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Single-cell gene expression analysis using sequencing (scRNA-seq) has gained

increased attention in the past decades for studying cellular transcriptional

programs and their heterogeneity in an unbiased manner, and novel protocols

allow the simultaneous measurement of gene expression, T-cell receptor

clonality and cell surface protein expression. In this article, we describe the

methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine

tissues, such as skin, spleen, and lymph nodes. We describe the processing of

cells and quality control parameters during library preparation, protocols for

multiplexing of samples, and strategies for sequencing. Moreover, we describe a

step-by-step bioinformatic analysis pipeline from sequencing data generated

using these protocols. This includes quality control, preprocessing of sequencing

data and demultiplexing of individual samples. We perform quantification of gene

expression and extraction of T-cell receptor alpha and beta chain sequences,

followed by quality control and doublet detection, and methods for

harmonization and integration of datasets. Next, we describe the identification

of highly variable genes and dimensionality reduction, clustering and

pseudotemporal ordering of data, and we demonstrate how to visualize the

results with interactive and reproducible dashboards. We will combine different

analytic R-based frameworks such as Bioconductor and Seurat, illustrating how

these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T

cells from murine tissues.
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Introduction

Single-cell sequencing-based technologies have significantly

changed our view on cellular architecture and heterogeneity of

samples (1–4). One particular example includes single-cell

sequencing-based gene expression profiling (scRNA-seq) of

individual cells (5, 6), which is based on the linear amplification

of RNA derived from individual cells, followed by complex

bioinformatic processing steps and identification of cell types in

an unbiased way (7–9). Despite differences in technology and

chemistry (benchmarked in (10)), single-cell sequencing

experiments generally require four main steps (11).

First, tissues or organs have to be processed and digested to

liberate target cells from the extracellular matrix in the tissue

network. This yields a single-cell suspension where our target

cells are present in varying frequencies, based on the tissue itself

and its state, often dependent on the experimental conditions under

investigation (Inflamed? Tumor-bearing? Virus-infected? Necrotic?

Hypoxic)?. These steps have to be optimized to yield viable, intact

cells without causing too much stress or hypoxic damage (12).

While experimental procedures are now established for various cell

and tissue types, no detailed workflow is available for tissue T cells,

covering not only the wet-lab steps but also providing

comprehensive guidance on the bioinformatic analyses for the

datasets generated. In previous work, we have developed

protocols for isolating T cells from a wide array of murine and

human tissues such as skin, visceral adipose tissue, colon, lungs,

liver, or different lymphoid tissues, and used them for downstream

sequencing-based analysis (13–16). In the methods paper presented

here, we will describe protocols to isolate target cells from murine

skin and secondary lymphoid tissues such as spleen and lymph

nodes (LN). To promote best data quality, we pre-enrich for viable,

high-quality target cells using fluorescence-activated cell sorting

(FACS) before performing single-cell barcoding. This allows the

removal of unwanted cells, dead cells, dying cells, and cellular debris

that might otherwise compromise quality. We will provide advice

on cell sorting and sample multiplexing using barcoded antibodies.

In the second critical step, highly pure target cells are processed

(“barcoded”) and genetic material is amplified. Single-cell isolation

and library preparation can be based on several different

technologies. This begins with limiting dilution technologies,

magnetic cell sorting, micromanipulation using microscope-

guided capillary pipettes or laser microdissection, sorting of single

cells into a 96- or 384-well plate using FACS, to microfluidic

systems that combine droplets and cells, and new technologies

and adaptations are developed rapidly (12, 17). Importantly, all

different technologies aim to capture a single cell in an isolated

reaction volume to add a unique barcode specific for this cell.

In a third step, a sequencing library is prepared. In our case, we

prepare not only one, but three libraries: a gene expression library

that contains sequencing reads allowing to identify and quantify

genes expressed on a cell-individual level (GEX library); a second

library that contains quantitative information about cell surface

protein expression and sample multiplexing (hashtag oligo)
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information (CSP library); and a library that contains the T-cell

receptor usage information as nucleotide sequence (VDJ library).

We will provide examples of all three libraries including PCR cycles,

concentration, and electrophoresis-based size profiles.

The last step of the wet-lab procedure is the sequencing of all

three libraries using high-throughput next-generation sequencing

technology. At the end of the run, FastQ data are demultiplexed and

copied from the sequencing instrument, and are now ready to

undergo bioinformatic processing. In this methods paper, we

provide an example dataset which we generated for this

publication, where we applied the above-mentioned protocols to

combine single-cell gene expression, TCR sequencing and cell

surface protein barcoding to characterize and track CD4+ T-cell

clones from murine tissues, and which can be downloaded by the

reader for reproducing our bioinformatics workflow. The datasets

include several thousand CD4+CD25+ Treg cells from murine

spleen, mesenteric LN (mLN), inguinal LN (iLN) as well as CD3+

immune cells from skin, for all of which GEX, CSP and VDJ

libraries have been generated and sequenced.

Using this dataset, we will describe a step-by-step bioinformatic

workflow to help repeat and reproduce the results achieved using

the methods described in this paper. First, we apply FastQC and

CellRangerMulti to enable a combined analysis of all individual

samples and determine overall sequencing quality and identify

individual cells. Here, we discuss critical quality-related

parameters that CellRanger delivers, and discuss typical results

obtained with CD4+ T cells from tissues. In a next step, we create

the count matrix from CellRangerMulti output. We describe the

pre-processing of scRNA-seq data using a variety of freely available

R packages to perform quality control (QC) and filtering,

dimensionality reduction, removal of doublets, evaluation of

batch effect correction, and generating the final filtered dataset for

analysis (following best practices outlined in (8) and (7)). We will

also provide guidance on clustering, marker gene detection, cell type

annotation, and interactive data exploration, accompanying this

manuscript with a notebook containing all code and output from

the analysis of our test dataset, which we refer to in the

corresponding paragraphs. All essential steps for this end-to-end

workflow are summarized in Figure 1.
Methods – experimental procedures

Isolation of T cells from murine spleen,
mLN and iLN

To isolate T cells from murine secondary lymphoid tissues such

as spleen or lymph nodes, a midline excision is performed to open

the skin and abdominal wall, and forceps are used to expose the

peritoneal cavity. The spleen is harvested immediately and stored at

4°C until use. To isolate mLNs, the cecum is located, the small

intestine is moved to the side and the chain of mLNs are exposed.

Using forceps, the tissue is harvested, placed in FACS buffer

(Table 1) and stored at 4°C. Inguinal lymph nodes are collected
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from both hemispheres beneath the skin, placed in FACS buffer and

stored at 4°C until use. To process the spleen, it is placed on a 100

µM filter unit and is mechanically dissociated using a plunger or

forceps. Following centrifugation (2 min, 1000g, 4°C), red blood

cells are lysed using a commercially available ACK lysis buffer (e.g.,

Thermo Fisher #A1049201). The cell suspension is filtered using a

70 µm strainer, resuspended in 500 µl FACS buffer, and cells are

counted. To process LNs, the individual nodes are placed on a 100

µM filter unit and are mechanically dissociated using a plunger or
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forceps. Following centrifugation (2 min, 1000g, 4°C), the

suspension is filtered using a 70 µm strainer, resuspended in 500

µl FACS buffer, and counted.

Afterwards, we add Fc blocking reagent (Miltenyi Biotec #130-

092-575) to prevent unspecific binding of antibodies and beads,

followed by specific labeling using 1 µg PE-conjugated anti-mouse

CD4 (Clone RM4-5, Biolegend #100512) or 1 µg PE-conjugated

anti-mouse CD25 (Clone PC61, Biolegend # 102008) antibodies in

500 µl and stain for 20 min at 4°C. After staining, cells are
TABLE 1 Formulation for FACS buffer.

Ingredient Manufacturer Final concentration

Phosphate-buffer saline 10X Gibco #10010023 or other 1X

FCS 100% Sigma #F7524 or other 2%

Deionized water NA Up to final volume
FIGURE 1

Graphical abstract. The left panel describes tissue processing and library prep: Tissues harvested from an individual mouse are enzymatically and
mechanically digested (1) and material is magnetically enriched for target cells (2) to make cell sorting (3) more efficient. After obtaining a pure target
population (3), cells (labelled with Biolegend TotalSeqC anti-mouse Hashtagging antibodies) and 10X beads are loaded on the 10X Chromium
controller (4) followed by scRNA-seq library preparation (5). The middle panel describes sequencing (1) quality control using CellRangerMulti and
FastQC (2). Using R and Bioconductor, data can be pre-processed. These steps include QC and filtering (3.1), the identification of doublets (3.2), and,
if necessary, batch effect correction (3.3) to yield the final, filtered dataset (4). The right panel describes data analysis, comprising the clustering (1),
marker gene detection (2) as well as TCR repertoire diversity analysis (3). Furthermore, cell type annotations (4) and trajectory analysis can be
performed (5). Moreover, an interactive data exploration by using iSEE can be done (6). Elements of this figure have been created with Biorender
using figures and plots generated in this manuscript.
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centrifuged (2 min, 1000g, 4°C), washed using 1000 µl of FACS

buffer, and resuspended in MACS buffer (Table 2). Next, target cells

are bound by anti-PE ultrapure microbeads (Miltenyi Biotec #130-

105-639) for 20 min at 4°C, followed again by two centrifugation

(2 min, 1000g, 4°C) and washing steps using 1000 µl of FACS buffer.

Finally, samples are re-suspended in 500 µl MACS buffer. A 70µl

filter unit is placed on an equilibrated MACS column (we

recommend working at 4°C to prevent cellular degradation) and

the sample is loaded. The column is washed twice with 5 ml

MACS buffer.

Afterwards, the sample is eluted in 500 µL FACS buffer and

stained for 30 min at 4°C using fluorescence-labelled antibodies as

well as TotalSeqC anti-mouse Hashtagging antibodies (Biolegend

#155861 (C1), #155863 (C2), #155865 (C3), #155865 (C4)). To

increase TotalSeqC antibody labeling, it is recommended to wash

cells 3-5 times with 500 µL FACS buffer after staining. For sorting,

cells can be resuspended in 200 µLMACS buffer. In order to prevent

aggregates during the co-staining of fluorescence-labeled antibodies

and Biolegend TotalSeqC antibodies, it’s recommended to

centrifuge the antibody mix at 14,000 x g for 10 min at 4°C.

Afterwards the supernatant should be transferred to a new tube

and maintained at 4°C. The antibody aggregates will stay at the

bottom of the original tube. For sorting, an example is shown in

Figure 2. We recommend a gating strategy where CD4+ or CD25+ T

cells are enriched to high purity using FACS, and dead cells,

unwanted cell types and doublets are excluded. The target cells

can be sorted into MACS buffer. A small part of the sorted

population (target cells) can then be re-analyzed before

downstream processing to determine post sort purity, viability,

and cell recovery/sort efficiency. If the post sort QC indicates that

cells are of good viability and purity (for troubleshooting see

Table 3), the sample can be subjected to single-cell barcoding, as

described later.
Isolation of T cells from murine skin tissue

To isolate T cells from skin tissue, hair must be removed from

the back of the animal with an electric shaver and depilatory cream.

