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Background: This review analyzed the magnitude of the COVID-19

pandemic globally and in India and the measures to counter its effect using

natural and innate immune booster molecules. The study focuses on two

phases: the first focuses on the magnitude, and the second on the effect of

antioxidants (natural compounds) on SARS-CoV-2.

Methods: Themagnitude of the prevalence, mortality, and comorbidities was

acquired from the World Health Organization (WHO) report, media, a report

from the Ministry of Health and Family Welfare (MoHFW), newspapers, and

the National Centre of Disease Control (NCDC). Research articles from

PubMed as well as other sites/journals and databases were accessed to

gather literature on the effect of antioxidants.

Results: In the elderly and any chronic diseases, the declined level of

antioxidant molecules enhanced the reactive oxygen species, which in turn

deprived the immune system.

Conclusion: Innate antioxidant proteins like sirtuin and sestrin play a vital role

in enhancing immunity. Herbal products and holistic approaches can also be

alternative solutions for everyday life to boost the immune system by

improving the redox balance in COVID-19 attack. This review analyzed the

counteractive effect of alternative therapy to boost the immune system

against the magnitude of the COVID-19 pandemic.
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Introduction

The wave of coronavirus has created panic, phobias, and

traumatic stress disorder. The immune defense system of the

human body is not strong enough to fight against it. Coronavirus

is an enveloped virus with a positive single-stranded RNA (ssRNA)

genome and nucleocapsid. It is the largest RNA virus with a range of

26–32 kilobases. The spike glycoproteins are present on the viral

envelope that binds to certain receptors of the host cells. They are

more critical in terms of involvement of infection by the virus.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

affects the upper respiratory tract and enters the host cells via

angiotensin-converting enzyme-2 (ACE-2), through their spike (S)

glycoprotein, recognized by the TLR7 present on the endosomes.

There are two domains of the S protein: S1 and S2. The S1 domain is

a receptor-binding domain, and S2 releases the genetic materials

into cells by catalyzing the membrane fusion. It enters the airway

epithelium, inhibits the host innate interferon (IFN) immune

response, and starts replication due to activation of the nuclear

factor kappa B (NF-kb) transcription pathway (1), thereby

initiating the activation of inflammation and secreting massive

inflammatory cytokines. This enhanced the accumulation of

reactive oxygen species (ROS) and suppressed nuclear factor-like-

2 (NRF2), which arbitrates the host antioxidant immune system. It

has been reported that activation of NRF2 suppresses the

replication of SARS-CoV-2 and the inflammatory response (2).

So, in the first phase of coronavirus attack, oxidative stress increases

due to the suppression of innate immune response, and in the

second phase, acute inflammation starts damaging the respiratory

system due to a lack of sufficient antibodies (3). Coronavirus affects

prominently older people than younger generations due to the lack

of naive T cells (4).

Coronavirus being an RNA virus undergoes continuous

mutation leading to alteration in the protein sequence of its spike

and within itself. These alterations have led to variations in virus

transmission, replication, and severity (5). There are several human

coronavirus variants from different demographic locations such as

the UK variant (B.1.1.7. lineage), Brazil variant (P.1 lineage), US

variant (B.1.429 lineage), and China variant. During the second

wave, the most noticeable SARS-CoV-2 variants are called the

variants of concern (VOCs) comprised of the UK lineage

(N501Y), South African lineage (B.1.351) (K417N, E484K, and

N501Y) (6), and Brazil lineage (K417T, E484K, and N501Y) (7).

In the closing phase of 2021, a new variant known as the “B.1.1.529”

emerged, which showed a high rate of transmissibility due to a large

number of mutations in its spike protein. Omicron was classified by

the WHO as VOC (8, 9), and since then, there have been reports of

subvariants of Omicron which include Omicron BA.1 (B.1.1.529),

BA.2, and BA.3 (10). Then, the UK reported the first case of the XE

variant, which is a combination of the BA.1 and BA.2 subvariants of

Omicron (11).

