
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hai-Feng Pan,
Anhui Medical University, China

REVIEWED BY

Marta Vuerich,
Novartis Institutes for BioMedical Research,
Switzerland
Ian James Martins,
University of Western Australia, Australia
Philippe Lesnik,
Institut National de la Santé et de la
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Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
Inflammatory bowel disease (IBD), a general term encompassing Crohn’s disease

(CD) and ulcerative colitis (UC), and other conditions, is a chronic and relapsing

autoimmune disease that can occur in any part of the digestive tract. While the

cause of IBD remains unclear, it is acknowledged that the disease has much to do

with the dysregulation of intestinal immunity. In the intestinal immune regulatory

system, Cholesterol-25-hydroxylase (CH25H) plays an important role in

regulating the function of immune cells and lipid metabolism through

catalyzing the oxidation of cholesterol into 25-hydroxycholesterol (25-HC).

Specifically, CH25H focuses its mechanism of regulating the inflammatory

response, signal transduction and cell migration on various types of immune

cells by binding to relevant receptors, and the mechanism of regulating lipid

metabolism and immune cell function via the transcription factor Sterol

Regulator-Binding Protein. Based on this foundation, this article will review the

function of CH25H in intestinal immunity, aiming to provide evidence for

supporting the discovery of early diagnostic and treatment targets for IBD.

KEYWORDS
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1 Introduction

Inflammatory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative

colitis (UC) is a chronic and relapsing inflammatory digestive disease. As the incidence of

IBD has rapidly increased, an increasing number of experts and scholars are investigating

the etiology of the disease. Although IBD is founded to be closely related to external

factors such as people’s dietary habits and living environment (1), its internal factors,

namely its specific cause and exact mechanism, remain to be explored. It is acknowledged

that IBD is primarily associated with environmental factors, genetic predisposition, the
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dysbiosis of intestinal microbiota, and immune dysfunction.

CH25H has been demonstrated to have the ability to regulate

intestinal immunity and is associated with IBD (2). Previous

studies have found that cholesterol-25-hydroxylase (CH25H)

can catalyze the production of 25-hydroxycholesterol (25-HC)

from cholesterol (3). Sterol regulatory-element binding proteins

(SREBPs) is also conducive to transcription in the intestinal

immune regulatory system. SREBPs are a family of transcriptive

factors that regulate the expression of genes involved in lipogenic

processes. They also get involved in numerous cellular processes

and pathologies such as reactive oxygen species generation,

endoplasmic reticulum stress, apoptosis, and autophagy (4). 25-

HC can inactivate SREBPs to inhibit lipid synthesis or exert anti-

inflammatory effects. In addition to its role in cholesterol

metabolism, CH25H and its downstream products can bind to

relevant receptors and participate in regulating immune system,

including the direct regulation of inflammatory programming, the

development of immune responses, and the signaling

transduction. Previous studies have highlighted the significance

of CH25H in immunology, arguing that CH25H plays a protective

role against viral and bacterial infections (5). However, further

investigation is needed to examine the function of CH25H in

intestinal immunity, particularly in relation to IBD. Based on this

foundation, this article is intended to provide an overview of the

research progress of CH25H in intestinal immunity.
Frontiers in Immunology 02
2 Biological characteristics of CH25H

CH25H has some biological characteristics, including CH25H

gene, CH25H protein, and 25-HC. Specifically, CH25H gene is a

member of interferon-stimulating genes (ISGs), which has crucial

functions in inflammation, innate immunity, and adaptive immune

responses via interferon (IFN) signaling. CH25H protein belongs to the

redox enzyme family and is a 31.6-kDa endoplasmic reticulum (ER)-

associated hydroxylase that can catalyze cholesterol to produce 25-HC

(6). 25-HC is an endogenous oxysterol produced by the oxidation of

CH25H. Its function is to regulate the activity of SREBP, thereby

inhibiting the biosynthesis of cholesterol and reducing its

accumulation. Furthermore, 25-HC can also regulate the activity of

nuclear receptors, which enables the regulation of immune response

processes and lipid metabolism (3, 7). Regarding the regulation of

CH25H expression, Diczfalusy et al. (8) have found that

lipopolysaccharide (LPS) can induce an increase in the level of

CH25H in macrophages of both mice and human volunteers. In a

similar vein, Park et al. (9) conducted a further investigation,

discovering that the expression of CH25H is mainly up-regulated by

type I IFN via JAK/STAT1 signaling pathway. Through our

observations, we have noted that the rapid induction of CH25H

subsequently leads to the production of 25-HC, indicating that

CH25H plays a significant role in lipid metabolism, gene expression,

and immune activation (Figure 1A). Since previous studies have shown
FIGURE 1

Regulation of immune function by 25-HC through LXR. (A) The transcription levels of CH25H are induced by Type I IFN through the STAT1-
dependent signaling pathway, resulting in the production of 25-HC via cholesterol oxidation. (B) Binding LXR, 25-HC can induce the expression of
ABCA1, disrupting the recruitment of MyD88 and TRAF6, and subsequently blocking the TLR-induced activation of NF-kB and MAPK, thereby
suppressing the production of various inflammatory mediators such as IL-1b, IL-6, IL-17, TNFa, CXCL1, and CCL2. Additionally, 25-HC can also
induce the expression of IFN-g, thereby enhancing the CH25H expression through feedback regulation. (C) In CD4+ T cells, 25-HC activates SREBP1
or inhibits RORgt through LXR, leading to the inhibition of IL-17 expression and Th17 cell differentiation. 25-HC, 25-hydroxycholesterol; CH25H,
Cholesterol-25-hydroxylase; LXR, Liver X receptor; IFN, Interferon; ABCA1, ATP-binding cassette transporters A1; MyD88, myeloid differentiation
primary response protein 88; TRAF6, TNF Receptor Associated Factor 6; TLR, Toll-like receptor; NF-kB, Nuclear factor-kB, MAPK, Mitogen-activated
protein kinase; TNFa, Tumor necrosis factor a; CXCL1, C-X-C motif chemokine ligand 1; CCL2, C-C motif chemokine ligand 2; SREBP1, Sterol
regulatory-element binding protein 1; RORgt, Retinoic acid receptor-related orphan receptor gt; AHR, Aryl hydrocarbon receptor.
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that CH25H plays a vital role in antiviral infections and various

immune system-related diseases (3, 7), these regulatory mechanisms

mentioned above have the possibility to be involved in the pathogenesis

of IBD.

