E).

Our findings highlight the importance of prioritizing total oxidants

and lipoperoxidation indicators for further analysis as biomarkers

in the management of TB, particularly in relation to quality-of-

life outcomes.

We conducted a Principal Component Analysis (PCA) to

examine potential connections between a set of biomarkers and

QoL improvements. Patients with better QoL (defined by SGRQ

total score <23) were represented by red markers, while blue
B

C

D

A

FIGURE 6

Cytokines and redox state mediators’ modulation at two months. IL-8 (A), cell-free nucleosomes (B), and redox state markers (C) were measured at
recruitment (t0) and two months after the first visit (t2). The graphs compare each individual’s before/after levels, n=11; ns= not significant, **p<0.01,
***p<0.001, Wilcoxon’s Rank sum. The SGRQ total score was calculated at t0 and t2 (D, left), n=11, **p<0.01, Wilcoxon’s Rank sum. The SGRQ total
score at t2, n=11, was compared to healthy controls, n=10 (D, right). Individual, median, and interquartile range values are depicted; **p<0.01, Mann-
Whitney U test.
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B

C D E

F

A

FIGURE 7

Modulation of all biomarkers in time. (A) MDA, total oxidants, and SGRQ total score at t0, t2, and t6, n=3; *p<0.05, **p<0.01, One-way ANOVA followed
by Geisser-Greenhouse’s epsilon and Holm-Šıd́ák’s multiple comparisons tests. (B) Spearman’s correlation matrix of eleven lipid mediator indicators, one
tissue damage marker, one pro-inflammatory cytokine, four redox state indicators, and two QoL indicators, n=39; depicted is the heat map of Rho’s
values. Total oxidants vs. SGRQ total score (C) and SRA vs. MDA (D) correlations; depicted are Spearman’s Rho graphs. Association of total oxidants (C,
right) and IL-8 with QoL (E). Individual values with medians and interquartile ranges are depicted, n=11; ns= not significant, *p<0.05, **p<0.01,
Wilcoxon’s Rank sum. (F) Principal component analysis was performed; the PC scores plot depicted the subjects with SGRQ total scores higher (blue) or
lower (red) than 23. The loadings plot showed the variables’ contribution to each component.
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markers represented those with worse QoL (SGRQ total score >23).

Upon analyzing the PCA scores plot, we observed that the red

markers predominantly clustered in the upper-right quadrant of the

graph, where both PC1 and PC2 exhibited positive values. This

clustering pattern in the upper-right quadrant suggests that lower

SGRQ total scores might be linked to specific underlying factors

contributing to positive values along both principal components

(Figure 7F, left). The variables that most significantly contribute to

the disparities observed in the PCA scores plot are visually

presented in the loadings plot (Figure 7F, right). This loadings

plot reveals that certain variables, such as IL-8, total antioxidants

(TAS), LXA4/LTB4 ratio, and RvD1/LTB4 ratio, exhibit similar

patterns along PC1 and PC2. These variables are associated with

lower SGRQ scores. Conversely, variables like MDA, total oxidants

(TOS), nucleosomes, RvD1/PGE2 ratio, and LXA4/PGE2 ratio

display negative correlations with both PC1 and PC2,

contributing to the patterns observed in patients with higher

SGRQ scores.
4 Discussion

Numerous individuals affected by TB, including those with

multidrug-resistant strains, experience long-term lung damage

despite being deemed cured (5). The present study sought to

identify potential serum biomarkers that could serve as early

indicators of pulmonary dysfunction. No definitive biomarker has

been clearly identified as predictive despite the known link between

pulmonary impairment and increased inflammation and

antioxidant system deficiencies (35, 36). Hence, additional

investigations are necessary to identify suitable biomarkers that

can accurately predict the development of lung dysfunction. Such

predictive tools would modify patient management and care,

substantially improving treatment outcomes.

We measured serum metabolites by ELISA because it is a

convenient and easy-to-adopt technique. We included pro-

inflammatory and pro-resolutory eicosanoids, pro-inflammatory

cytokines (TNF-a and IL-8), cell-free nucleosomes, and indicators

of the redox state as potential biomarkers. Furthermore, we

incorporated indicators of disease severity and assessed the

impact of respiratory distress symptoms on patients’ daily

activities and psychosocial well-being through the St. George’s

health-related QoL questionnaire (SGRQ). Pulmonary

impairment resembles COPD and is highly associated with a poor

QoL, hence the SGRQ total score correlates with pulmonary

function (4, 37, 38).