A new recombinant was identified in France named

“Deltacron” (officially known as XD and XF), which is the

recombinant of Delta and Omicron variants (10). It is believed

that the XE variant is highly contagious when compared with BA.2

and Delta.
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In India, “Delta and Delta Plus” variants were reported, which

indicates the presence of two mutations, i.e., E484Q, E484K, and

L452R (B.1.617 lineage) in the same strain of one deletion (H146

and Y145) and two mutations (E484K and D614G) (12–14). In

September 2022, the majority of samples were of the subvariant

BA.2.75.2 (15). Though the cases of coronavirus are decreasing, still

the emergence of mutants is the major risk factor in the population.

Numerous antioxidant plant products have been known since

ancient times for their ability to modulate the immune system by

immunomodulatory mechanisms, through stimulation of both

innate and adaptive humoral and cellular immunity. These

mechanisms influence proinflammatory pathways and

modulation of the gut microbiome.

This review analyzed the magnitude of the coronavirus disease

2019 (COVID-19) pandemic globally and in India with its

prevalence, mortality, and comorbidity scenario and the

counteractive effects of antioxidants as an immune booster.
COVID-19 data—global and India

The first symptom of COVID-19 was identified on 1 December

2019 (16), and since then, it has spread to 231 countries (17, 18).

Despite a global effort to contain the disease, it has hamstrung

health systems and shaken economies.

Initially, four individuals with “pneumonia of unknown

etiology” were reported, all linked to the Huanan (Southern

China) Seafood Wholesale Market (19). The disease then rapidly

spread across Hubei and nearby provinces.

The first case outside China was reported to the WHO on 13

January 2020, in Thailand, which was of a Chinese woman who had

traveled from Wuhan, China, to Thailand on 8 January 2020 (20).

The disease then spread rapidly in Eastern Asia and Europe. The

progress of COVID-19 in each country is mediated by the public

health response implemented in that country. The global stats of

confirmed cases and deaths are provided in Figures 1A, B (21).

As reported by UN Women, COVID-19 predominates in the

age group 20–34 among women and 25–39 among men and

declines as age and/or exposure increases. Conversely, the

mortality increases with age and is particularly lethal for those

aged greater than 85 (Figures 1C, D) (22).

In India, the first confirmed case of COVID-19 was reported on

30 January 2020 by NIV Pune, of a 20-year-old female who

presented after 1 day of symptoms (23). Daily cases peaked in the

middle of September, after which there has been a steady decline to

June–July levels despite a sustained level of testing by a network of

public and private labs. After a steep regression, the number of

positive cases began to increase by March 2021 and attained the

extent of 4 lakh cases per day and more than 4,000 confirmed death

cases. This second wave of the COVID-19 pandemic has been more

devastating than the first. This absurd rise resulted from an

increased mutation in the RNA genome spreading at a faster pace

in every age group. Compared with the first wave, India recorded a

two-fold increase in positive cases in the second wave (24, 25). The

third COVID-19 wave began with the rise of Omicron cases which

was marked as VOC by the WHO.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1241313
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kaur et al. 10.3389/fimmu.2023.1241313
Among the two Omicron variants, the BA.2 variant accounts for

the majority of cases. During this phase, there have been reports of

new variants like BA.2.10, BA.2.12, XE, BA.4, BA.5, XBB.1.16, and

XBB.1.16.1 (26).

Though COVID-19 patients with Omicron are not adversely

affected, people with comorbidities, young children, and the elderly

remain at high risk of adverse infection.

The severity of and the mortality due to COVID-19 have been

noticed in patients having comorbidities, which is probably due to a

lack of immunity caused by ROS imbalance.
Immune system

The immune system is a massive system with many forces to

restrict the entry of foreign bodies and kill them. These forces

include many different cells, organs, and proteins that work

together to fight against microbes to keep the body healthy.

The innate immune system inherent at birth consists of special

immune cells like white blood cells or leukocytes (B cells, T cells,

natural killer cells) which fight against harmful substances and

germs. The spleen, bone marrow, thymus, skin, lungs, and digestive

tracts are the main organs involved in the immune defense system

of the body.

The adaptive immune system makes antibodies specifically

suitable to fight certain germs. So, antibodies are special proteins

that code specific antigens.