CH25H is widely expressed in various immune cells in

physiological conditions, including macrophages, dendritic cells

(DCs), neutrophils, and many others (10), whereas 25-HC is

mainly produced in macrophages (11, 12) and regulates the

functions and phenotypes of various immune cells, including

macrophages, B cells, T cells, DCs, and neutrophils through its

receptors (13). Notably, 25-HC has both pro-inflammatory and

anti-inflammatory effects, and these differences may depend on its

concentration and microenvironment, thereby exerting different

functions in regulating gene expression, cellular proliferation,

differentiation, and apoptosis (7).
3 Mechanism of CH25H regulation on
intestinal immunity

The innate and adaptive immune responses in intestinal

immune system are typically tightly regulated. Imbalances in the

immune system will result in the development and progression of

IBD (14). The immunological dysregulation present in IBD is

characterized by epithelial damage, the expansion of

inflammation facilitated by intestinal microbiota, and the

infiltration of various types of cells into lamina propria, including

T cells, B cells, macrophages, DCs, and neutrophils. These activated

cells within the lamina propria produce proinflammatory cytokines

such as tumor necrosis factor (TNF), Interleukin-1b (IL-1b), IFN-g,
and the IL-6 family of cytokines, leading to a high level of

inflammation in the local tissue (15). CH25H can potentially

contribute to the pathogenesis of IBD as it is widely expressed in

various immune cells (10, 13). Intestinal dysbiosis and IBD often

have a mutually causal relationship. The dysbiosis observed in

individuals with IBD is associated with the increased production

of LPS, and damage to the gut epithelial barrier allows LPS

produced by the microbiota to enter the bloodstream, resulting in

metabolic endotoxemia (16). Upon LPS stimulation, the TLR4/

TRIF dependent pathway upregulates the expression of CH25H (8).

The CH25H metabolite can act on multiple membrane receptors

and nuclear receptors, exerting regulatory functions. Among these

receptors, the liver X receptor (LXR), G protein-coupled receptor

183 (GPR183), and retinoic acid receptor-related orphan receptor

(ROR) are pivotal in immune regulation.
3.1 LXR

LXRs, as the nuclear receptor of ligand-activated transcription

factors, is capable of participating in various metabolic processes,

including lipid, cholesterol, and carbohydrate metabolism. There

are two LXR isoforms: LXRa and LXRb (7, 17). LXRa may

primarily play a role in the innate immune response via

macrophages and dendritic cells, whereas LXRb is likely

responsible for the immune response in colonic epithelial cells
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and the adaptive immune response through CD3/CD4 lymphocytes

(17). The activation of LXRs in a mouse colitis model can suppress

the expression of inflammatory factors such as IL-1b, IL-6, IL-17A,
TNFa, and chemokines such as CXCL1/KC, CXCL2/MIP2,

CXCL8/IL-8, CCL2/MCP1 and CXCL10 in the colon tissue (17).

In addition, LXRs can aid in the polarization of M2 macrophages

and enhance the phagocytosis of macrophages and DCs, thereby

increasing the clearance of senescent neutrophils and maintaining

the neutrophil homeostasis (18, 19).

Being 25-HC an LXR ligand, it can induce the expression of

cholesterol efflux transporters, such as ATP-binding cassette

transporters A1 (ABCA1) and ATP-binding cassette transporters

G1 (ABCG1). 25-HC can also upregulate the expression of

Apolipoprotein E (ApoE) and Cytochrome P450 family 7

subfamily A member 1 (CYP7A1), which are important for

cholesterol clearance (20). Additionally, 25-HC can induce the

expression of IFN-g in an LXR-dependent mechanism. The

activated IFN-g can subsequently enhance the expression of

CH25H, forming a positive feedback loop (21). Ito et al. (22) have

also found that the activation of LXRs can induce the expression of

ABCA1, which could impede the recruitment of myeloid

differentiation primary response protein 88 (MyD88) and TNF

Receptor Associated Factor 6 (TRAF6), and subsequently block the

Toll-like receptor (TLR)-induced activation of nuclear factor-kB
(NF-kB) and mitogen-activated protein kinase (MAPK) signaling

pathways. Consequently, this leads to the inhibition of the

production of several inflammatory mediators, such as IL-1b, IL-
6, IL-17, TNFa, CXCL1, and CCL2 (Figure 1B).

LXRs are associated with the innate immunity against

pathogens. Research has shown that LXRs can protect

macrophages from pathogen-induced cell death, thereby reducing

pathogen infection (23, 24). There are two types of macrophages

involving in host defense and tissue homoeostasis: M1 and M2

macrophages. M2 macrophages possess an anti-inflammatory

property, contributing to maintaining tissue homeostasis. M2

macrophages can be polarized due to the activation of LXR by

25-HC. This polarization is generated due to the presence of

intracellular amino-acid sufficiency signal and the extrinsic IL-4

signal (19). On the other hand, under the stimulation of pathogenic

microorganisms, IFN-g or TLR ligands can activate macrophages to

become M1 macrophages, which play a role in initiating and

sustaining inflammation (19). However, both IFN-g or TLR

ligands can also lead to the production of 25-HC, which can

promote the polarization of M2 macrophages. It has been

reported that the activation of TLR4 by LPS can increase the level

of 25-HC, thereby regulating the LXR-dependent lipid metabolism

and immune response, and inhibiting the expression of

inflammatory mediators in macrophages such as COX-2, IL-6,

IL-1b, and G-CSF (25).

LXRs also affect the function of neutrophils. Smoak et al. (26)

have shown that the activation of LXRs can inhibit neutrophil

motility, thus impairing pulmonary antibacterial host defense, and

worsening the survival of mice. Korf et al. (27) found that mice

lacking LXRs showed a deficiency in the early neutrophilic airway

response to Mycobacterium tuberculosis infection, an impaired

Th1/Th17 function, and a higher susceptibility to disseminated
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systemic infection. Reboldi et al. (28) discovered that the

recruitment of neutrophils to the peritoneum relies on IL-1b,
whereas 25-HC functions in suppressing IL-1b-mediated

peritoneal inflammation by acting the downstream of type I IFN.

The findings indicate that the signaling pathway of LXRs, which is

activated by 25-HC, plays multiple roles in the regulation of

innate immunity.

Anti-aging gene Sirtuin 1 (SIRT1) is associated with

autoimmune diseases and irreversible programmed cell death in

various cells and tissues (29). SIRT1 is regulated by environmental

factors, diet, stress, lifestyle factors and bacterial LPS (30, 31). SIRT1

has to do with LXRs, in the sense that SIRT1 can deacetylate LXRs

and promote their ubiquitination, thereby regulating ABCA1 and

SREBP1c, which are involved in cellular cholesterol homeostasis

(30). Studies have discovered that metformin can alleviate hepatic

inflammation by activating CH25H in a SIRT1-dependent manner

in that CH25H can promote cholesterol catabolism and the

subsequent increased levels of 25-HC can inhibit inflammation

driven by IL-1b. Moreover, metformin can suppress the

polarization of M1 macrophages in a SIRT1-dependent manner

(32). These findings suggest that SIRT1 gets involved in the

regulation of cholesterol homeostasis through the LXR/ABCA1

pathway relevant to the regulation of CH25H and its

downstream products.