The cream is applied for 2 minutes, followed by vigorous washing

using tap water to remove hair. It is important that excess hair is

completely removed to avoid complications during downstream

filtration steps. After cleaning, the skin is separated from the dorsal
Frontiers in Immunology 04
surface, cut into small pieces, and transferred to a GentleMACS

tube (Miltenyi Biotec #130-096-334) containing 10ml of skin

digestion buffer (Table 4). We recommend 10ml digestion buffer

for 0.5 g of skin tissue.

Then, the sample is digested using the GentleMACS

Dissociator (program: 37_C_Multi_H) or via orbital shaking in

a preheated waterbath (37°C). After 90 minutes of digestion or

completion of the GentleMACS program, the single-cell

suspension can be cut again, centrifuged (10 min, 400g, 4°C),

resuspended in 5000 µl FACS buffer and transferred to a 15 ml

tube through a 100 µm filter unit. Then, the sample is centrifuged

again (2 min, 1000g, 4°C), resuspended in 1000 µl FACS buffer

and filtered into a new 1.5 ml tube using a 70 µm filter unit. The

sample can now be stained for 30 min at 4°C using fluorescence-

labelled antibodies as well as Biolegend TotalSeqC anti-mouse

Hashtagging antibodies, as described before. For sorting, cells can

be resuspended in 200 µL MACS buffer. An example of the sorting

strategy of T cells from murine skin tissue is shown in Figure 2E

To increase efficiency, it is beneficial to first enrich for CD45+

immune cells (yield sort) by sorting target cells into MACS buffer,

followed by a second purity sorting (4-way purity sort) of target

cells (Table 5).
Single droplet barcoding of T cells for
combined scRNA/TCR-seq

Target cells from spleen (12,500 CD3+CD4+CD25+ Treg cells,

TotalSeqC1), mLN (10,000 CD3+CD4+CD25+ Treg cells,

TotalSeqC2), iLN (7,500 CD3+CD4+CD25+ Treg cells, TotalSeqC3)

and skin (10,000 CD3+ T cells, TotalSeqC4) have all been sorted into

a single 1.5 mL Eppendorf tube containing 350 mL MACS buffer, and

the sample collection tube was cooled to 4°C. It is important to

process the sample quickly after sorting to decrease the number of

dying/dead cells in the collection tube. Therefore, shortly after

sorting, cells are pelleted by centrifugation (5 min, 300 xg, 4°C).

Supernatant is removed and the sample is supplemented with master

mix and beads to a final volume of 70 mL, loaded on a 10X Chromium

Next GEM Chip K (10X Genomics #1000287) and processed on the

10X Chromium Controller (10X Genomics #120212), followed by

cDNA amplification using the Chromium Next GEM Single Cell 5’

Reagent Kit v2 (10X Genomics #1000263) and 5’ Feature Barcode Kit

(10X Genomics #1000256). Afterwards V(D)J amplification was done
TABLE 2 Formulation for MACS buffer.

Ingredient Manufacturer Final concentration

Phosphate-buffer saline 10X Gibco #10010023 or other 1X

Bovine Serum Albumin 100% Sigma #A4503 or other 0,5% (w/v)

Ethylenediaminetetraacetic acid ThermoFisher #15575020 1 mM

Deionized water NA Up to final volume
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from cDNA by using the Chromium Single Cell Mouse TCR

Amplification Kit (10X Genomics #1000254) and GEX, CSP and

VDJ library preparation according to the Library Construction

protocol (10X Genomics #1000190). In Figure 3A, we show the

elements of each library, including the sample indexes i5 and i7, read1

and read2 with their purpose and recommended sequencing length.

In Figure 3B, cycle numbers and typical library sizes are shown. Upon

completion of cDNA amplification and library preparation, the

fragment length composition is usually evaluated using

electrophoretic separation of the sample, for which we show

examples in Figures 3C–F.
Frontiers in Immunology 05
Methods – sequencing and QC
strategy for scRNA-seq libraries

Next-generation sequencing of GEX, VDJ
and CSP libraries
In Figure 3B, we listed the total number tagged and sorted cells

and the total number of cells identified after sequencing. The

recovery rates were 38.0% for spleen CD25+ Treg cells, 40.1% for

mLN CD25+ Treg cells, 41.0% for iLN CD25+ Treg cells, and 33.4%
B

C

D

E

A

FIGURE 2

Overview of sample preparation for scRNA-seq of CD4+ T cells from murine tissues. (A) Procedural overview. Organs are removed, followed by
tissue digestion and pre-enrichment for CD4+ T cells. These are then sorted, followed by single-cell barcoding using 10X Chromium controller.
(B, C) Flow cytometry plots illustrating the gating scheme to isolate T cells from lymphoid tissues such as spleen and mLN. (D) Post sort QC of
spleen, mLN, iLN CD25+ sorted into the same collection tube. (E) Flow cytometry plots illustrating the gating scheme to isolate T cells from murine
skin tissue. Figure elements created with Biorender.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1241283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nedwed et al. 10.3389/fimmu.2023.1241283
for skin CD4+ T cells, with a mean recovery rate of 38.13%.

Peripheral tissues that undergo enzymatic digestion, such as skin,

liver, lung, or colon tissue, have varying recovery rates based on cell

preparation steps, pre-enrichment, duration of processing, sort

efficiency and sort setup. This can sometimes lead to recovery

rates below 10% and requires optimization. Usually, all samples are

sequenced in “one batch”, and varying recovery rates can lead to

“under- or over-sequencing” of libraries. Therefore, we recommend

performing a pre-sequencing using only the gene expression (GEX)

library. This reduces the cost for sequencing, allows for the

identification and removal of low-quality and degraded samples,

and increases the overall comparability of the datasets due to

harmonized sequencing depth. Here, using a rough estimate of a

projected cell number recovery (in our case, we estimate about 40%

of sorted cells to be recovered later for bioinformatic analysis) helps

to estimate the total number of reads required to sequence the GEX

library to the desired depth. Now, for pre-sequencing, we only run

5%-10% of the estimated required reads to determine the

approximate cell number for each library. These values are then

used to sequence all libraries with a rather precise estimate of the

required numbers of reads per library. In our lab, we routinely

sequence 10X 5’ scRNA-seq libraries using a paired-end run with

26-10-10-90 sequencing strategy with a 150-cycle high-output

cartridge on a NextSeq 500/550 sequencing unit. In a typical run,

read 1 identifies the i5 index (cell barcode) with 10 nucleotides and

reads 26 nucleotides of 10X Barcode and UMI. On the reverse
Frontiers in Immunology 06
strand (read 2), primer P7 initiates the i7 read (sample index) with

10 nucleotides and reads 90 nucleotides of the cDNA (Figure 3A.

The remaining 90 reads of read 2 are important for calling the gene

(GEX library), the cell surface protein and/or hashtag oligo (e.g.

TotalseqC), which appears at a fixed position (10th base) in read 2

(CSP library) or the VDJ information for the TCR (VDJ library). For

the samples available as open access download alongside this paper,

we used a 300-cycle high-output cartridge with a paired-end run

and 26-10-10-149 sequencing strategy. In Figures 3C–F examples

for library profiles from full length DNA (c), GEX (d), VDJ (e) and

CSP (f) of a sample containing CD25+ cells from spleen, mLN and

iLN as well as CD3 skin T cells is shown. Since we used hashtag

oligos (TotalseqC1-4) and pooled the different organs into one

sample during sort, we only get one cDNA, GEX, VDJ and CSP

library for all 4 samples.
Investigating sequencing quality
using FastQC

To investigate whether we can estimate library quality, we ran

FastQC on all L001 files generated from the different libraries. A plot

labeled “per base sequence quality” shows the distribution of quality

scores at each position in the read across all reads (Figure 4A). It can

alert to whether there were any problems during sequencing. As the

read 2 contains the information for the gene expression, we focus on
TABLE 3 Troubleshooting and Recommendations.

Description Solution

All cells are dead Analyze buffer ingredients, optimize erythrocyte lysis procedure

Erythrocyte contamination Optimize ACK lysis procedure

Low purity of CD4+ or CD25+ T cells Use Fc blocking reagent, work at 4°C
TABLE 4 Formulation for skin digestion buffer.

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type II Sigma #C6885 4 mg/ml

Bovine Serum Albumin Sigma #A4503 20 mg/ml

DNAse I Roche #11284932001 20 µg/ml
TABLE 5 Troubleshooting and Recommendations.

Description Solution

Clogging caused by hair Additional filter steps after skin digestion get rid of hair and avoid clogging. Repeat hair removal if patches of hair remain.

Clogging during cell sorting For cell sorting, samples should be filtered again immediately before acquisition and cooled at 4°C to avoid clogging.

Poor cell recovery after sorting Use a two-step sorting protocol with a pre-sort (“yield”) and a high purity sort (sort strategy “4-way-purity”) mode.

Low expression of CD4+ on T cells Optimize processing time and amount of collagenase enzymes.
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this read in our analysis. Warnings related to “per base sequence

content” are common for RNA-seq data and can be safely ignored in

most cases. Also, warnings related to “per sequence GC content” has

already been observed in literature (18) and can be ignored according

to the manufacturer’s guidelines. The “sequence duplication level”
Frontiers in Immunology 07
and “overrepresented sequences” error can indicate a low complexity

library which could result from too many cycles of PCR amplification

or less cDNA concentration before preparing the library. In this data

set, we see a low contamination of a known primer sequence. If this

contaminating sequence would be very high, it might be useful to get
B

C D

E F

A

FIGURE 3

Overview of recovery and typical profiles for scRNA-seq libraries. (A) Overview of GEX, VDJ and CSP library and recommended sequencing length
(source: 10X Genomics). (B) Tabular overview of parameters in scRNA-seq experiments. The percentage of all events indicates the total frequency of
target cells (either CD4+ or CD25+ T cells) in all events from the sample. (C-F) Examples for library size profiles for samples with a good library
profile listed in (A) for either (C) full length cDNA, (D) GEX Library, (E) VDJ Library or (F) Cell Surface Protein (CSP) library. Electrophoretic separation
was performed on a Bioanalyzer.
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B

C

A

FIGURE 4

FastQC report of the GEX Library, VDJ Library and CSP Library. Statistics of FastQC run for the GEX library (A), VDJ library (B) and CSP library (C) on
for read 1 (26 bp), read 2 (149 bp), i5 (10 bp) and i7 (10 bp). Errors and Warnings listed here as reported in FastQC documentation. Produced by
FastQC (version 0.11.9).
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rid of it before downstream analysis. As shown in the schematic

overview (Figure 3A), the VDJ and CSP Library are very different

from the GEX Library because they contain VDJ information and

very few cell surface protein barcode sequences. FastQC is not

tailored for analysis of such low-complexity libraries, but we

included the results for reference (Figures 4B, C).
Methods – use of CellRanger to
identify cells and investigate
quality and quantity