Once the microbe breaches the first line of defense, the adaptive

immunity gets activated to prevent the spread of the microbe-

induced infection. There are specific receptors like Toll-like

receptors (TLRs) that recognize the pathogen-associated
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molecular patterns (PAMPs) present on the pathogen’s surface to

prevent entry and further spread by activating the cell-mediated

immune response. The infection causes the release of cytokines by

the immune cells to communicate and activate B and T cells,

thereby preventing the disease’s further spread (27). In particular,

viruses have developed mechanisms to evade the immune system

and take over the host machinery to cause further infection, and one

such virus is coronavirus (CoV) (28).

Antioxidant molecules enhance the humoral immunity of the

body during viral infection to maintain the redox balance and thus

prevent the replication of the virus.
Effect of antioxidant molecules on the
immune system

The endogenous antioxidant molecules maintain the ROS level

by redox balancing, thereby fighting against oxidative stress and

maintaining the defense system. ROS is also produced by numerous

exogenous factors like exposure to pathogens like viruses

and bacteria.

The antioxidant enzymes like superoxide dismutase (SOD),

catalase (CAT), glutathione (GSH), and many other antioxidant

proteins like sirtuin (SIRT), sestrin (SESN), and forkhead box

transcription factor (FOXO) have a critical role in maintaining

the level of the antioxidant molecules to balance the immune

system. This immune system is also enhanced by supplying

antioxidant molecules through diet.

Some non-enzymatic compounds like zinc, vitamin C, vitamin

D, vitamin E, flavonoids, curcumin, and selenium prevent the entry
B

C D

A

FIGURE 1

Global (A) daily and total cases and (B) death progression. Global (C) population pyramid cases and (D) deaths.
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of viruses into the body via different mechanisms. Zinc is known to

have concentration-dependent effects on ACE-2 activity as it has

low affinity-binding sites for zinc (29). Various in-vitro and human

clinical studies demonstrate the antiviral activity of zinc such as

inhibiting coronavirus Rdrp template binding/elongation and

reduction in outbreak recurrence in the case of herpes simplex

virus in human subjects (30). Zinc prevents viral entry by protecting

the cell membrane from non-specific leakage (31). Vitamin C is

known to modulate the expression of ACE-2 receptors in human

small alveolar epithelial cells and microvascular endothelial cells

(32). Vitamin D also downregulates ACE-2 receptor activity and

acts as a negative regulator of RAS (33). Vitamin E does not have a

direct relation with disrupting viral entry but it helps maintain

strong immunity. It increases antibody titers after vaccination for

hepatitis B, tetanus, and influenza infection and has been shown to

decrease the incidence of pneumonia in elderly men (34). Selenium

apart from downregulating the ACE-2 receptor also inhibits viral

proteases of SARS-CoV-2 (35). Curcumin inhibits ACE-2 receptor,

viral protease, and viral S protein (36, 37). Flavonoids such as

epigallocatechin gallate found in green tea interact with proteins on

the surface of virions of many viruses and prevent their attachment

to the host cell (38). Moreover, flavonoids can bind to the spike

protein, helicase, and protease sites on the ACE-2 receptor and

inhibit viral entry of coronaviruses (39).
Effect of antioxidant molecules on
SARS-CoV-2

The antioxidant enzyme SOD breaks the toxic oxygen molecules

(O2
−.) into hydrogen peroxide (H2O2), which is responsible for various

diseases. It is the first line of defense against ROS and maintains the

redox balance. Hydrogen peroxide (H2O2) is further neutralized to

water through enzymatic reactions by CAT or GSH. Coronavirus like

other RNA viruses (40) activates oxidative stress. The analog of GSH,

such as N-acetylcysteine, has an immunomodulating effect and

destructive action on viruses by blocking viral replication (41).

COVID-19 infection is more common in the elderly and various

age-associated diseased patients, who are already in oxidative stress

resulting from an increase in viral replication. Overproduction of

cytokines occurs due to viral infections, which can only be reduced

by antioxidant molecules. Excessive SOD can control harmful oxygen,

and then CAT can regulate cytokine production in leukocytes, thus

protecting the alveolar cells and suppressing the replication of the

COVID-19 virus (42). The expression of SOD is reported to be reduced

due to COVID-19 infection in the lungs of elderly patients (43).