The helper T cell plays an important role in the pathogenesis of

IBD. The activation of LXRs leads to an increase in the expression of

SREBP1, which then translocate into the nucleus and disrupts aryl

hydrocarbon receptor (AHR), an essential positive regulator of

Th17 cell differentiation. As a result, this negatively regulates the

Th17 cell differentiation and inhibits the IL-17 promoter to reduce

the IL-17 transcription (20, 33) (Figure 1C). 25-HC can also inhibit

the differentiation of Th17 cells by suppressing the production of

IL-1, which works synergistically with transforming the growth of

factor-b (TF-b) to induce Th17 cells (28, 34). Jakobsson et al. (17)

observed that LXR-deficient mice are more susceptible to suffer

dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzene sulfonic

acid (TNBS)-induced colitis and showed a slower recovery and

decreased survival, while LXRs agonists can inhibit the expression

of inflammatory cytokines, i.e. TNFa, and the recruitment of

CD11b+ immune cell populations, and reduce the infiltration of

pro-inflammatory Th17 cells in the colon epithelium. The

activation of LXRs can also induce the differentiation of

regulatory T cells, thereby reducing the severity of colitis (35). It

has been found that the LXR level in the colon of IBD patients is

significantly repressed, indicating the involvement of LXR in the

development of IBD (17). 25-HC acts as a natural agonist of LXR,

showing potential therapeutic effects for IBD.
3.2 GPR183

GPR183, also known as Epstein-Barr virus-induced G-protein-

coupled receptor 2 (EBI2), is activated by its ligand 7a,25-
dihydroxycholesterol (7a,25-HC). CH25H and Cytochrome P450

family 7 subfamily B member 1 (CYP7B1) are critical enzymes

required for the generation of 7a,25-HC, which binds to GPR183 to
Frontiers in Immunology 04
exert its immune regulatory function by inducing the localization of

immune cells in the spleen and lymph nodes. GPR183 is expressed

in B cells, T cells, DCs, macrophages, natural killer (NK) cells,

neutrophils, and plays an important role in immune system

(10, 36).

The concentration of 7a,25-HC is a key factor inducing the

migration of GPR183+ cells. Immune cells such as B cells, T cells,

DCs, etc., migrate to lymphoid tissues and lymphoid organs

according to the concentration gradient of 7a,25-HC, thus

enhancing the efficacy of adaptive immune responses (37).

Dietary cholesterol absorption and microbiome recognition can

result in the production of 7a,25-HC in duodenal intestinal

epithelial cells. The elevated levels of 7a,25-HC can influence the

migration and positioning of intestinal plasma cells by binding to

GPR183. Additionally, 7a,25-HC can reduce the expression of

CD98 in these cells and impair their ability to secrete IgA (38).

Innate lymphoid cells (ILCs) also express GPR183 and migrate to

the solitary intestinal lymphoid tissue in colonic and small intestinal

tissues according to the concentration gradient of 7a,25-HC.

Among the different types of ILCs, ILC3s are dominant and

express higher levels of GPR183. They are characterized by the

expression of RORgt and can produce IL-22, playing an protective

role in intestinal barrier integrity and immunity (37). Liu et al. (10)

found that under the LPS stimulation, CH25H and CYP7B1 were

highly up-regulated in spleen DCs, macrophages, and especially NK

cells and neutrophils, indicating that these cells are likely to be the

source of 7a,25-HC production. Additionally, since these cells also

express GPR183, they may also be regulated by 7a,25-HC. Chen

et al. (39) have recently discovered that lymphatic stromal cells are

the primary source of 7a,25-HC within lymphoid organs, thus

facilitating the migration of B cells and DCs, and stimulating the

effective adaptive immunity and antibody production. Similarly,

fibroblast stromal cells within the colonic lymphoid tissue can

produce 7a,25-HC, which induces the migration of ILC3 and

helps maintain colonic immune homeostasis (40) (Figure 2).

Despite its importance in regulating intestinal immune

homeostasis, the overexpression of GPR183 is considered a

pathological mechanism in colitis. Emgard et al. (40) found that

GPR183 facilitates the formation of cryptopatches and isolated

lymphoid follicles in the colon by ILC3s, both in steady-state

conditions and during inflammation. The increase levels of

GPR183 ligand 7a,25-HC produced by CH25H and CYP7B1 can

exacerbate the inflammatory response through the GPR183-

dependent activation of ILC migration, the recruitment of

myeloid cells, and tissue remodeling, and knocking out of

GPR183 was able to alleviate the severity of CD40-Ab-induced

colitis. Wyss et al. (41) further investigated the function of GPR183

and found that GPR183 also plays a role in promoting lymphoid

tissue formation in IL-10-/- colitis. However, in the DSS colitis

model, GPR183 knockout resulted in a reduction of colonic

lymphoid structures but did not alleviate the severity of acute or

chronic inflammation induced by DSS. Therefore, it is speculated

that the destruction of the epithelial barrier and innate immune

response are the main factors involved in the pathogenesis of the

DSS colitis model, while GPR183 plays a minor role. On the other

hand, in ILCs-related colitis models such as CD40 colitis, IL-10
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colitis, T-bet (-/-) Rag2 (-/-) ulcerative colitis (TRUC), GPR183 is

one of the pathogenic mechanisms.

The 7a,25-HC-GPR183 pathway is critical for the formation of

colonic lymphoid structures, but it is dispensable in small intestine,

as other factors can compensate for its absence (40). Although

GPR183 primarily influences ILCs-related colitis models, it is

considered a potential therapeutic target for the treatment of IBD.
3.3 ROR

RORs belong to the nuclear receptor family of transcription

factors binding oxysterols, which includes three different isoforms:

RORa, RORb, and RORg. RORg also has variants, including RORg1
and RORg2 (also known as RORgt) (42). RORgt participates in the

differentiation process of IL-17-producing cells such as Th17 cells

and gdT cells, and plays an important role in various pathological

conditions. Oxysterols such as 20a-HC, 22R-HC, 25-HC, and 27-

HC can act as the agonists of RORg nuclear receptors, especially the
RORgt isoforms, thereby affecting the function of lymphocytes (43).