In the previous sections, we described detailed protocols to

isolate CD4+ T cell populations from murine tissues such as spleen,

LN or skin. Next, we provided advice on cell sorting and sample

multiplexing using hashtag oligos (e.g. TotalSeqC), followed by

single droplet barcoding and library preparation steps using 5’

reagent kits. Sequencing of our three individual libraries (GEX,

CSP and VDJ) will generate FastQ files ready for analysis using

CellRanger, a software tool developed for single-cell sequencing-
FIGURE 5

Schematic Overview of the CellRangerMulti Pipeline for combining 5’ Single
The 5’ Chromium Next GEM Single Cell Immune Profiling cell hashing assay
individual samples (=hashtags). Afterwards, CellRangerMulti can be used to a
with Biorender.
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based datasets generated with chemistry from 10X Genomics. In the

following paragraphs, we will describe the use of CellRangerMulti to

extract individual samples and generate output files that allow a first

glimpse on data quality and quantity.
Use of CellRangerMulti to enable a
combined analysis of all individual samples

CellRangerMulti is a method for the combined processing

scRNA samples by the use of specific multiplexing antibodies and

officially supports the analysis of 3’ multiplexed data. The 3’ and 5’

assays capture different ends of the transcript in the final library,

and we used the 5’ chemistry to generate GEX, CSP and VDJ

libraries. Therefore, this type of analysis requires editing of the

CellRangerMulti pipeline to be compatible with our datasets. Our

pooled libraries contain four samples: splenic Treg cells

(TotalSeqC1), mLN Treg cells (TotalSeqC2), iLN Treg cells

(TotalSeqC3) and skin CD3+ T cells (TotalSeqC4). In the first

demultiplexing step, we use CellRangerMulti to assign cells to

individual samples, a workflow described in Figure 5. First, we
Cell Gene Expression Analysis with Cell Hashtag and VDJ T Cell Analysis.
workflow starts with a demultiplexing step to assign pooled cells to
nalyze individual samples and combine TCR with the GEX data. Created
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BOX 1 Terminal input to run CellRangerMulti and assign cells.

Info: In this manuscript, commands to be entered in the terminal are prepended by the “$” symbol.

# run multi pipeline (combine GEX Library with Cell Surface Library)

$ cellranger multi\

–id=ddmmyy_multi\

–csv=./configmulti.csv

# configmulti.csv

$ cat configmulti.csv

[gene-expression]

reference,/path_to/refdata-gex-mm10-2020-A
Cmo-set,/path_to/cmo-set.csv
force-cells,

check-library-compatibility,false

[libraries]

fastq_id,fastqs,feature_types

[samples]

sample_id,cmo_ids

spleen,HTO_C0301

mLN,HTO_C0302

iLN, HTO_C0303

skin,HTO_C0304

# cmo-set.csv

$ cat cmo-set.csv

id,name,read,pattern,sequence,feature_type

C1,HTO_C0301,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,ACCCACCAGTAAGAC,Antibody Capture

C2,HTO_C0302,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,GGTCGAGAGCATTCA,Antibody Capture

C3,HTO_C0303,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,CTTGCCGCATGTCAT,Antibody Capture

C4,HTO_C0304,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,AAAGCATTCTTCACG,Antibody Capture

# Command to change to the directory where the CellRanger executable file lives and put it in your $PATH:

$ export PATH=/path_to/cellranger-7.0.1:$PATH
$ export PATH=${PWD}:$PATH

# Command to put other tools bundled with CellRanger in your path:

$ source/path_to/cellranger-7.0.1/sourceme.bash

# Make a new directory

mkdir bamtofastq

# Run bamtofastq

# You will need the path to the individual sample_alignments.bam. In addition, 10X recommends setting the # -–reads-per-

fastq= argument higher than the total number of reads recorded.

bamtofastq –-reads-per-fastq=2200000000/path_to/sample_alignments.bam/path_to_outputfolder/bamtofastq/name_of_new_folder
# after bam to fastq, identify the FASTQ directory corresponding to GEX:

cd/path_to_outputfolder/bamtofastq/name_of_new_folder

ls –ltsh

# Use samtools to identify the GEX file

source/path_to/cellranger-7.0.1/sourceme.bash

samtools view -H/path_to sample_alignments.bam

# Look for the @CO library info in the bottom

# Run CellRangerMulti final analysis again for each sample (include VDJ Library)

cellranger multi\

–id=ddmmyy_multifinal_organ1\

(Continued)
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need to create a library comma-separated values (CSV) file which

declares the input FASTQ data for the libraries that make up a cell

multiplexing experiment (Box 1). Second, we need to create a cell

hashtag reference. It declares the molecule structure and unique cell

hashtag sequence of each hashtag (=TotalSeq) antibody present in

the experiment. Each line of the CSV declares one unique

cell hashtag.

The CellRangerMulti pipeline first extracts and corrects the cell

barcode and UMI from the CSP library using the same methods as

gene expression read processing. It then matches the cell hashtag

read against the list of features declared in the cell hashtag reference.

This is all described in specific sections of the config CSV file which

requires the column [gene expression], [libraries] and [samples].

The [gene expression] section specifies the path to the reference

transcriptome and the cell hashtag reference. The [libraries] section

shows the path to the GEX FASTQs (GEX library) and cell

multiplexing FASTQs (CSP library). The [sample] section

includes a list of all samples and the corresponding hashtag. After

creating these files, we run CellRangerMulti and assign cells to

samples. By doing so, we also create BAM files of the individual

samples in the pool. Those files are located in the individual

directories for each sample. Since CellRangerMulti requires

FASTQ files as the input, we convert the BAM files to individual

FASTQ files. This can be done with the bamtofastq software tool

which is bundled with CellRanger. The output of bamtofastq will

display two directories per sample. After using samtools, which is

also a part of the CellRanger bundle, we can distinguish the gene

expression FASTQ from the cell hashtag FASTQ. In a final step, the

T-cell receptor library can now be combined with the gene

expression data. To do so, we run the CellRangerMulti again for

every individual sample. We create a new final config CSV file for

every individual sample and include the [vdj] section which

describes the path to a VDJ reference. Each run produces output

files which can then be used for further analysis with R.
Frontiers in Immunology 11
Using metrics provided by CellRanger to
evaluate quality and quantity of cells

In addition to creating outputs files which can be used for

further analysis with R, CellRanger produces a web summary file in

the output folder of the specified analysis directory. It is a good

starting point for determining sample quality and quantity before

starting with the analysis using R (as described in the next

paragraphs in detail). Also, web summaries can be used to

determine sample complexity and sequencing need (e.g. how

many reads are still required per sample to have good coverage

and even sequencing depth distribution between all samples).

Therefore, CellRanger is a useful tool for investigating

important sample parameters on a first glimpse. In general, we

need to distinguish between an output from CellRangerCount and

CellRangerMulti. When performing single cell RNA experiments, it

can be useful to first run CellRangerCount. This pipeline aligns

sequencing reads from the FASTQ files to a reference

transcriptome. Then, different filtering steps, barcode counting,

and UMI counting allow to determine clusters and perform gene

expression analysis. To discriminate CellRanger count from

CellRangerMulti, outputs are shown in Figure 6A. The t-SNE plot

derived from CellRangerCount (Figure 6B) gives an overview of the

heterogeneity of the sample, which, in our case, contains cells from

the different lymphoid and peripheral organs (spleen, mLN, iLN,

skin). However, CellRangerCount cannot assign cells to the organ of

origin, since multiplexing info from the CSP library is not

processed. The cells in the t-SNE plot are colored by cluster and

show cell-associated barcodes. The clustering analysis is based on

grouping cells with similar gene expression profiles and allows a

first glimpse of data complexity and quality. In our case, with

CD25+ or CD4+ T cells from the different lymphoid and peripheral

organs (spleen, mLN, iLN, skin), CellRangerCount generates a t-

SNE with many different clusters, not too surprising because it
Continued

–csv=./configmultifinal.csv

# display the content of configmultifinal.csv

$ cat configmultifinal.csv

[gene-expression]

reference,/path_to/refdata-gex-mm10-2020-A
force-cells,5000

check-library-compatibility,false

[vdj]

reference,/path_to/refdata-cellranger-vdj-GRCm38-alts-ensembl-7.0.0

[libraries]

fastq_id,fastqs,feature_types

bamtofastq,/path_to_FASTQ/, Gene Expression

VDJ_FASTQ,/path_to_FASTQ/, VDJ
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counts all cells from the different organs (Figure 6B). In contrast to

CellRangerCount, CellRangerMulti can break down individual

samples (= organs) using the hashtag oligo information of the

CSP Library. The t-SNE after running CellRangerMulti shows less
Frontiers in Immunology 12
heterogeneity for the Treg cell populations in spleen, mLN and iLN,

as expected with a very defined cell type (Figure 6C). Within the

lymphoid organs, the clustering is more compressed because we

enriched and sorted for CD25+ Treg cells for this dataset. In
B

C

D

E

F

A

FIGURE 6

Interpretation of CellRangerCount and CellRangerMulti Output. Schematic overview of the experimental design (A) and CellRangerCount (B) and
CellRangerMulti (C) output. Metric summaries for the CellRangerCount (D) and CellRangerMulti (E) and Rank Barcode plots (F) for all tissues, spleen
and skin. Figure elements created with BioRender.
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contrast to this, the clustering of the skin sample looks more

heterogenous because it contains a larger subset of cells. If a

complete lack of cluster structure appears in a usually rather

heterogenous sample, this could indicate low sample quality or

loss of single-cell behavior due to massive overloading or

system failures.

In a table, we listed some of the web summary metrics which are

shown when running CellRangerCount (Figure 6D) and

CellRangerMulti (Figure 6E) on our sample dataset. CellRanger

estimates the number of cells which are defined as the number of

barcodes associated with at least one cell. As listed in Figure 3, using

the protocols described in this paper, we should recover around

40% of original cell input as cells that are identified using

CellRanger. However, a difference between the number of cells

when running CellRangerCount compared to CellRangerMulti

appears, which can be explained by the fact that we generally do

not achieve 100% binding of the hashtag antibodies (= TotalSeqC

barcodes) to the cells. Another important parameter displayed by

CellRanger is the median reads per cell, which accounts for the total

number of sequenced reads divided by the number of barcodes

associated with cell-containing partitions. This information is

helpful for planning a re-sequencing of the samples if not enough

reads have been acquired, so that the recommended minimum of

20.000 reads/cell can be achieved. Another metric, median genes

per cell, defines the median number of genes detected per cell-

associated barcode. It also depends on sequencing depth and the

total number of cells, and a low number of genes per cell can

indicate low sequencing depth, low library quality or low

transcriptional diversity of the cells. Another parameter linked to

sample quality is the fraction of reads mapped confidently to the

reference transcriptome. In our dataset, the lowest fraction of reads

mapped to the murine genome is observed for the skin sample

(79.46%), which, however, still is well above the lower threshold of

30% given by the manufacturer. Another quality-related parameter

is the fraction of valid barcodes matching a whitelist. A value lower

than 75%may indicate sequencing issues such as low quality of read

1. Finally, CellRanger computes sequencing saturation, which is an

indicator of library complexity and sequencing depth. Lower

sequencing saturation indicates that much of the library

complexity was not captured by sequencing and that re-

sequencing the sample could potentially increase gene

expression coverage.