COVID-19-positive patients have a high profile of interleukins (IL-6,

IL-10, etc.) and tumor necrosis factor-alpha (TNF-a), causing a

cytokine storm and suppression of GSH. COVID-19 also alters the

GSH level by reducing the function of NRF2, which is involved in GSH

upregulation. Studies have shown that extracellular administration of

liposomal GSH helps to boost the immune system and protect against

oxidative damage (44).

There are three metallic SODs present in the catalytic core:

manganese (Mn), copper (Cu), and zinc (Zn) SOD. The increased

transcription of Cu/Zn-SOD and Mn-SOD would benefit the
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immune system to defend against pathogen infection (45). Zinc

modulates the entry of viruses (30). Exposure to Zn reduced the

activity of human ACE-2, which is the binding receptor of

coronavirus (29) and reduces the duration of viral symptoms

(46). Zn2+, combined with its ionophore pyrithione, has been

reported to inhibit the RNA-polymerase activity of coronavirus

by inhibiting its replication (47).

Coronavirus infection reduces nicotinamide adenine dinucleotide

(NAD+), a cofactor involved in the oxidation–reduction reaction,

disrupting mitochondrial activity and deacetylase activity of SIRT

(48). The antioxidant protein SIRT is a NAD+-dependent deacetylase

protein. It triggers the activation of the SOD enzyme (49). SIRTs are a

family of seven proteins (SIRT1–7). Table 1 illustrates the various

cellular processes in which different human sirtuins are implicated.

Among them, SIRT1 and SIRT3 are mainly involved in controlling

ROS production. In a culture system of H2O2-treated R28 cells,

SIRT1 and SIRT3 levels were found to be decreased, and the ROS

level was elevated. However, both SIRT levels increased with the

decrease of ROS level after treatment with the antioxidant glucagon-

like peptide 1 analog, exendin-4 (EX4) (56). Consequently, the levels

of mRNA and SOD were found to be elevated. SIRT deacetylates

many proteins like p53 and NF-kb. SIRT1 deacetylase p65 and

reduced NF-kb transcriptional activity on endothelial cells. NF-kb
plays a central role in inflammatory cytokine stimulation and

lymphocyte activation. Thus, SIRT1 has many effects on immunity
TABLE 1 Human sirtuins and their functions.

Human
sirtuin

Functions References

SIRT1 Deacetylates p65 and NF-kb, thus
modulating inflammatory cytokine

stimulation and lymphocyte activation
Deacetylates FOXO and activates T cells,
upregulates ROS scavengers: SOD2 and

catalase
Prevents viral replication in HCMV, HSV-1,

Ad5, and influenza virus H1N1
Inhibits ADAM-17 leading to inhibition of

TNF-a and IL-6

(50)

(49, 51, 52)

(53)

(48)

SIRT2 Deacetylates MYC, FOXO3A, tubulin, G6PD,
EIF5A

Regulates apoptosis via p53 deacetylation
Regulates cell cycle progression at G2/M and

metaphase to anaphase checkpoint

(54)

(54)
(54)

SIRT3 Deacetylates FOXO3A
Adapts the mitochondria to starving or

caloric restriction
Increases the activity of the enzymes acetyl
coenzyme A (CoA) synthetase 2 (AceCS2),

long-chain acyl-CoA dehydrogenase (LCAD),
and ornithine transcarbamylase (OTC)

(55)
(55)

(55)

SIRT4 ADP ribosylation (53)

SIRT5 Desuccinylation and demalonylation (53)

SIRT6 ADP ribosylation
Hydrolysis of long-chain fatty acyl lysine
Involved in cellular homeostasis and

DNA repair

(53)
(53)
(54)