Soroosh et al. (44) found that 7b,27-HC and 7a,27-HC can promote

the differentiation of Th17 cells through RORgt, confirming that

oxysterols can directly regulate lymphocyte differentiation through

RORgt. Therefore, 25-HC, a ROR receptor agonist, also appears to

be involved in the differentiation of IL17-producing lymphocytes

(20, 45). In contrast, Cui et al. (33) found that the activation of LXR

can lead to a decrease in the level of RORgt expressions, inhibiting
the differentiation of Th17 cells (Figure 1C). Indicating the dual role

of 25-HC in immune system.

The generation and function of ILC3s depend on the expression of

RORgt and are involved in the pathogenesis of IBD. The activated DCs
produce IL-6, IL-23 and TNF-a, which promote the movement of

ILC3s into or out of cryptopatches, starting an inflammatory immune

cascade and causing intestinal inflammation (46, 47). 25-HC can
Frontiers in Immunology 05
inhibit the production of pro-inflammatory cytokines in

macrophages and DCs, as well as the expression of RORgt in ILC3,

thereby potentially impacting the occurrence and development of IBD.
3.4 Lipid metabolism and immune
cell function regulated by
25-HC through SREBP

SREBPs regulate genes that are involved in lipogenic processes,

such as fatty acid and cholesterol synthesis. There are three isoforms

of SREBPs, of which SREBP1a and SREBP1c are mainly involved in

genes that relate to fatty acid synthesis, while SREBP2 regulates

cholesterol synthesis (20). The overexpression of CH25H can

suppress cholesterol biosynthesis through SREBP. In the absence

of cholesterol, SREBPs bind to the SREBP cleavage-activating

protein (SCAP) in the endoplasmic reticulum to form SREBP/

SCAP complexes. These complexes are then transported to the

Golgi apparatus and cleaved into mature transcription factor forms

by site 1 protease (S1P) and site 2 protease (S2P), which promotes

the expression of the rate-limiting enzyme, HMG-CoA reductase,

and increases cholesterol biosynthesis. In the presence of excessive

cholesterol, 25-HC binds to insulin-induced gene 2 (INSIG2),

which is an endoplasmic reticulum anchor protein. This binding

promotes the formation of SREBP/INSIG2/SCAP complexes that

prevent SREBP from transporting to the Golgi apparatus, reducing

intracellular cholesterol production (Figure 3A) (3, 20).

25-HC can inhibit the activation of NOD-like receptor protein 3

(NLRP3) inflammasomes and the expression of cytokines IL-1b, IL-
1a, and IL-18 by suppressing SREBP translocation (28). Dang et al.

(48) have shown that the cholesterol overload in macrophages can

trigger the release of mitochondrial DNA and activate the absent in

melanoma 2 (AIM2) inflammasomes, leading to an increase in

IL-1b production. However, 25-HC can maintain the integrity of
FIGURE 2

7a,25-HC inducing the migration of GPR183+ cells. Stromal cells serve as the primary source of 7a,25-HC, which is synthesized from cholesterol
through hydroxylation by CH25H and CYP7B1 enzymes. Immune cells such as ILC3s, B cells, and DCs, migrate to colonic lymphoid tissues and
lymphoid organs in response to the concentration gradient of 7a,25-HC. Proper localization of immune cells enhances the effectiveness of adaptive
immune responses. 7a,25-HC, 7a,25-dihydroxycholesterol; GPR183, G protein-coupled receptor 183; CH25H, Cholesterol-25-hydroxylase; CYP7B1,
Cytochrome P450 family 7 subfamily B member 1; ILC3s, Type 3 innate lymphoid cells.
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mitochondria by inhibiting SREBP2-mediated cholesterol synthesis,

which in turn prevents the activation of AIM2 inflammasomes and

the IL-1b-induced inflammation (Figure 3B). LPS activates

macrophage TLR4 to induce the synthesis and secretion of 25-

HC. This can inhibit the activity of the transcription factor SREBP2

in intestinal germinal center B cells, suppressing their

differentiation into IgA plasma cells and reducing the production

of IgA, and consequently impairing antigen-specific IgA responses

during intestinal infections (12, 49). SREBPs also play a significant

role in Th17 cell differentiation. Cholesterol synthesis induced by

SREBPs increases intracellular sterol that serves as RORg receptor
agonists. By inhibiting SREBPs and reducing cholesterol

metabolism, 25-HC can indirectly inhibit Th17 cell differentiation

(45, 50). In addition, 25-HC can activate SREBP1 through LXRs,

which can bind to the IL-17 promoter and interact with the positive

regulator of Th17 differentiation, leading to the inhibition of Th17

cell differentiation and transcriptional antagonism of IL-17 (20, 33).

As 25-HC has a weak but specific RORg receptor activity, it can

influence Th17 cell differentiation through various pathways (45).

When ER cholesterol is more than 5 moles% of total ER lipids,

INSIG binds to SCAP/SREBP complex, preventing the complex

from transporting to the Golgi and reducing the cholesterol

synthesis and uptake. However, ER only contains about 1% of the

total cellular cholesterol and no more than 5% of total membrane

lipids. Similarly, 25-HC accounts for a small portion of the total

cellular sterol; it can still regulate cellular lipid metabolism quickly

and accurately (51). Das et al. (51) proposed that cholesterol in
Frontiers in Immunology 06
plasma membrane can be divided into three pools: accessible pool,

sphingomyelin (SM)-sequestered pool, and essential pool. Of these,

the accessible pool is labile, serving as a primary site for the

excessive cholesterol absorption. Subsequently, this excess

cholesterol is transported to the pool in endoplasmic reticulum,

thereby regulating cholesterol metabolism. Abrams et al. (52) found

that 25-HC produced by IFN-g-stimulated macrophages can

increase the activity of acyl-CoA: cholesterol acyltransferase

(ACAT), which can convert cholesterol in the ER to cholesteryl

esters and induce the formation of cholesterol-rich lipid droplets.

This decreases the level of the free cholesterol in the ER, triggering

the internalization of accessible cholesterol from the plasma

membrane and reducing the cholesterol synthesis and uptake. In

addition, 25-HC can result in a long-term suppression of accessible

cholesterol through inhibiting SREBP2. The cell surface accessible

cholesterol is crucial for bacteria to penetrate adjacent cells, and the

antibacterial activity of 25-HC is based on the decrease in accessible

cholesterol on the plasma membrane (52). Ormsby et al. (53)

conducted further research and found that by reducing accessible

cholesterol on the plasma membrane through ACAT, 25-HC can

limit pore formation and cytolysis caused by pore-forming toxins,

thus protecting tissues from pathogenic bacteria.