The CellRanger output files also contain a barcode rank plot

where all barcodes detected during sequencing are plotted in

decreasing order of UMIs associated with the particular barcode

(Figure 6F). The shown barcode rank plot originates from the

CellRangerCount (all tissues) and CellRangerMulti (spleen, skin)

output. CellRanger uses the number of UMIs detected in each gel

bead in emulsion (GEM) to determine whether the GEM contains a

cell (declared as a cell) or not (declared as background). In a typical

sample, a steep drop-off can be found and indicates good separation

between the cell-associated barcodes and the barcodes associated

with an empty GEMs. As mentioned in manufacturer’s guidelines,

every barcode plank plot has a distinctive shape with steep drop-offs

indicated by blue arrows (Figure 6F). In a very heterogenous

sample, the plot can appear bimodal, but a clear separation
Frontiers in Immunology 13
between the cells and background should always be present. If the

separation is not good and the barcode rank plot shows a round

curved shape, this may indicate low sample quality or loss of single-

cell behavior due to technical failures.
Methods – data processing with R,
Bioconductor and Seurat

In the previous paragraph, we discussed the use of CellRanger to

produce output files which can then be used for further analysis

with R. Now, we describe the pre-processing of scRNA-seq data

using a variety of openly available R packages, which can be found

on CRAN (https://www.R-project.org/) and Bioconductor (8). The

pre-processing steps include quality control (QC) and filtering,

dimensionality reduction, removal of doublets, evaluation of batch

effect correction, which generates the final filtered dataset for

analysis. For data pre-processing and analysis, we provide a

rendered notebook file containing all code and output from the

analysis of our test dataset in the supplement, which we refer to in

the corresponding paragraphs (Supplementary Material or

downloadab l e f rom ht tps : / / g i thub . com/ imbe ima inz /

scRNAseq_scTCRseq_TissueTcells). In this manuscript, we will

mainly discuss the analysis of the data using packages available

on Bioconductor. However, the notebook will also provide the code

for a pipeline using the Seurat package (19) and discuss the features

of this pipeline.
Creating the count matrix from
CellRangerMulti output

scRNA-seq data analysis is performed on a count matrix,

containing the counts (i.e. number of UMI or reads) per gene in

each cell. scRNA-seq data is usually very sparse due to several

factors such as dropout events, low mRNA abundance in the cells,

and a combination of biological and technical variation (20, 21). In

our workflow, the count matrix is constructed from the feature-

barcode matrix information generated by CellRangerMulti. For

scRNA-seq data, CellRanger provides an unfiltered feature-

barcode matrix and a filtered feature-barcode matrix. The

unfiltered feature-barcode matrix contains every barcode from a

fixed list of known barcodes that have at least one count. These can

contain background and cell-associated barcodes. The filtered

feature-barcode matrix, however, only includes detected cell-

associated barcodes. In our experience, unfiltered data contain a

lot of cellular debris and background noise. However, if desired by

the user, there are also R packages like DropletUtils (22) which

provide methods to process the unfiltered count matrix to remove

the unwanted noise. In our workflow, we will present the approach

working on the filtered data and refer users to the DropletUtils

documentation on how to work with unfiltered data. We use the

Read10X() function from the Seurat package (19) to read in the

filtered feature-barcode matrix information (Box 2, Table 6). This

function returns a sparse matrix which stores the count information
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with genes as rows and samples as columns. We further process the

resulting count matrix using the SingleCellExperiment() constructor

from the SingleCellExperiment package (8). We repeat this process

for all samples in the experiment. In addition to the counts, we store

the tissue of origin for each sample as metadata in the respective

SingleCellExperiment object. This information will be essential for

some of the presented downstream analyses steps, especially for

compelling and informative data visualizations. See section “1

Create SingleCellExperiment” in the notebook for the respective

code of this analysis.
Frontiers in Immunology 14
Gene level annotation

In a processing step before data analysis, we perform a gene-

level annotation based on the input data (Box 3, Table 7). This gene-

level annotation is used to facilitate the downstream applied

analysis steps. During the annotation, the gene identifiers of the

input data are mapped to their respective gene name using the

AnnotationHub package (23). Gene names are usually more widely

used and discernible and hence facilitate many of the downstream

analysis steps, such as marker gene detection and cluster marker
BOX 2 R code for creating SingleCellExperiment objects.

# Function to read in the data

# provide all the filepaths to the count data as a list

# as well as a list of the respective tissues

readDataset <- function(filepath_list, tissue) {

sceRNA <- list()

# iterate over each sample of the input data

for (i in 1:length(filepath_list)) {

# read the count data

counts <- Read10X(filepath_list[[i]])

# generate a SingleCellExperiment object

sce = SingleCellExperiment(assays = list(counts = counts))

# Add the tissue type information as meta data

sce$tissue <- rep(tissue[[i]], ncol(sce))

sceRNA <- c(sceRNA, sce)

}

# return the list of SingleCellExperiment objects

return(sceRNA)

}

# input data is stored in a folder called data

filepaths <- c(“./data/iLN”,

“./data/mLN”,

“./data/skin”,

“./data/spleen”)

sceRNA <-

readDataset(filepaths, tissue = c(“iLN”, “mLN”, “skin”, “spleen”))

# set the names of the objects in the list so that we can easily identify and

# access the different tissues

names(sceRNA) <- c(“iLN”, “mLN”, “skin”, “spleen”)

# Now have a look at the data

sceRNA
TABLE 6 Troubleshooting and Recommendations.

Description Solution

Directory provided does not
exist

It seems like the directory stated does not exist or is not found. Check if the directory location is spelled correctly and directory
hierarchy matches the current working location.

filtered feature-barcode
matrix folder does not
contain features.tsv file

In the used version of CellRanger (v. 7.1) the features.tsv files is called genes.tsv. Please use this file as features file. Please note that you
have to rename the file to features.tsv as the Read10X()expects this filename.

… file not found
The Read10X() function is rather stringent concerning filenames (at least as of v. 4.3.0) and expects the files to be named matrix.mtx,
barcode.tsv and features.tsv. If the files have any other name (e.g. a sample prefix), the function will not find the files. Please rename the
files following the mentioned naming convention.
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identification. Besides the annotation of gene names, we also

determine which genes of the input data map to the

mitochondrial portion of the genome as this is later used for

filtering and quality control. See section “2 Gene level annotation”

in the notebook for the respective code of this step.
Extracting T cells from the data using
linked TCR information

Before we apply quality control procedures to our data, we

would like to filter our dataset for T cells with productive TCR chain

information. For this, we have to use the information of the T-cell

receptor (TCR) stored in the VDJ library. Only cells with TCR

information will be kept in our data. In order to filter our data set

for T cells, we add the information on the TCR chains and the

clonotype of each cell to our SingleCellExperiment objects (Box 4).

In our specific workflow, we also must transform the clonotypes as

we have processed each sample individually using CellRanger. In

order to work with shared clonotypes between tissues, we first apply

a transformation step to assign identical TCR chains the same
Frontiers in Immunology 15
clonotype id (Box 5). Afterwards, we save the harmonized TCR

chain and clonotype information as meta data in our

SingleCellExperiment objects. We also provide a list of the

transformed TCR chain and clonotype information with the data

of this manuscript for follow-up. If the information of the TCR is

not available, but an analysis of solely T cells is desired, users can

follow this presented workflow up until the cell type annotation

step. After this step, the data can be filtered for cells which were

annotated as T cells and the workflow can be repeated from the

beginning. For more information, please see section “3 Extracting T

cells using T chain receptor information” in the notebook.
Per sample quality control and filtering of
low-quality cells

A well-defined filtering strategy to select for high-quality cells is

highly recommended before analysis. Different quality parameters

and metrics can be used to filter out cells of low quality (24). In this

workflow, we mainly use a combination of three quality parameters:

the library size, the number of features and the percentage of
BOX 3 R code for gene level annotation.

sce <- sceRNA$iLN

# set up the annotation hub

ah <- AnnotationHub()

# extract the indentifiers and names for mouse data

query(ah, c(“musculus”, “Ensembl”, “EnsDb”))

ens.mm.v102 <- ah[[“AH89211”]]

genes(ens.mm.v102)[, 2]

# search for the mitochondrial genes

is.mito <- grepl(“^mt-”, rownames(sce))

chr.loc <- mapIds(

ens.mm.v102,

keys = rownames(sce),

keytype = “GENENAME”,

column = “SEQNAME”

)

is.mito <- which(chr.loc == “MT”)

is.mito
TABLE 7 Troubleshooting and Recommendations.

Description Solution

No genes map to the
mitochondrial genome

It could be that the pattern used to search for mitochondrial genes does not match the pattern of mitochondrial genes in the data. Please
check that these two patterns are identical (usually follow the lines of ‘MT’, ‘mt’, ‘Mt’ or ‘chrM’).

No gene names found/all
gene names are ‘NA’

It could be that the species you are using for the annotation does not match your data. Please check that the correct species is specified.
Another reason could be that the wrong id type was specified. Please check that the id type matches your gene ids.
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BOX 4 R code for extraction of T Cells using TCRs.

addTCRMetaData <- function(sce, tcr_filepath, clonotypes_filepath) {

# Read in the information about the TCRs

tcr <- read.csv(tcr_filepath)

clonotypes <- read.csv(clonotypes_filepath)

# Remove duplicated barcodes as the information is identical.

tcr <- tcr[!duplicated(tcr$barcode)],

# Subset to only barcode and raw clonotype column as we only use those.

tcr <- tcr[, c(“barcode”, “raw_clonotype_id”)]

# Rename column to match to the clonotypes file

names(tcr)[names(tcr) == “raw_clonotype_id”] <- “clonotype_id”

# Extract the TCR chain information from the clonotypes file through matching

# of the clonotypes.

tcr <- merge(tcr, clonotypes[, c(“clonotype_id”, “cdr3s_aa”)])

# Reorder columns, set barcodes as rownames (to match the scRNA data)

# and remove the barcode column as it is no longer necessary.

tcr <- tcr[, c(2, 1, 3)]

rownames(tcr) <- tcr[, 1]

tcr[, 1] <- NULL

# Add the TCR chain and clonotype information as metadata to the data

clonotype <-

tcr$clonotype_id[match(colnames(sce), rownames(tcr))]

sce$clonotype <- clonotype

cdr3s_aa <- tcr$cdr3s_aa[match(colnames(sce), rownames(tcr))]

sce$cdr3s_aa <- cdr3s_aa

# filter out those cells without a clonotype because they are not of interest

# for us

sce <- sce[,!is.na(sce$clonotype)]

return(sce)

}

# Add the information of the TCR chains and the clonotypes to our data

sceRNA$iLN <- addTCRMetaData(

sce = sceRNA$iLN,

tcr_filepath = “./data/iLN/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/iLN/clonotypes.csv”

)

sceRNA$iLN

sceRNA$mLN <- addTCRMetaData(

sce = sceRNA$mLN,

tcr_filepath = “./data/mLN/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/mLN/clonotypes.csv”

)

sceRNA$mLN

sceRNA$skin <- addTCRMetaData(

sce = sceRNA$skin,

tcr_filepath = “./data/skin/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/skin/clonotypes.csv”

)

sceRNA$skin

sceRNA$spleen <- addTCRMetaData(

sce = sceRNA$spleen,

tcr_filepath = “./data/spleen/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/spleen/clonotypes.csv”

)

sceRNA$spleen
nt
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mitochondrial DNA. All of these can be used to determine the

quality of the cells. The library size is the sum of all counts in one

cell, which should be sufficiently high for each cell. A small/low

library size indicates possible cell death of the respective cell.