SIRT7 Deacetylates Hif-1a/2a (54)
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(57). In a cytokine storm syndrome due to COVID-19 infection, all

the proinflammatory molecules like TNF-a, IFN-g, IL-6, and IL-1

express abundantly, affecting the innate immune system (58). SIRT1

also activates T cells by deacetylating FOXO via modulation of SOD

and CAT (51, 52). Silencing SIRT1 in T cells of mice increases

inflammatory molecules, and activation of SIRT1 by resveratrol and

SRT172 reduces ROS and NF-kb (55). Many SIRT activators have

been found to boost immunity by regulating ROS production. Plant

products like Syzygium aromaticum (58) were reported to enhance

SIRT1 level and thus increased the antioxidant enzymes SOD, CAT,

GSH, etc. In aging, the level of SIRTs is found to be downregulated

(59); hence, the severity rate of aged COVID-19 patients is higher. It

has been found that viruses like HCMV, HSV-1, and Ad5 and the

influenza virus H1N1 are increased by siRNA-mediated knockdown

of individual human SIRTs in cultured cells. The viruses also produce

more through treatment with the SIRT1 inhibitor and are reduced by

its activator (53). The exact mechanism of action of SIRT on

preventing virus replication is not known. As SIRT is a NAD+-

dependent deacetylated enzyme, it influences metabolic functions

and has various roles in cellular functions. It inhibits fatty acid

synthesis and glycolysis by deacetylating the concerned proteins,

which may prevent viral growth. Considering the diverse role of SIRT

mainly on antioxidant properties that boost the immune system, it

can be revealed that SIRT may be a potential target for preventing

COVID-19 infections.

Sestrin is another potential antioxidant protein. It is a stress-

inducible protein and protects the cells by regulating oxidative stress,

endoplasmic reticulum stress, autophagy, metabolism, and

inflammation. It has a preventive function on immune cells by

activating 5′ adenosine monophosphate-activated protein kinase

(AMPK) by inhibiting the mammalian target of rapamycin

complex 1 (mTORC1) due to its association with the autophagy-

related gene and suppressing activation of the c-Jun N-terminal

kinase (JNK) pathway (60, 61). ROS accumulation and activation

of mTORC1 are more in aging; hence, the stress-inducible protein

SESN increases more to overcome the crisis in aging and age-

associated disease. In COVID-19 patients, the spike glycoprotein of

SARS-CoV-2 binds with the ACE-2 receptor of the host, which is

phosphorylated by AMPK, thus altering the structure to prevent the

entry and replication of the virus. The SESN protein directly activates

AMPK; hence, the SESN protein might have an important role in the

immune system to protect against virus replication. COVID-19

infection created inflammation in the terminal airway, alveoli, and

lung mesenchyme and accumulated ROS. During this oxidative

stress, the expression of SESN increases for autophagy induction

through activation of AMPK and ROS clearance. SESN also

upregulates NRF2 signaling by promoting p62-dependent

autophagic degradation, which overexpresses other antioxidant

genes (62). The activators for NRF2—sulforaphane and

bardoxolone methyl—are already in clinical trials in COVID-19

(63). It can be proposed that SESN can also serve as one of the

potential target molecules for COVID-19 prevention.

FOXO is another important antioxidant protein that maintains

ROS formation through autophagy by regulation of manganese

superoxide dismutase (MnSOD) and CAT (64).
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Vitamin C has an essential role in maintaining the various

immune systems. It increases the production of natural killer cells

(NK cells) and B and T cells to fight against viruses. It has an

important homeostatic role as an antioxidant by maintaining the

ROS level and inflammation by suppressing NF-kb activation. It

has been reported that in the critical phase of COVID-19, vitamin C

plays a serious role in downregulating the cytokine storm, thus

supporting tissue repair and improving immune responses against

infections. It also stimulates the formation of antibodies (65).

Vitamin D secretes various antiviral peptides to increase innate

immunity during viral infection, thus playing an important role in

immunomodulation (66, 67). It decreases cytokine storm by

inhibiting T-helper cell type 1 responses and also stimulates the

induction of T cells, thereby regulating the adaptive immunity (68,

69). Many patients with acute respiratory disease are found to have

vitamin D deficiency. Many studies on the recent pandemic

reported the deficiency of vitamin D levels in COVID-19 patients

(70–75). It has been observed that delivering vitamin D improves

the severity and mortality of COVID-19 patients (72–76).

Vitamin E increases NK cells in the immune system and

neutralizes ROS. B cells and T cells that fight against viral

infections are found to lose their immunity function due to

vitamin E deficiency. Though very little is known about the effect

of vitamin E on COVID-19 patients, it is advised that COVID-19

patients take vitamin E to increase their immunity.