CH25H exerts its antivirus function through inhibiting cholesterol

biosynthesis, interacting with viral components, and modulating

inflammation and immunity (3). Gastrointestinal symptoms are also

observed in patients with SARS-CoV-2 when the virus infects intestinal

epithelial cells. This is because differentiated enterocytes express high
FIGURE 3

The involvement of 25-HC in the regulation of lipid metabolism and related immunity. (A) The binding of 25-HC with INSIG2 protein forms the
SREBP/INSIG2/SCAP complex, which inhibits the transportation of SREBP to the Golgi apparatus. As a result, the expression of HMG-CoA reductase
is suppressed and intracellular cholesterol production is reduced. (B) By inhibiting SREBP, the cholesterol synthesis is reduced, thereby inhibiting the
activation of NLRP3 and AIM2 inflammasomes and subsequently suppressing the expression of IL-1b, IL-1a, and IL-18. (C) 25-HC increases the
expression of CYP7A1 by activating LXR and enhances the synthesis of bile acids through the classical pathway. In addition to its role in hydroxylating
25-HC to 7a,25-HC, CYP7B1 also functions as an enzyme involved in the alternative bile acid pathway. 25-HC, 25-hydroxycholesterol; 7a,25-HC,
7a,25-dihydroxycholesterol; INSIG2, Insulin-induced gene 2, SREBP, Sterol regulatory-element binding protein; SCAP, SREBP cleavage-activating
protein; HMG-CoA, 3-hydroxy-3-methyl glutaryl coenzyme A reductase; HMGCR, HMG-CoA reductase; NLRP3, NOD-like receptor protein 3; AIM2,
Absent in melanoma 2; LXR, Liver X receptor; CYP7A1, Cytochrome P450 family 7 subfamily A member 1; CYP7B1, Cytochrome P450 family 7
subfamily B member 1.
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levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2

(ACE2) (54). Studies have shown that 25-HC engages in anti-SARS-

CoV-2 activities. Wang et al. (55) proposed that 25-HC inhibits the

fusion of the viral envelope with the plasma membrane by activating

ACAT, which can reduce the accessible cholesterol in the plasma

membrane. In a similar vein, the research conducted by Zang et al. (56)

demonstrated that 25-HC is capable of reducing the fusion of viral

membrane by inhibiting Niemann-Pick C1 (NPC1), which is

responsible for the reduction of accessible cholesterol in the

membrane of the endosomal/lysosomal compartment. However,

SARS-CoV-2 infection can also increase the level of 7a,25-HC in

lungs, attracting monocytes/macrophages through a GPR183-

dependent mechanism and subsequently leading to inflammation.

Inhibiting GPR183 can reduce SARS-CoV-2 loads, macrophage

infiltration, and inflammatory cytokine expression (57).

Bile acids are synthesized in the liver from cholesterol. Evidence

shows that the altered composition of primary bile acids and

secondary bile acids may contribute to the development of IBD

through differential effects on epithelial and immune cells (58).

Metabolomics studies have found that primary bile acids (PBAs) are

increased while secondary bile acids (SBAs) are decreased in

patients with IBD (58, 59). Dong et al. (60) have shown that 25-

HC can increase bile acid synthesis through the activation of LXRs,

which is regulated by the classic pathway of CYP7A1, and

secondary bile acids also increase due to the involvement of gut

bacteria. In addition, CH25H can regulate innate immune

responses via the SREBP regulation and alleviate the liver

inflammation caused by a high-fat diet, indicating that CH25H

has a regulatory role in bile acid metabolism and anti-inflammation

(Figure 3C). In addition to hydroxylating 25-HC to 7a,25-HC,

CYP7B1 is also an enzyme involved in the alternative bile acid

pathway (61). In humans, the major SBAs are lithocholic acid

(LCA) and deoxycholic acid (DCA). Studies (62, 63) have found

that gut bacteria and corresponding enzymes can convert the LCA

into 3-oxoLCA and isoLCA, which have different effects on the

differentiation of immune cells. Specifically, 3-oxoLCA can inhibit

the differentiation of Th17 cells via RORgt, while isoLCA promotes

the differentiation of Treg cells by inducing the production of

mitochondrial reactive oxygen species (mitoROS) and

subsequently increasing the FoxP3 expression. These effects help

reduce the inflammation in intestine, and both bile acid metabolites

were found to be significantly reduced in patients with IBD.

However, previous studies have shown that although CH25H can

regulate the cholesterol metabolism in a tissue-specific fashion, it

contributes little to the overall bile acid synthesis (64). Further

research is needed to examine whether CH25H can help regulate

the inflammatory responses in IBD patients by affecting the bile

acid pathway.
3.5 Other mechanisms of immune
regulation by CH25H

The research above indicates that 25-HC can inhibit the

production of inflammatory factors through LXR or SREBP. In

addition, 25-HC can also interact with myeloid differentiation
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protein 2 (MD2) to prevent LPS from binding to TLR4, thereby

inhibiting the transcription of NF-kB and AP-1 and leading to the

inhibition of inflammatory responses (65).

Regarding the pro-inflammatory effect of 25-HC, researchers

(66, 67) have found that 25-HC can induce the secretion of pro-

inflammatory cytokines and chemokines in macrophage cells, such

as IL-1b and IL-6. When cocultured with smooth muscle cells and

monocytic cells, 25-HC can induce monocytes to produce IL-1,

which in turn synergistically increases the levels of IL-6 and MCP-1

expressions produced by smooth muscle cells (67, 68). Bai et al. (68)

discovered that 25-HC can also enhance the IL-8 promoter activity

caused by IL-1b in Caco-2 cells. Further research (69) has shown

that 25-HC can bind to the lipid raft domains of the plasma

membrane and promote Ca2+ influx, leading to the activation of

calcium-dependent kinase PYK2, and consequently activating the

MAPK ERK1/2 pathway and AP-1 transcription, which promoted

the transcription of IL-8. Another study concluded that 25-HC

promotes NLRP3 inflammasome assembly and its activation

through potassium efflux, mitoROS and LXR-mediated pathways

(70). Moreover, 25-HC can activate the FAK signaling pathway by

binding to a5b1/avb3 integrins directly, leading to an increase in

the production of pro-inflammatory cytokines, such as TNF and

IL-6 (71).

Scholars (72, 73) have found that 25-HC can enhance the

immune response mediated by TLR3 in airway epithelial cells,

stimulate the release of IL-8 and IL-6 via the NF-kB pathway,

and participate in neutrophilic airway inflammation. Friedrich et al.