However, an unusually large library size could also indicate
Frontiers in Immunology 17
doublets (i.e., multiple cells sequenced in one droplet). The

number of detected features (in this case, genes) in each

individual cell should as well be sufficiently high to ensure

adequate sequencing of the cells. The last quality parameter, the

percentage of mitochondrial DNA captures the percentage of reads
BOX 5 R code for harmonization of clonotypes.

# set up clonotype data frame

df_clonotypes <- data.frame(

clonotype = sceRNA$iLN$clonotype,

clonotype_n = as.numeric(gsub(“clonotype”, ““, sceRNA$iLN$clonotype)),

cdr3s_aa = sceRNA$iLN$cdr3s_aa

)

df_clonotypes <- df_clonotypes[order(df_clonotypes$clonotype_n)],

filter <-!duplicated(df_clonotypes$clonotype)

df_clonotypes <- df_clonotypes[filter],

# function to transform the clonotypes

addClonotypesToDataFrame <- function(clonotypes_df, sce) {

n_last_clonotype <- max(clonotypes_df$clonotype_n)

for (i in 1:ncol(sce)) {

chain <- sce$cdr3s_aa[[i]]

# if there is no clonotype with the same chain, the clonotype is new

# and should be added to the data frame

if (!any(which(clonotypes_df$cdr3s_aa == chain))) {

n_last_clonotype <- n_last_clonotype + 1

clonotypes_df <- rbind(clonotypes_df,

c(

paste(“clonotype”, n_last_clonotype, sep = ““),

as.numeric(n_last_clonotype),

chain

))

}

}

# transform the clonotype number back to a numeric

clonotypes_df$clonotype_n <-

as.numeric(clonotypes_df$clonotype_n)

return(clonotypes_df)

}

df_clonotypes <-

addClonotypesToDataFrame(df_clonotypes, sceRNA$mLN)

df_clonotypes <-

addClonotypesToDataFrame(df_clonotypes, sceRNA$skin)

df_clonotypes <-

addClonotypesToDataFrame(df_clonotypes, sceRNA$spleen)

# function to change clonotypes for all samples

changeClonotypes <- function(sce, clonotypes_df) {

for (i in 1:ncol(sce)) {

chain <- sce$cdr3s_aa[[i]]

new_clonotype <-

clonotypes_df[which(clonotypes_df$cdr3s_aa == chain)[1]],

sce$clonotype[[i]] <- new_clonotype$clonotype

}

return(sce)

}

sceRNA$mLN <- changeClonotypes(sceRNA$mLN, df_clonotypes)

sceRNA$skin <- changeClonotypes(sceRNA$skin, df_clonotypes)

sceRNA$spleen <- changeClonotypes(sceRNA$spleen, df_clonotypes)
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in a cell that map to the mitochondrial genome. An unusually large

number of reads assigned to mitochondrial genes in a cell indicates

cell death and hence low-quality cells. For the quality control, it is

advisable to operate on a per-sample level instead of applying the

quality control metrics for all samples combined. The individual

samples might have different levels of quality due to being

sequenced or processed individually or different biological

prerequisites such as tissue specific properties. Hence, only one

run of quality control metrics combined on all samples could falsely
Frontiers in Immunology 18
indicate cells of low quality because of the above-mentioned

characteristics. Furthermore, also samples that were generated in

different batches should be handled separately. The sequencing

properties of the individual batches can greatly differ and hence as

well influence the resulting quality metrics (25). In our workflow,

we use the addPerCellQC() function of the scater package (24),

which follows a data-driven approach for determining adequate

threshold values (Box 6). This function first determines the median

across all cells for the above-mentioned quality control parameters.
BOX 6 R code for quality control and filtering (identical for all samples, showcase iLN).

iLN <- sceRNA$iLN

rowData(iLN)$gene_name <- rownames(iLN)

rowData(iLN)$location <- chr.loc

iLN <- addPerFeatureQC(iLN)

rowData(iLN)

iLN <- addPerCellQC(iLN, subsets = list(Mito = is.mito))

qcstats <- perCellQCMetrics(iLN, subsets = list(Mito = is.mito))

filtered <-

quickPerCellQC(qcstats, percent_subsets = “subsets_Mito_percent”)

filtered

colSums(as.data.frame(filtered))

table(filtered$low_n_features, filtered$high_subsets_Mito_percent)

# Flag the low quality cells as discard

iLN$discard <- filtered$discard

# Plot the percent of mitochondrial RNA for each cell, color the cells by

# whether they should be discarded or not

plotColData(iLN, y = “subsets_Mito_percent”, colour_by = “discard”)

# Plot the library size

plotColData(iLN, y = “sum”, colour_by = “discard”)

# Plot the number of detected genes

plotColData(iLN, y = “detected”, colour_by = “discard”)

# Plot mitochondrial RNA percentage against library size

plotColData(iLN,

x = “sum”,

y = “subsets_Mito_percent”,

colour_by = “discard”) +

labs(x = “Sum of all counts (library size)”,

y = “Percent mitochondrial genes”)

# Plot library size against number of detected genes

plotColData(iLN,

x = “detected”,

y = “sum”,

colour_by = “discard”) +

labs(x = “Number of detected genes”,

y = “Sum of all counts (library size)”)

# Assign the data back to our object

sceRNA$iLN <- iLN

# As this report is only for exploratory analyses we do not filter out any cells

# Otherwise you could do

# sceRNA$iLN <- iLN[,!discard]
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B C

A

FIGURE 7

Summary of quality control metrics. (A) Plots of the library size, number of detected genes and mitochondrial content for each of the samples.
(B) Scatter plots of the library size and mitochondrial content and (C) library size and number of detected genes. Each dot in the plot represents a
cell, blue cells are of high quality, orange cells are of low quality and should be filtered out.
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Following, for each cell the median absolute deviation (MAD) is

calculated. If a quality control parameter of a cell deviates more than

3 MAD from the median in an undesired direction, the cell is

considered an outlier. All cells which are considered outliers in at

least one of the quality parameters are marked as low-quality cells.

After identification of low-quality cells, these cells can either be

removed from the data or just marked as such. The removal ensures

that these cells do not interfere downstream analyses and

interpretation. However, it could also be the case that interesting

subpopulations of cells are marked as low-quality cells because they

exhibit one of the quality control parameters. One of such examples

would be hepatocytes. These cells are highly metabolically active

and hence will have a high number of mitochondrial genes. Hence,

it is important to check for accidental removal of high-quality cells

by plotting the different quality metrics against each other and

evaluating how well the different quality metrics correlate for each

sample. In Figure 7, the different quality metrics of our samples are

displayed. Figure 7A shows the different quality control metrics of

each sample, first the library size, then the number of detected genes

and lastly the number of mitochondrial genes in the data. In

Figure 7B, we plotted for the skin sample the library size against

the percentage of reads mapping to mitochondrial genes, while

Figure 7C plots the number of genes detected against the library

size. Such a multivariate approach by considering different metrics

simultaneously, can lead to better decision on which cells to retain

for further steps and which cells to remove. However, as the

workflow presented in this paper is only of explorative nature, we
Frontiers in Immunology 20
will not exclude cells of low quality here. For more information,

please see section “4 Per sample Quality Control and filtering of

low-quality cells” in the notebook.
Quality metrics and their correlation with
TCR calling

In our analysis, we were also interested in whether the quality

control metrics differed between cells with TCR and cells without TCR.

Especially the mitochondrial content could be of interest. Hence, we

compared the cells with TCR with those without (Table 8). These data

illustrate that around 70% ormore cells of the samples have TCRs. One

exception being the cells of the skin, where only around 30% of cells

have associated TCRs. We can also see that the percentage of cells with

a high mitochondrial content (i.e low quality cells) is nearly doubled in

the cells without TCR compared to the cells with TCR. This shows that

filtering of cells with associated TCR also seems to work as a way of

quality control and filtering of low-quality cells. Since the VDJ library is

generated from cDNA, results here also depend on the quality of the

cDNA library.
Doublet detection

In a single cell experiment, doublets are artificial observations in

which two cells are sequenced as one cell. Those are especially
TABLE 8 Different summary statistics on the input data such as number of cells per sample, number of cells with and without TCR and percentage of
cells with high mitochondrial content in cells with and without TCR.

Organ
Identified

cells

Cells with
associated

TCR
% cells with high mitochondrial

content
Cells without

TCR

% cells with high
mitochondrial

content

spleen 4,756 3,412 3.66 1,344 6.18

mLN 4,010 3,208 3.11 802 5.11

iLN 3,075 2,509 3.5 566 6.71

skin 3,339 989 7.89 2,350 16.47
BOX 7 R code for doublet detection (identical for all samples, showcase iLN).

iLN <- sceRNA$iLN

# Doublet detection

iLN <- scDblFinder(iLN)

# Print a statistics table

table(iLN$scDblFinder.class)

# Assign the object back to save the information

sceRNA$iLN <- iLN

# Or you can assign the object back without the cells marked as doublets

# sceRNA$iLN <- iLN[, iLN$scDblFinder.class == “singlet”]
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common in droplet-based scRNA-seq protocols and usually arise

from errors in cell sorting or capturing (26, 27). Doublets usually do

not represent meaningful biological states and can influence the

analysis of the data. For example, a mixture of two cells which were

sequenced as one could be characterized as a transitionary state
Frontiers in Immunology 21
between two cell types or an intermediate population. The general

approach for doublet detection in scRNA-seq data is the use of

expression profiles of the cells. Based on their expression profile,

doublets are computationally inferred from the data. In our

workflow, we use the scDblFinder() function from the
B

C D

A

FIGURE 8

Harmonization of the data. (A) UMAP representation of the data before and after batch-correction using harmony colored by the tissue of the
sample. (B) UMAP representation of the data before and after batch-correction using harmony colored by the clustering results. (C) UMAP
representation of the integrated dataset with the publicly available data before and after batch-correction using harmony colored by the tissue of
the sample. (D) UMAP representation of the integrated dataset with the publicly available data before and after batch-correction using harmony
colored by the clustering results.
BOX 8 R code per-sample Normalization.

sceRNA <- lapply(sceRNA, logNormCounts)
BOX 9 R code feature selection.

all.dec <- lapply(sceRNA, modelGeneVar)

all.hvgs <- lapply(all.dec, getTopHVGs, prop = 0.1)
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Fro
BOX 10 R code uncorrected integration.