During the initial stages of treatment, we observed limited

associations between QoL indicators and lung damage, as well as

other variables. However, our analysis did reveal significant

correlations between scores obtained from the SGRQ and the

Score of Radiologic Abnormalities (SRA), indicating a meaningful

relationship between QoL measurements and lung damage. In

exploring the potential links between serum metabolites and

disease severity, our findings differed from previous studies that

reported an association between inflammatory and prooxidant

metabolites with tuberculosis severity. Surprisingly, we did not
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observe these associations, despite the anticipated increase in

systemic low-grade inflammation and immune dysregulation

associated to the high prevalence of diabetes among our patients

(39). Moreover, we encountered three unexpected outcomes:

notably low circulating levels of TNF-a, significantly lower IL-8

levels in patients with the poorest QoL, and considerably higher

levels of total antioxidants in patients experiencing the worst QoL.

SGRQ has been recognized as a valuable tool for assessing the

QoL in individuals who have recovered from TB (5). Based on our

findings, measuring QoL indicators can help us understand the

relationship between lung damage and the impact of respiratory

symptoms on a patient’s life. To explore this further, we investigated

the dynamics of QoL after treatment initiation. Previous studies

have indicated that QoL scores tend to decrease over time, with the

most significant improvements occurring during the intensive

treatment phase (6, 40). Therefore, we focused our analysis on the

metabolites two months after initiating treatment (t2).

Our observations revealed a significant decrease in the

circulating levels of LTB4, RvD1, Mar1, and LXA4, but no

reduction was observed in PGE2 at t2. The absence of a decline

in PGE2 levels reduced the pro-resolutory to pro-inflammatory

eicosanoid ratios. However, we continued to observe an increase in

the LXA4/LTB4 ratio, as expected for a milder disease (22).

Interestingly, the levels of pro-inflammatory mediators, namely

TNF-a, IL-8, and cell-free nucleosomes, remained unchanged

after two months of treatment. This finding was unexpected, as it

was anticipated that TNF-a levels would decrease by the second

month of therapy (41). It is worth noticing that the screening for

neutrophil extracellular traps (NETs) as a component of lung

damage is typically performed on airway-derived samples (42,

43), which may explain why fluctuations in these markers may

not be reflected in the circulation.

In patients with pulmonary TB, SGRQ scores decreased

significantly at t2 but remained substantially higher than healthy

controls. These findings align with a previous study demonstrating

a notable improvement in SGRQ total scores after four weeks of

treatment; however, even at the six-month follow-up, patients

showed evidence of residual pulmonary disability (44). It is worth

mentioning that a median SGRQ total score below 30 has been

linked to sputum conversion within the first month of treatment

(45), and our patients fell within this range. In the subset of patients

evaluated at six months of treatment (t6), the SGRQ total score and

prooxidant biomarkers continued to decrease. Previous reports

indicate that despite achieving “successful” treatment outcomes

and reporting good quality of life, 27% of patients with TB still

experience at least moderate to severe pulmonary function

impairment, and 57% continue to exhibit respiratory symptoms

after six months (44). Our findings reinforce the association

between prooxidant metabolites and QoL, most likely reflecting

the extent of pulmonary impairment.

This study provides valuable insights into longitudinal

variations in eicosanoids, oxidative stress biomarkers, and QoL

scores in TB patients throughout six months of treatment. By

examining associations between circulating biomarkers and QoL

and prioritizing critical variables based on their strength of

association, we elucidated the complex interplay between
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biomarkers, oxidative stress, and QoL outcomes. These findings

highlight the significance of total oxidants and lipoperoxidation

indicators in TB management and emphasize the need to prioritize

their analysis as biomarkers across different stages of the disease.

Measuring QoL and redox state indicators can aid in monitoring

treatment efficacy: an improvement in SGRQ scores during

treatment may indicate a lower risk of failure, while worsening

scores after successful treatment may suggest a higher risk for

recurrence. Early identification of biomarkers indicating lung

impairment in patients with TB is crucial for understanding long-

term morbidities and designing interventions to optimize quality of

life and productivity.

Our study has limitations, including the small sample size, the

lack of follow-up of all patients, and the absence of respiratory tests.

More exhaustive experiments are needed to validate these

biomarkers. However, the Principal Component Analysis (PCA)

outcomes delineated a discernible relationship between specific

biomarkers and the QoL as gauged by the SGRQ scores.

Specifically, IL-8, total antioxidants (TAS), LXA4/LTB4 ratio, and

RvD1/LTB4 ratio exhibited a notable association with diminished

SGRQ scores, indicative of an enhanced QoL. Conversely, patients

with elevated SGRQ scores did not indicate a discernible pattern,

thereby confounding the identification of a definitive biomarker

ensemble linked to QoL deterioration. Nonetheless, the potential

for monitoring QoL enhancements can be inferred from IL-8, total

antioxidants (TAS), LXA4/LTB4 ratio, and RvD1/LTB4 ratio. These

ratios collectively signify a prominence of pro-resolutive eicosanoids

over pro-inflammatory counterparts, thereby corroborating the

amelioration of QoL. This analytical insight thus underscores the

utility of the biomarkers as potential indicators of QoL progression

that could be used for disease and treatment monitoring.
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