(74) have shown that for patients with IBD who did not respond to

anti-TNF therapy or corticosteroids, their inflamed tissues were

characterized by neutrophil infiltrates, fibroblast activation, and loss

of epithelial cells. In addition, the high amount of IL-1b was

expressed in colon ulcers, but not in NR3C1, ITGA4, or TNF.

Fibroblast IL-1R signaling drives the recruitment of neutrophils,

which then induces inflammation, indicating that targeting the

neutrophil-attractant program in fibroblasts by blocking IL-1R

could be used as an alternative treatment for patients with

refractory IBD. CH25H can inhibit the secretion of IL-1b by

macrophages and may have a potential role in regulating the

migration and function of neutrophils, which are involved in the

pathogenesis of IBD. However, there is a lack of relevant research

on the mechanism by which CH25H regulates neutrophils.

CH25H can enhance the progression and metastasis of

colorectal cancer (CRC). A reduced level of CH25H was observed

in the cancer stroma, particularly in the intratumoral endothelial

cells (ECs), among CRC patients (75). It is worth noting that

intercellular biomolecule transfer (ICBT), facilitated by tumor-

derived extracellular vesicles (TEVs), is also a crucial factor that

influences the progression and prognosis of CRC. CH25H is capable

of inhibiting of the fusion lipid membrane, thereby hindering the

uptake of TEVs. As a result, CH25H restricts the ICBT-induced

angiopoietin-2 (ANGPT2)-dependent activation of ECs, and

inhibits intratumoral angiogenesis. Furthermore, it has also been

observed that the administration of reserpine as a treatment can

enhance the expression of CH25H in TEV-treated cells. This

subsequently leads to a reduction in the ICBT between malignant

and benign cells, ultimately resulting in the suppression of
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angiogenesis (75). Additionally, a study has revealed that

LINC01915, a type of long non-coding RNA, inhibited the uptake

of TEVs by normal fibroblasts (NFs), cancer-associated fibroblasts

(CAFs) activation, and tumor angiogenesis through the miR-92a-

3p/KLF4/CH25H axis, thereby impeding tumor growth. These

findings indicate that CH25H has an inhibitory effect on CRC (76).

It is accepted that 25-HC as a soluble factor can function both as

an autocrine and paracrine agent. Specifically, Doms et al. (77)

employed transient transfection to conduct an exogenous

expression of CH25H in HeLa cells using a plasmid. They

observed that the exogenous expression of CH25H reduced the

proportion of cells infected with reovirus, particularly in the cells

expressing CH25H. Moreover, they found that reovirus infection

decreased in cells that do not express CH25H, indicating that 25-

HC may be secreted from cells to limit infection in CH25H non-

expressing cells. On the other hand, Canfrán-Duque et al. (78) have

found that in atherosclerosis, activated macrophages release 25-HC

which acts on SMC through paracrine action. This interaction

blunts SMC migration by altering platelet-derived growth factor

(PDGF) signaling and ultimately promotes plaque instability. Thus,

the potential role of extracellular 25-HC in intestinal immunity

needs to be further explored.

CH25H may have either pro-inflammatory or anti-

inflammatory effects, depending on the experimental protocols

used, such as the concentration of 25-HC or treatment time. For

instance, the high concentrations of 25-HC were used in the study

that discovered its pro-inflammatory effect, while relatively low

concentrations were used in the study that found its anti-

inflammatory effect (28, 70).
4 The impact of CH25H on the
occurrence and development of IBD

Although the pathogenesis of IBD is still unclear, it is mainly

associated with genetic susceptibility, intestinal microbiota,

environmental factors, and immunological dysregulation

characterized by abnormal infiltration of T cells, B cells,

macrophages, DCs, and neutrophils, which produce high levels of

proinflammatory cytokines such as TNF, IL-1b, IFN-g, and

cytokines of the IL-23/Th17 pathway (15). As an oxysterol

produced through oxidation by CH25H, 25-HC has various

effects on immune cell regulation, but its specific role in IBD has

not been fully ascertained.
4.1 The role of immune cells in IBD

4.1.1 Macrophages
Macrophages are among the most abundant types of leukocytes,

found in the intestines of all mammalian species. Macrophages play

a crucial role in maintaining local homeostasis and the balance of

commensal microbiota. Moreover, they are significant factors in the

development of IBD (79, 80). Resident macrophages in the lamina

propria of the intestine have the ability to capture and degrade
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bacteria in a non-inflammatory manner. This helps prevent

commensal bacteria from crossing the intestinal epithelial barrier.

Additionally, macrophages can maintain intestinal homeostasis

through the production of anti-inflammatory cytokines like IL-10

and TGF-b, debris scavenging, angiogenesis, and wound repair (79–
81). Intestinal macrophages are also capable of inducing T cells to

become anergic or differentiate into Tregs to promote immune

tolerance, and mediate Th1, Th2, and Th17 to help participate in

the adaptive immune response (80).

In colitis models, monocytes and immature macrophages can

migrate to intestinal mucosa through the CCL2 or MCP-1 mediated

recruitment and produce large quantities of inflammatory

mediators such as IL-1, IL-6, and TNFa, as well as inflammatory

chemokines like CCL2 and CCL3 to coordinate the recruitment of

other innate and adaptive immune cells, such as neutrophils, Th1,

and Th17 cells (82). In IL-10-/- mice with spontaneous chronic

colitis, macrophages differentiate into pro-inflammatory subsets

that produce large amounts of IL-12 and IL-23 in response to

bacterial stimulation, inducing Th1 cell polarization (81). Similar

findings have been observed in patients with IBD. The inflamed

mucosa of patients with IBD shows an increase in the number of

macrophages, and several phenotypic and functional characteristics

of these macrophages differ from those under physiological

conditions. For example, these macrophages display the

expression of T cell costimulatory molecules like CD40, CD80,

and CD86 (83), as well as pathogen-associated molecular pattern

(PAMP) receptors like TLR2, TLR4, CD89, TREM1, and CD14 (84,

85). The abnormal expression of CD14 in macrophages enhances

their pro-inflammatory activities induced by LPS, ultimately leading

to the secretion of the significant amounts of IL-23 and TNF-a,
which further promotes the release of IFN-g by lamina propria

mononuclear cells. IFN-g then drives macrophage differentiation

toward an IL-23-hyperproducing phenotype and forms a positive

feedback, thereby playing a pivotal role in the pathogenesis of IBD

(84, 86).

4.1.2 ILCs
ILCs are an important component of intestinal organs and

contribute to antibacterial defense, immune regulation,

maintenance of barrier function, and intestinal homeostasis (87).