# normalize counts across the samples

rescaled <- multiBatchNorm(sceRNA)

# extract the individual samples

iLN <- rescaled$iLN

mLN <- rescaled$mLN

skin <- rescaled$skin

spleen <- rescaled$spleen

# combine the selected features

combined.dec <- combineVar(all.dec)

chosen.hvgs <- combined.dec$bio > 0

sum(chosen.hvgs)

# Synchronizing the metadata for cbind()ing.

rowData(iLN) <-

rowData(iLN)[, c(“gene_name”, “location”)]

rowData(mLN) <-

rowData(mLN)[, c(“gene_name”, “location”)]

rowData(skin) <-

rowData(skin)[, c(“gene_name”, “location”)]

rowData(spleen) <-

rowData(spleen)[, c(“gene_name”, “location”)]

# merge individual objects into one final object

sce_merged <- cbind(

iLN,

mLN,

skin,

spleen

)

nt
BOX 11 R code batch correction using harmony.

# Read in the data as seurat object as shown in “1 Create SingleCellExperiment”

seurat <- NormalizeData(seurat)

seurat <- FindVariableFeatures(seurat)

seurat <- ScaleData(seurat)

seurat <- RunPCA(seurat)

DimPlot(seurat, reduction = “pca”)

seurat <- RunHarmony(seurat, group.by.vars = “tissue”, plot_convergence = FALSE)

seurat <- RunUMAP(seurat,

reduction = ‘harmony’,

dims = 1:20)

seurat <- FindNeighbors(seurat,

reduction = “harmony”,

dims = 1:20)

seurat <- FindClusters(seurat, resolution = 0.5)

DimPlot(seurat, reduction = “umap”)

DimPlot(seurat, reduction = “umap”, group.by = “tissue”,

cols = c(“springgreen4”, “darkmagenta”, “tomato4”, “darkblue”))
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corresponding package (28) (Box 7). This function simulates

expression profiles of possible doublets by randomly combining

two cells of the data together before assigning each cell a doublet

score based on its likelihood to be a double. Further details on the

method and computation can be found in the scDblFinder

documentation. Once doublets have been identified in the data,

users can decide to either flag these cells or remove them completely

from the data. In this context, it can be helpful to overlay the

doublet classification over downstream computed clustering results

to evaluate if the considered doublets are forming a distinguished

cluster or display any relevant pattern. During the exploration of the

data, we recommend to simply flag doublet cells but advocate for

removal of the cells once the processed dataset is created. In

Figure 9C, we can see that the identified doublets in our data to

not follow a specific pattern. Overall, the number of detected

doublets was also very low in our samples, less than 5% of all

cells (see Figure 9B). For the doublet detection step, we refer readers

to the provided notebook section “5 Doublet detection in the

individual samples”.
Per-sample normalization

In scRNA-seq data, often differences in the sequencing coverage

between libraries arise (29). The cause for these variations is

typically technical variation in cDNA capture or PCR

amplification efficiency. Since this variability does not depict true

biological signal in the data, it can distort the interpretation of

expression profiles. In order to prevent the influence of the technical

variation on data analysis, the data is normalized (30, 31).

Usually, normalization is applied to the different batches of

the data at hand. The data presented in this paper does not
Frontiers in Immunology 23
consist of different batches but only of different tissues. However,

treating the different tissues as individual batches and

normalization across tissues at this point would be detrimental

to downstream analysis steps. Hence, we decided to postpone the

across tissue normalization to a later point of the workflow.

Nevertheless, there are intra-sample normalization methods

which should be applied at this point in the analysis. One of

these normalizations is a log-scaling of the expression values, as

implemented in the logNormCounts function of the scran package

(32) (Box 8). This is beneficial for downstream analysis steps such

as dimensionality reduction and clustering, as the expression

values become more comparable without having too extreme

values. For the normalization of the counts see section “6 Per-

Sample Normalization”.
Feature selection

In an exploratory scRNA-seq analysis, characterization of

heterogeneity across individual cells is often one of the major goals.

In order to quantify the differences in gene expression between cells, a

subset of genes is selected such that this set contains useful information

about the biological variation, while removing random noise and

technical differences. This process of feature selection majorly

impacts the performance of downstream analyses and methods. A

commonly used approach of feature selection is the selection of the

most variable genes across the cells (32). The approach is based on the

assumption that the biological variation of the data will manifest as an

increased variation in the affected genes, hence overshadowing

technical noise and irrelevant biological variation (8). In our

workflow, we use the modelGeneVar() function of the scran package
BOX 12 R code PCA.

set.seed(42)

sce_merged <- runPCA(sce_merged,

subset_row = chosen.hvgs,

BSPARAM = BiocSingular::RandomParam())

# Plot scree plot of the variance explained by each PC

percent.var <- attr(reducedDim(sce_merged), “percentVar”)

plot(percent.var,

log = “y”,

xlab = “PC”,

ylab = “Variance explained (%)”)

# calculate UMAP and tSNE representation of the data

set.seed(42)

sce_merged <- runTSNE(sce_merged, dimred = “PCA”)

set.seed(42)

sce_merged <- runUMAP(sce_merged, dimred = “PCA”)
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(32) for the computation of the variation in the genes (Box 9). We then

use the getTopHVGs() function of the same package to extract the top

10% of highly variable genes (HVG) for each sample. These HVGs are

then used as features for downstream steps. For the feature selection for

each sample, see section “7 Feature Selection”.
B

C D

A

FIGURE 9

Dimensionality reduction and clustering results. (A) Scree plot of the varianc
(B) Summary table of detected doublets in each of the tissues. (C) UMAP rep
representation of the data colored by the different tissue types in the input d
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Data integration and merging of samples

So far, we worked on each of our tissue samples individually as

the presented steps yield more meaningful results if applied in a

sample-specific manner. However, methods such as dimensionality
e explained by each of the calculated principal components (PC).
resentation of the data colored by doublet status of each cell. (D) UMAP
ata.
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FIGURE 10

Clustering results and marker gene detection. (A) UMAP colored by the clusters found in the data. (B) Summary table of cluster composition.
(C) UMAP representation of the data colored by the expression of different marker genes. (D) Violin plots showing the expression of different marker
genes in the individual clusters.
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reduction, clustering, marker gene detection and cell type

annotation should be applied on the data set as a whole. This is

why we will merge the individual SingleCellExperiment objects into

one single object. For this, there are generally two approaches

available: merging the samples without batch correction and

merging after applying batch correction (33, 34). Usually, scRNA-

seq data sets do not only contain different samples and tissues but

also different batches. As previously discussed in this manuscript,

there are technical differences between samples of different batches
Frontiers in Immunology 26
which can influence the results. We would like to filter out these

technical differences to focus on biological variation between

samples. In our workflow, we will present both approaches,

batch-corrected and -uncorrected. In the uncorrected approach,

we first apply the across sample normalization using the

multiBatchNorm() function of the batchelor package (33).

Afterwards, the metadata of the individual samples is

synchron ized be fo re merg ing the ob jec t s in to one

SingleCellExperiment object (Box 10). In the batch-corrected
BOX 13 R code clustering.

# Calculate the clusters

snn.gr <- buildSNNGraph(sce_merged,

k = 25,

use.dimred = “PCA”)

clusters <- igraph::cluster_walktrap(snn.gr)$membership

# See which tissue can be found in which cluster

tab <- table(Cluster = clusters, Batch = sce_merged$tissue)

tab

# Set the cluster as colLabels of the SingleCellExperiment

colLabels(sce_merged) <- factor(clusters)

plotTSNE(sce_merged, colour_by = “label”)

plotUMAP(sce_merged, colour_by = “label”)

# color tSNE by tissue

tsne <- plotTSNE(sce_merged, colour_by = “tissue”)

# set custom colors, because with the original chosen colors of the method,

# the individual tissues are hard to distinguish.

tsne <- tsne + scale_fill_manual(

values = c(

skin = “tomato4”,

spleen = “darkblue”,

iLN = “springgreen4”,

mLN = “darkmagenta”

),

aesthetics = “colour”

)

# plot the tSNE

tsne

# color UMAP by tissue

umap <- plotUMAP(sce_merged, colour_by = “tissue”)

# set custom colors, because with the original chosen colors of the method,

# the individual tissues are hard to distinguish.

umap <- umap + scale_fill_manual(

values = c(

skin = “tomato4”,

spleen = “darkblue”,

iLN = “springgreen4”,

mLN = “darkmagenta”

),

aesthetics = “colour”

)

# plot the UMAP

Umap

# plot tSNE and UMAP colored by doublet identification of cells

plotTSNE(sce_merged, colour_by = “scDblFinder.class”)

plotUMAP(sce_merged, colour_by = “scDblFinder.class”)
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approach, we use the RunHarmony function of the harmony

package (https://CRAN.R-project.org/package=harmony), after

transforming our SingleCellExperiment object to a Seurat object

(Box 11). Here, the data is already merged at read-in and processed

as a whole, following the usual Seurat workflow (19). When

inspecting the data further after merging, we realized that the

batch correction was too stringent on our data and overcorrected

for reasonable and important biological characteristics of the skin

sample (Figures 8A, B). Hence, we will use the uncorrected, merged

SingleCellExperiment. The code for uncorrected as well as batch-

corrected merging of the data is shown in section “8 Data

integration and merging of samples”. To further showcase the

effect of batch correction, we tried to integrate our data with a

publicly available dataset presented in (15). From this dataset, we

used the skin, spleen and LN sample to match the data presented in

this paper. After downloading and reading the data as presented

earlier in this paper, we tried to integrate and harmonize the two

datasets using the harmony package. Figures 8C, D show the results

of the integrated dataset. The code for these steps can be found in
Frontiers in Immunology 27
the notebook in section “8.3 Integration with publicly

available data”.
Dimensionality reduction using principal
component analysis

In scRNA-seq analyses dimensionality reduction is used to

achieve different objectives in the workflow. First, it greatly

reduces the runtime of the following steps as calculations only

need to be computed for a small number of dimensions compared

to the large number of genes in the input data. Secondly, the

procedure can reduce noise in the data by using average of genes

rather than individual gene expression values. Lastly, it can also

improve plotting of the data as 2/3-dimensional plots are usually

easier to visualize and interpret as higher dimensional

visualizations. A common approach for dimensionality reduction

in scRNA-seq is Principal Component Analysis (PCA) (Box 12). As

the first couple of principal components (PC) capture the largest
BOX 14 R code marker gene detection.