There are three subtypes of ILCs: type 1 ILCs (including NK cells

and ILC1), type 2 ILCs (ILC2), and type 3 ILCs (including ILC3 and

lymphoid tissue-inducing cells (LTis)) (47). Unlike intestinal B, T,

and NK cells, the intestinal population of ILCs does not

continuously replenish from circulation (88). They are

maintained by self-renewal in physiological conditions and

continuously produce cytokines and other soluble factors that can

have a direct impact on the function of epithelial cells at steady

state, such as ILC1 producing IFNg, ILC2 producing IL-5 and IL-13,
and ILC3 producing IL-22 and IL-17 (47, 87). Type 1 ILCs are

predominantly located in upper gastrointestinal tract, type 2 ILCs

are distributed over the intestine in relatively small proportions, and

type 3 ILCs are mainly found in ileum and colon (89). Any

imbalance in ILC subtypes can result in the disruption of

intestinal homeostasis and lead to intestinal inflammation.
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In patients with CD, the number of IL-17/IL-22-producing type

3 ILCs is reduced in inflamed intestinal tissues, while there is an

accumulation of IFNg-producing type 1 ILCs. This could be

ascribed to a decrease in the expression of RORgt which is a

marker for type 3 ILCs, followed by the expression of T-bet,

NK1.1, and NKp46, resulting in the acquisition of type 1 ILC

phenotype (46). Type 1 ILCs produce a significant amount of IFN-g,
which induces the migration of neutrophils and activates

lymphocytes, macrophages, endothelial cells, and affects the tight

junction function, resulting in the damage to the epithelial barrier,

thereby exacerbating the induction and progression of

inflammation (46). RORgt type 3 ILCs also involve in the

pathogenesis of IBD. When stimulated by TNF-a, IL-23, and IL-

6, RORgt type 3 ILCs enter and exit crypts, which may initiate

inflammatory immune cascades that lead to intestinal inflammation

(46, 47). The increase of IFN-g–producing ILC1s and IL-17–

producing ILC3s, and the decrease of IL-22–producing ILC3s, are

associated with the level of inflammation in patients with IBD.

4.1.3 T cells and DCs
CD4+ Th cells play a crucial role in adaptive immune response.

Naive CD4+ T cells differentiate into various types of Th cells in

response to different cytokines. Under the stimulation of IL-12 or IL-

27, they differentiate into Th1 cells which primarily secrete IFN-g. In
contrast, under the stimulation of IL-4, they differentiate into Th2 cells

which produce a range of interleukins, including IL-4, IL-5, IL-13, and

IL-25. When exposed to both IL-4 and TGF-b, they differentiate into
Th9 cells, which secrete IL-9, IL-10, and IL-21. Conversely, with the

stimulation from IL-1, IL-6, IL-23, and TGF-b, they differentiate into

Th17 cells that secrete IL-17A, IL-17F, IL-21, and IL-22. Finally, with

the induction of IL-2 and TGF-b, they develop into Treg cells that

maintain immune tolerance and regulate the homeostasis, activation,

and function of lymphocytes (90, 91). Studies have shown that Th1

cells are primarily involved in the development of CD, while Th2 cells

are associated with UC (92, 93). Additionally, the pathogenesis of UC

involves the participation of Th9 cells (94), and both Th17 and Treg

cells contribute to the pathogenesis of UC and CD (95). In IBD, the

chronic inflammatory environment and the local hypoxic condition

result in the upregulation of hypoxia-inducible-factor-1-alpha (HIF-

1a). This upregulation can impair Th17 regulatory responses to AHR

ligation by increasing ABC transporter levels, thus promoting the pro-

inflammatory phenotype in T cells (96).

DCs are regarded as the most potent professional antigen-

presenting cells within human body. They possess the ability to

internalize, process, and present antigens to T cells while also

orchestrating innate and adaptive immune responses. The increased

expression of chemokines and adhesion molecules observed in the

intestinal mucosa of patients with IBD results in an accumulation of

DCs in inflammatory sites (97). In patients with CD, the failure to

control IL-12 secretion by the activated DCs will lead to undesirable

Th1 inflammatory responses (98). In mouse colitis, DCs within the

colonic lamina propria express higher levels of costimulatory molecules

(CD40, CD80, and CD86) and generate increased amounts of IL-12p40

and IL-23p19, which ultimately combine to form IL-23, thereby

promoting Th17 differentiation (99). Additionally, the intestinal
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tissues of patients with CD exhibit a decreased abundance of CD11c

DCs, resulting in an enhanced ability to generate Th1/Th2/Th17

responses (100).

4.1.4 Neutrophils
Neutrophils are the first line of defense in the innate immunity

of the intestinal mucosa. They are the most abundant immune cells

and can be quickly recruited to sites of infection or inflammation

(100). Kuhl et al. (101) discovered that blocking neutrophil

adhesion and migration or neutrophil depletion could exacerbate

TNBS/DNBS-induced colitis in mice. This indicates that

neutrophils are an important factor in mediating wound healing

in IBD. Further research (102, 103) has revealed that neutrophils

can maintain mucosal barrier function and immune response in the

gut by depleting local oxygen and stabilizing the transcription factor

HIF, or by altering nucleotide signaling to promote mucosal

inflammatory resolution and epithelial restitution.

Neutrophils participate in the development of IBD. Neutrophils

cause the damage to the epithelial barrier and inflammation by

producing high levels of ROS. They also release proteases,

proinflammatory cytokines, and mediators such as IL-8, TNF-a,
and leukotriene B4, which further damages the epithelial barrier

and recruit monocytes and additional neutrophils to the inflamed

tissue (100, 104). Neutrophil extracellular traps (NETs) are released

by neutrophils during the infection and inflammation as a

protective response to inhibit foreign pathogens. However, they

can also cause damage to the intestinal barrier and activate

proinflammatory functions of neutrophils through the

phosphorylation of Akt, ERK1/2, and p38 (104, 105). The level of

NETs increases in the inflamed intestinal mucosa, blood, and stool

of IBD patients, especially during the active stage of the disease

(104). NETs can activate macrophages to release cytokines such as

IL-1b, TNF-a, IL-6, induce the activation of platelets and intestinal

epithelial cells, promoting colitis and thrombosis. This ultimately

causes the damage to intestinal epithelial and vascular endothelial

cells (106). Studies have also shown that butyrate, a microbial

metabolite in the intestines, can improve intestinal inflammation

by inhibiting neutrophil migration and NETs formation, as well as

reducing pro-inflammatory mediator production (107).
4.2 CH25H impacting on the disease
phenotype of IBD

Macrophages are the main source of 25-HC (9, 11). Through

interactions with membrane receptors, nuclear receptors, and the

regulation of lipid metabolism and other pathways, 25-HC can

influence the differentiation and function of immune cells,

including macrophages, T cells, B cells, DCs, and neutrophils.