# score the marker genes between the individual pairs of clusters

markerGenes <- scoreMarkers(sce_merged, colLabels(sce_merged))

# extract marker genes for cluster 1, 2 and 9

markerGenes_cluster1 <- as.data.frame(markerGenes[[1]])

markerGenes_cluster2 <- as.data.frame(markerGenes[[2]])

markerGenes_cluster9 <- as.data.frame(markerGenes[[9]])

# generate a data table of the top 20 marker for each of the selected clusters

DT::datatable(head(markerGenes_cluster1[order(markerGenes_cluster1$mean.logFC.detected, decreasing = TRUE)], n =

20))

DT::datatable(head(markerGenes_cluster2[order(markerGenes_cluster2$mean.logFC.detected, decreasing = TRUE)], n =

20))

DT::datatable(head(markerGenes_cluster9[order(markerGenes_cluster9$mean.logFC.detected, decreasing = TRUE)], n =

20))

# plot the expression of the top 6 marker genes for each cluster in every of

# the clusters

plotExpression(

sce_merged,

features = head(rownames(markerGenes_cluster1)),

x = “label”,

colour_by = “label”

)

plotExpression(

sce_merged,

features = head(rownames(markerGenes_cluster2)),

x = “label”,

colour_by = “label”

)

plotExpression(

sce_merged,

features = head(rownames(markerGenes_cluster9)),

x = “label”,

colour_by = “label”

)
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amount of variance in the data, it can be assumed that these PC

represent a considerable amount of biological variation of the data

at hand. This way, the biological signal can be concentrated in a

smaller number of PCs which can help with interpretation and

visualization of the high-dimensional scRNA-seq data. In our
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analysis we use the runPCA() function from the BiocSingular

package (8), https://doi.org/10.18129/B9.bioc.BiocSingular). The

function calculates the principal components for the given data.

In the shown code, we calculate the PCs based on the HVGs we

determined previously, ensuring a reduced computation time while
B
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FIGURE 11

TCR diversity in tissue CD4+ T Cells of an individual animal. (A) Table of number of cells with different combinations of TCR chains in the individual
tissues. (B) Visualization of the TCR diversity in the individual tissues. (C) Table of number of cells with different combinations of TCR chains in the
individual clusters. (D) Pie charts visualizing the clonality of TCR in the clusters. TCR chains found only once per cluster were grouped and colored in
green, while the remaining portion of the pie chart visualizes TCR chains with multiple occurrences.
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at the same time reducing the high-dimensional noise. A critical

choice in the context of PCA is the choice of the number of top PCs

used for downstream analyses. A helpful visualization to decide on

this number is shown in Figure 9A. The figure plots the PCs against

the percentage of variance each PC explains/captures. We see that

there is a notable drop in the amount of variance explained by the

PCs after the 25th PC. Hence, we decided to use the first 25 PCs for

downstream analyses as these capture most of the variance of our

data at hand. For the PCA analysis see section “9 Dimensionality

reduction using Principal Component Analysis” . Once

dimensionality reduction is applied, we can also calculate a t-SNE

or UMAP representation of our data (35, 36). Both visualization

techniques are suitable for high-dimensional datasets such as

scRNA-seq data. The t-stochastic neighborhood embedding (t-

SNE) aims to find a low-dimensionality representation of the data

that preserves the distances between points from the high-

dimensionality space. Uniform manifold approximation and

projection (UMAP, (36)) is another non-linear visualization

technique for high-dimensionality data, similar to t-SNE. It

should be mentioned that both methods are non-deterministic,

meaning that they yield slightly different results each time the

function is run on the data. We can prevent this by using the R

function set.seed() using the same seed each time. In Figures 9C, D

and Figures 10A–C we show the UMAP representation of our data

colored by different properties of the data. We also calculated the t-

SNE representations of our data colored by the same properties, the
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results are shown in the notebook accompanying this manuscript.

For the plotting of the UMAP and t-SNE see Box 13.
Clustering

Clustering is adopted for scRNA-seq data to summarize the

high-dimensional, complex data by dividing the cells into individual

groups based on gene expression profiles. This greatly eases

interpretation and exploration of the data, as the cells are then

represented as discrete groups rather than the complex, high-

dimensional space that is the origin of the data. In its nature,

clustering is an explorative step of the analysis, possibly run in

different iterations. In our workflow, we use the buildSNNGraph()

function of the scran package (32) followed by the cluster_walktrap

() function of the igraph package (Box 13). This function

implements a graph-based clustering approach. Other approaches

are for example Louvain clustering (37), vector quantization like k-

means or hierarchical clustering (8). Once clusters have been

calculated, they can be visualized as UMAP or t-SNE. In

Figure 10A, we color the UMAP by the detected clusters.

Together with Figure 9B, this shows that the skin cells form

individual clusters which are clearly separated from the rest of the

data. The remaining tissue types intermingle in their clusters with

the separation being driven by factors other than tissue type.

Figure 10B also highlights in a table that the skin forms exclusive
BOX 15 R code TCR repertoire analysis.

chains_frequency <- table(sce_merged$cdr3s_aa)

chains_duplicated <- chains_frequency > 1

is_duplicated_chains <- sapply(sce_merged$cdr3s_aa, function(x) chains_duplicated[[x]])

which_chain <- sapply(sce_merged$cdr3s_aa, function(x) if(chains_duplicated[[x]]){

x

}else{NA})

sce_merged$duplicated_chains <- is_duplicated_chains

sce_merged$which_duplicated_chain <- which_chain

clonotype_frequency <- table(sce_merged$clonotype)

clonotype_duplicated <- clonotype_frequency > 1

is_duplicated_clonotype <- sapply(sce_merged$clonotype, function(x) clonotype_duplicated[[x]])

which_clonotype <- sapply(sce_merged$clonotype, function(x) if(clonotype_duplicated[[x]]){

x

}else{NA})

sce_merged$duplicated_clonotype <- is_duplicated_clonotype

sce_merged$which_duplicated_clonotype <- which_clonotype

plotUMAP(sce_merged, color_by = “duplicated_clonotype”, order_by = “duplicated_clonotype”)
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FIGURE 12

UMAP plotted by shared clonotypes. (A) UMAP representation of the data plotted by whether a clonotype is shared between cells of different tissues.
The overlaying numbers represent the clusters of the cells shown in Figure 9A. (B) UMAP representation of the data colored by TCR chains shared
with cells in cluster 9. (C) UMAP representation of the data colored by TCR chains shared with cells in cluster 1. (D) Barplot of the number of shared
clonotypes of cluster 1 (upper) and 9 (lower) with the other remaining clusters. .
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clusters with only incidental, individual cells being part of tissue-

mixed clusters. For more details on clustering, see section “10

Clustering” in the notebook.
Marker gene detection

After clustering the data in the previous workflow step, the

interpretation of the data can be further facilitated by characterizing

marker genes (38). Marker genes are genes that drive the separation

between the individual clusters, and the identification of such genes

helps identifying possible functions and biological meaning of the

individual clusters. The general strategy to determine marker genes of

individual clusters is a pairwise comparison of all the clusters to

calculate scores which quantify the differences in gene expression. In

our analysis we use the scoreMarkers() function from the scran package

(32) for this analysis step (Box 14). The function compares each of the

clusters in pairs. Pairwise comparisons provide the advantage of

providing more information about the markers which is beneficial to

the interpretation. Also, in contrast to the approach of comparing one

cluster against the average of all remaining cells, pairwise comparisons

are more robust against population composition and uneven

subpopulation sizes. The scoreMarkers() function calculates different

effect size summaries to quantify the difference in gene expression

between the clusters. The one we use in our workflow, visualized in

Figure 10D, is the log fold-change, where we use the genes with the

highest log fold-change between clusters as our marker genes for each

cluster. There are also other metrics available in the function. For users

interested in those, we refer to the documentation of the scoreMarkers()

function. For the marker gene detection, see section “11 Marker

gene det
TCR repertoire diversity

TCR V(D)J sequencing coupled with single-cell RNA

sequencing enables profiling of paired TCRa and TCRb chains at
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single-cell resolution with coupled global gene expression in the

same cell (39, 40). This analysis makes it possible to characterize T-

cell clonal expansion in steady state and in disease, as well as

tracking shared T-cell clonotypes between different tissues. In our

analysis, we wanted to use this information to evaluate if there are

shared TCR chains between different tissues as well as different

clusters. We also wanted to evaluate for each tissue and cluster

which chains were only found once compared to chains found

multiple times.

In Figure 11, we displayed several different statistics of the TCR

chains in our data. Figure 11A shows a summary table of the

occurrences of different combinations of TCR chains in the different

tissues. We can see that most cells in our data have at least one

TCRb chain, followed by cells with at least one TCRa chain and

cells with one TCRa and one TCRb. Figure 11B visualizes the

clonality of the TCR chains in the individual tissues. Here, we can

see that most chains of the lymphoid organs only occur once, while

some chains can be found multiple times. The highest TCR diversity

can be found in the skin. Figure 11C shows a similar summary table

as part Figure 11A, this time separated into the individual clusters

calculated for our data set. Here, we can observe similar patterns as

for the distribution of TCRs in the individual tissues. Lastly,

Figure 11D shows pie charts of the clonality of the TCR in the

individual clusters, in which we grouped all the TCR which

occurred only once in the clusters. These are shown in green,

while the remaining proportion of each pie chart is composed of

TCR which have multiple occurrences in a cluster. Here, we can see

that nearly each cluster has TCR chains which can be found more

than once except for cluster 7. In a second step, we also wanted to

analyze if there are TCR chains which were shared by cells of

different tissues (Box 15). In Figure 12A, we plotted the UMAP

representation of our data colored by whether TCR chains are

shared by cells of different tissue origin. We can see that there are a

lot of TCR chains shared between different tissues. In Figures 12B,

C, we colored the UMAP by the occurrence of TCR chains found in

cells of either cluster 9 or cluster 1 (Box 16). In Figure 12B, we can
BOX 16 R code Clonotypes shared between clusters (identical for both, showcase cluster 1).

clonotype_cluster1 <- sce_merged[, colLabels(sce_merged) == “1”]$clonotype

clono_cluster1_other_clusters <- sce_merged$clonotype %in% clonotype_cluster1

sce_merged$clonotype_cluster1_shared <- clono_cluster1_other_clusters

# overlay shared clonotypes on the UMAP

plotUMAP(sce_merged, color_by = “clonotype_cluster1_shared”, order_by = “clonotype_cluster1_shared”)