Additionally, 7a,25-HC can induce the migration of immune

cells, such as ILCs, DCs, and B cells, as well as regulating gut

immune homeostasis and inflammation. Therefore, CH25H is

believed to be involved in the pathogenesis of IBD.

Except for being generated in cells and tissues through

enzymatic or nonenzymatic reactions, oxysterols are also found in
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various foodstuffs, particularly in cholesterol-rich foods. The most

commonly represented oxysterols in cholesterol-rich foods are 7-

oxygenated sterols and 5,6-oxygenated sterols, while 25-HC is

present in smaller amounts, and both dietary and endogenous

oxysterols have potentially proapoptotic, pro-oxidant and

cytotoxic effects, leading to the loss of epithelial colonic cells and

the impairment of the intestinal barrier function (108–110).

Chalubinski et al. (111) noted that although 25-HC can cause

slight damage to the integrity of Caco2 cell monolayers, it does not

have a significant effect on cell viability or apoptosis. This suggests

that 25-HC is not the primary factor disrupting epithelial barrier

function. Guillemot et al. (112) discovered that in both the DSS or

TNBS-induced mouse colitis model and patients with IBD, there is

a disturbance in the enzymatic metabolism of oxysterols. CH25H

levels increased in mouse colon tissue, plasma, liver, and human

colon tissue, as did the 7a,25-HC. This indicates that the increase in

CH25H may serve as a form of internal homeostatic regulation to

alleviate inflammatory reaction. One of the main characteristics of

IBD is the destruction of the intestinal barrier. The damaged

intestinal barrier allows unrestricted entry of microbiota into both

lamina propria and bloodstream (113). A study conducted by Sheng

et al. (114) revealed that intestinal tight junction protein expression

is reduced in CH25H-/- mice, which leads to the disruption of the

intestinal epithelial barrier function and increases susceptibility to

and severity of DSS-induced colitis, while supplementing exogenous

25-HC can alleviate colitis in mice and improve the integrity of the

intestinal barrier. This suggests that CH25H may have a protective

role in colitis and is associated with intestinal epithelial regeneration

and tissue reconstruction. IBD is usually accompanied by dysbiosis,

and persistent dysbiosis can worsen inflammation. Conversely,

chronic inflammation contributes to dysbiosis by altering the

oxidative and metabolic environment of the intestine (115). The

administration of medications, such as anti-TNFa antibody

therapy, for the treatment of IBD has been found to impact the

composition of intestinal microbiota (116). While CH25H has been

shown to improve the intestinal inflammation and the integrity of

the intestinal barrier, its impact on the composition of intestinal

microbiota remains unknown.

The SIRT1-CH25H pathway is one of the mechanisms that

contribute to the metformin-induced alleviation of hepatic

inflammation (32), and the nuclear receptor SIRT1 has been

shown to play a role in the pathogenesis of IBD. Caruso et al.

(117) demonstrated that SIRT1 is downregulated in the inflamed

tissue of patients with IBD and colitis models by TNF-a and IL-21.

T cells and macrophages deficient in SIRT1 are hyperactivated and

produce significant amounts of inflammatory cytokines.

Conversely, the activation of SIRT1 can reduce the acetylation of

NF-kBp65 and subsequently decrease NF-kB activation, thereby

decreasing the levels of inflammatory cytokines such as IFN-g, IL-
17A, and IL-21. However, SIRT1 also has deleterious effects on IBD.

The Inhibition of SIRT1 may reduce the severity of colitis by

promoting the production of Foxp3+T-regulatory cells, as well as

paneth and goblet cells, which play crucial roles in maintaining

gastrointestinal homeostasis (118). Therefore, SIRT1 imbalances in
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the immune system can result in the development and progression

of IBD, and it is speculated that SIRT1 decreases the production of

inflammatory cytokines by macrophage and Th1/Th17 cells

through the activation of CH25H, and enhance the LXR/ABCA1

pathway to exert anti-inflammatory effects. Since SIRT1 serves as

the upstream regulator of CH25H, the role of SIRT1 activators and

inhibitors may influence the effects of CH25H on IBD relevant to

gastrointestinal immune homeostasis. SIRT1 is relevant to the

impact of CH25H on IBD through immune cells, the detection of

both SIRT1 and CH25H can assist in the early diagnosis and

treatment of the disease.

However, studies have shown that the overexpression of

CH25H in ILC-related colitis models can stimulate the pro-

inflammatory ILC3 activity and aggravate inflammatory reactions

(40, 41). Additionally, 25-HC, the product of CH25H can

contribute to the development of intestinal fibrosis, resulting in

complications such as intestinal stenosis (119). In other conditions,

such as obesity and diabetes, CH25H is upregulated in adipose

tissue while associating with insulin resistance and adipose tissue

inflammation. This is because 25-HC can induce inflammatory

gene expressions in macrophages and preadipocytes from patients

with diabetes (120). These results suggest that the role of CH25H

may be different or even opposite in different disease models,

possibly related to the pathogenesis and microenvironment of

the disease.
5 Conclusions and perspectives

CH25H and its downstream products have been found to have

various functions, such as immunomodulation and lipid

metabolism. The downstream product of CH25H exerts its

function by binding to multiple membrane receptors and nuclear

receptors, such as LXR, GPR183 and ROR. This helps regulate the

immune cell function in maintaining gastrointestinal homeostasis.

Additionally, 25-HC can regulate the activity of SREBP, thereby

inhibiting the biosynthesis of fatty acids and cholesterol and playing

a role in lipid metabolism regulation. 25-HC can also regulate

immune function via SREBP.

The immunological dysregulation caused by IBD is characterized

by epithelial damage, the expansion of inflammation and the

infiltration of various types of immune cells, including macrophages,

ILCs, T cells, DCs and neutrophils. 25-HC can influence the

differentiation and function of these immune cells, while 7a,25-HC
can induce their migration. These effects of CH25Hmetabolite may be

different or even opposite in different conditions. The dual role of

CH25H may depend on the pathogenesis and microenvironment of

IBD. This highlights the importance of maintaining CH25H balance in

the immune system for the treatment of IBD.

The pathogenesis of IBD remains unclear, and the high

expression of CH25H in patients with IBD makes it a potential

target for future diagnosis and treatment. While the regulation of

CH25H and its downstream products have been extensively

investigated, its role and function in the immune system and
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related diseases are not fully understood. Although it has been

confirmed that various immune cells play a role in the development

of IBD, research on discussing the relationship between CH25H

and IBD is still insufficient. Further investigation on the impact of

CH25H on IBD through immune cells is essential for the early

diagnosis and treatment of IBD.
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