# plot shared clonotypes as barplot

data <- as.data.frame(table(sce_merged$clonotype_cluster1_shared, colLabels(sce_merged)))

data <- data[data$Var1 == TRUE],

data <- data[!data$Var2 == 1, c(2:3)]

colnames(data) <- c(“Cluster”, “Frequency”)

ggplot(data, aes(x = Cluster, y = Frequency, fill = Cluster, label = Frequency)) +

geom_bar(stat = “identity”) +

geom_text(size = 5, position = position_stack(vjust = 0.5)) +

theme_bw()
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see that there are a lot of TCR chains shared between cluster 9 and 1

which are both composed of exclusively skin cells. However, there

are also TCR shared with cells in cluster 5 and 2. Figure 12C shows

that TCR chains of cluster 1 are also shared with cells in cluster 2, 5

and 8. Figure 12D shows the shared clonotypes of Cluster 1 and 9

between the other clusters. For the marker gene detection, see

section “12 TCR repertoire diversity” in the notebook.
Cell type annotation

Cell type annotation is arguably one of the most critical yet

challenging step of a scRNA-seq analysis (41–43), as the concept
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of a cell type itself and the distinction of different cell types is a

highly discussed topic (44, 45) Transcriptomic profiles of single

cells still make it possible to assign cell types to the individual cells

of a scRNA-seq data set (46). Usually, this is done using an

appropriate reference data set with each cell being assigned a cell

type based on the most similar cell in the reference data. In our

workflow, we will present the methods of SingleR for cell type

annotation (47) (Box 17). Technically, any published and carefully

labeled bulk or single-cell RNA-seq data set can be used as

reference data set. However, the quality of the resulting assigned

cell types heavily depends on the compatibility of the data at hand

and the reference data. Also, the reference data should ideally

contain a variety of cells which comprises all the cell types
BOX 17 R code cell type annotation using a reference data set.

ref_annot_immgen <- ImmGenData()

# Calculate cell type annotations

celltype_immgen_main <- SingleR(test = sce_merged,

ref = ref_annot_immgen,

labels = ref_annot_immgen$label.main,

BPPARAM = BiocParallel::MulticoreParam(6))

celltype_immgen_fine <- SingleR(test = sce_merged,

ref = ref_annot_immgen,

labels = ref_annot_immgen$label.fine,

BPPARAM = BiocParallel::MulticoreParam(6))

# summarize cell type annotation results

table(celltype_immgen_main$labels)

table(celltype_immgen_fine$labels)

# save results as meta data in the SingleCellExperiment object

sce_merged$celltype_immgen_main <- celltype_immgen_main$labels

sce_merged$celltype_immgen_fine <- celltype_immgen_fine$labels

# plot UMAP and tSNE representation colored by the assigned cell types from the

# main labels

plotTSNE(sce_merged,

colour_by = “celltype_immgen_main”,

text_by = “celltype_immgen_main”)

plotUMAP(sce_merged,

colour_by = “celltype_immgen_main”,

text_by = “celltype_immgen_main”)

# plot UMAP and tSNE representation colored by the assigned cell types from the

# fine labels

plotTSNE(sce_merged,

colour_by = “celltype_immgen_fine”,

text_by = “celltype_immgen_fine”)

plotUMAP(sce_merged,

colour_by = “celltype_immgen_fine”,

text_by = “celltype_immgen_fine”)

# plot a heatmap of the degree of matching of the individual cells to the

# available cell type labels in the reference data

plotScoreHeatmap(celltype_immgen_main)

# plot a heatmap of cluster to cell types, showing which cell type can found in

# the individual clusters

tab <- table(Assigned = celltype_immgen_main$pruned.labels,

Cluster = colLabels(sce_merged))

# Adding a pseudo-count of 10 to avoid strong color jumps with just 1 cell.

pheatmap(log2(tab + 10),

color = colorRampPalette(c(“white”, “darkblue”))(101))
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FIGURE 13

Cell type annotation results. (A) UMAP colored by assigned cell types for each cell. (B) Trajectory analysis of the data plotted on the UMAP
(C) Heatmap of cell type distribution across clusters. (D) Heatmap of matching similarity of each cell to the different cell types in the reference.
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expected in the scRNA-seq data at hand. A large variety of suitable

reference data sets can be found in the R package celldex (47). In

our workflow, we use an unpublished, in-house reference data set

consisting of different T-cell subpopulations for cell type

annotation and the visualizations shown in Figure 13. However,

we also present in the HTML report how to use reference data sets
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from the celldex package (Box 17). After a suitable reference data

set has been selected, the cell types can simply be annotated by

calling the SingleR() function with the input data and the reference

data as shown in our workflow. The results can be plotted in a

heatmap as scores of the different labels to cells. An example can

be seen in Figure 13C. Ideally, each cell should have one label with
BOX 18 R code cell type annotation using custom markers.

# set up a list of known marker genes for certain cell types, e.g. Treg cells

treg <- c(“Foxp3”, “Il2”)

# p Treg cells

p_treg <- c(“Rorc”, “Gata3”)

# t Treg cellst_treg <- c(“Ikzf2”)

# Tissue Treg

tissue_treg <- c(“Batf”, “Klrg1”, “Areg”, “Ccr8”, “Il10”)

# Th1 cells

th1 <- c(“Tbx21”, “Ifng”)

# Naive T-cells

naive <- c(“Ccr7”, “Sell”, “Irf4”)

# repeat these two steps for all markers of interest

plotExpression(sce_merged, features = “Foxp3”,

x = “label”, colour_by = “label”)

plotUMAP(sce_merged, color_by = “Foxp3”, order_by = “Foxp3”)
BOX 19 R code trajectory analysis.

by.cluster <- aggregateAcrossCells(sce_merged,

ids = colLabels(sce_merged))

centroids <- reducedDim(by.cluster, “PCA”)

# Set clusters = NULL as we have already aggregated above.

mst <- createClusterMST(centroids, clusters = NULL)

mst

line.data <- reportEdges(by.cluster,

mst = mst,

clusters = NULL,

use.dimred = “UMAP”)

plotUMAP(sce_merged, colour_by = “label”) +

geom_line(data = line.data,

mapping = aes(x = dim1,

y = dim2,

group = edge))

map.tscan <- mapCellsToEdges(sce_merged,

mst = mst,

use.dimred = “PCA”)

tscan.pseudo <- orderCells(map.tscan, mst)

head(tscan.pseudo)

common.pseudo <- averagePseudotime(tscan.pseudo)

plotUMAP(sce_merged, colour_by = I(common.pseudo),

text_by = “label”, text_colour = “red”) +

geom_line(data = line.data, mapping = aes(x = dim1, y = dim2, group = edge))
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a high score compared to all other labels. Figure 13D we plot the

composition of the individual clusters with the available cell types.

We see that most clusters mainly consist of one to two cell types,

with all clusters including Tregs. In Figure 13 we plot the same

results as an overlay over the UMAP representation of our data.

Here as well we can see a nice distribution and clustering of the

individual cell types, with all clusters having Treg cells. As

mentioned above, another approach to cell type annotation is

the use of marker genes (Box 18). In our workflow, we also did cell

type annotation based on known marker genes for specific T cell

subpopulations. In Figure 10C some of the markers are showcased

and we can see the expression of individual selected marker genes

in the UMAP representation of the data. Figure 10C shows violin

expression plots of the marker genes in the individual samples.

Combined with automated reference-based methods, this can

support the interpretation and identification of cell types of the

data at hand. For the cell type annotation see also section “12 Cell

type annotation using reference data and custom markers” in

the notebook.
Frontiers in Immunology 35
Trajectory analysis

A large variety of biological processes can be represented as a

continuum of biological changes in the cellular state. This is especially

true of cell type differentiation which can for example be observed in

different T-cell subpopulations. In our high dimensional scRNA-seq

data, we want to characterize this process of differentiation by finding a

trajectory. Associated with a trajectory is the pseudotime, which is the

position of each cell along the trajectory and could for example

represent the state of differentiation of a cell along a continuous

process. Pseudotime helps us answer questions about the global

population structure of our data. In our workflow, we use a cluster-

based approach for identifying the trajectory in the data (Box 19). The

TSCAN (48) algorithm implemented in the corresponding package first

computes cluster centroids of the determined clusters before forming a

minimum spanning tree (MST). Figure 12B shows the results of our

trajectory analysis. The pseudotime ranges from dark to light colors,

meaning cells with a dark blue color have an early pseudotime than

yellow-colored cells. In the case of the presented data, a trajectory
FIGURE 14

Quality control panels of our iSEE instance. The column data plot 1 on the left plots the library size of each cell in decreasing order. The reduced
dimension plot 1 on the right shows the t-SNE presentation of our data colored by the log-normalized library size of each cell. Dark cells have a
small library size, while yellow cells have a large library size.
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analysis might not yield too many additional insights on the data

because of the overall composition of the data. However, in projects

and datasets where continuous processes are under investigation, a

trajectory analysis might yield additional insight of the data. For the

trajectory analysis, see section “13 Trajectory Analysis” in the notebook.
Methods – interactive data
exploration using iSEE

For most data analysis workflows, one of the most crucial and

time-consuming steps is the data exploration, usually accompanied

by a lot of different data visualizations (49). This is also the case for

scRNA-seq where the data usually is not only complex, but also

large in size. Reiterating data exploration and visualizations steps

can be beneficial to the data analysis and can help to compact and

facilitate data interpretation. An excellent tool for interactive and

iterative data exploration and visualization for scRNA-seq data is

iSEE (50). iSEE provides a flexible framework which is compatible

with a lot of different data types and can be dynamically adapted to

the respective data set at hand. Each instance of iSEE can be

customized to the individual data set by selecting the most

suitable visualization and exploration techniques in form of
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different panels provided by iSEE (Figures 14–16). As an input to

iSEE, users have to provide a SummarizedExperiment object

(SingleCellExperiment being a derivative class, with features

tailored to single cell assays). This format is commonly returned

by most packages in the Bioconductor ecosystem. In our workflow,

the data is also already saved as a SingleCellExperiment object from

the beginning, so the data presented here can easily and directly be

explored with iSEE. In our workflow, we will present different

panels of iSEE to demonstrate the possibilities of the application.

For this, we present a customized panel layout that can be achieved

using the code shown in “14 Interactive data exploration using

iSEE”. The first two panels we add to our iSEE instance are quality

control-related and plot the library size as well as a t-SNE of the log-

normalized library size (Figure 14). The plots help to identify

clusters of low-quality cells and can also be used to detect quality

control or normalization errors.

Next, we add panels to visualize the marker genes of individual

clusters (Figure 15). The panels consist of a summarization table,

an expression plot of individual marker genes in the clusters as

well as an UMAP of the expression of selected marker genes. All

three panels are interactive and connected, so that users can

evaluate different marker genes. Lastly, we present summaries

on the counts of individual genes in the panels shown in Figure 16.

The panels summarize the expression of the genes in the data as a
FIGURE 15

Marker gene panels of our iSEE instance. The row data Table 1 contains a table of the different marker genes of the individual clusters. The feature
assay plot 1 shows a violin plot of the expression of the selected marker gene of the row data Table 1. Lastly, the reduced dimensions plot 2 shows
the UMAP representation of our data colored by the expression of the selected marker in the row data Table 1.
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table as well as an expression heatmap and can help explore

different genes of interest in the data. As shown here, iSEE

provides several different summary statistics and visualizations

for the data. Besides the showcased panels here, there is a variety

of other different panels available. This can greatly benefit the data

analysis by being an interactive and reproducible way for data

exploration and visualization.
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