Many studies have highlighted the effectiveness of antioxidant

molecules in boosting the immune system. In a study, critically ill

patients with COVID-19 were supplemented with oral selenium

and zinc, which resulted in the elevation of selenium and

selenoprotein P levels to the normal range (77). This intervention

led to a significant decrease in CRP, PCT, IL-6, IL-1b, and IL-10

along with an increase in CD8+ T cells, NK cells, and total IgG levels

in the patients. In an in-vitro study, preincubating immune cells

from peripheral blood mononuclear cells (PBMCs) of donors with a

history of COVID-19 and uninfected donors with tempol, a novel

antioxidant, led to a decrease in different T-cell and APC-derived

cytokines (78). In an immunosuppressive mouse model, a

solubilized curcuminoid complex was found to lower the levels of

neutrophils, dendritic cells, natural killer cells, CD4+ T cells, and

CD8+ T cells in the spleen (79).
Plausible therapy for protection of
COVID-19 targeting
antioxidant pathways

The actual cause, pathogenesis, and therapy of COVID-19 are

not fully known till now. A lot of studies are going on after

observation of the symptoms of COVID-19 patients. The

symptoms are varied, and many are asymptomatic. So, it is

difficult to define the pathogenesis clearly. Surely, the immunity

process in the body is not sufficient to fight against the virus,

especially in elderly individuals. The coronavirus mainly infects and

creates a worse situation in the elderly. Therefore, it is necessary to
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boost the immunity system of the elderly whose immune system is

already weak.

This virus causes acute respiratory distress syndrome (ARDS) of

the upper respiratory tract. The immune system needs more

strength and support from an exogenous source as the upper

respiratory tract is considered an external part of the body.

The antioxidant components, which play a critical role against

the virus, need to be supplied more to boost the immunity to fight

against the virus. The lack of endogenous antioxidant products

impairs the immune system during coronavirus infection. So, the

supply of exogenous antioxidant products may enhance the

immune system to fight against viruses. There are many natural

products and specifically designed synthetic products that can

activate various antioxidant proteins and molecules, to be used in

combination as a therapy for the prevention or protection from the

virus. Flavonoids, quercetin, catechin, herbacetin, rhoifolin,

pectolinarin, myricetin, and scutellarein are potential antioxidant

compounds that have antiviral properties as shown in in-vitro

studies by inhibiting the replication of COVID-19 (80–83).

Syzygium aromaticum (49, 58), resveratrol (84), the synthetic

peptide CWR (85), and the compound like SRT (86) activator of

SIRT were found to enhance the secretion of SOD, CAT, and GSH

by scavenging ROS. Syzygium aromaticum (87) also regulates the

level of SENS to maintain oxidative stress. Ashwagandha (Withania

somnifera) could inhibit the virus’ entry by blocking the host

enzyme transmembrane protease serine 2 (TMPRSS2) (88).

Consumption of ashwagandha as a supplement could reduce

COVID-19 chances, as the virus fusion with ACE-2 is inhibited

due to blocked TMPRSS2 (89). Studies have shown that curcumin

inhibits ACE-2 receptor, viral protease, and viral S protein, thus

preventing COVID-19 infection (36). Zn can be used as a

supplement for COVID-19 prevention as it helps in reducing the

occurrence of respiratory infection due to its antiviral and anti-

inflammatory properties by inhibiting TNF-a (90).

Azadirachta indica, commonly known as neem, is known to

exhibit certain protective effects from various diseases such as in

metastasis. It prevents cancer cells from cytoadhering and inhibits

HIV from penetrating the target T lymphocytes. Moreover, it

hampers the spike glycoprotein of HIV from binding CD4+ T

cells and hinders malaria-parasitized red blood cells (pRBCs)

from adhering to the vascular endothelium (VE). In the case of

COVID-19, since viral adherence to VE can cause multiple organ

distress syndrome, neem can be explored to arrest VE adherence

and prevent extreme morbidity and mortality. It may bind to VE

cells and block the spike glycoprotein of coronavirus from

interacting with VEC ACE-2 (91).

A phytochemical called lycopene, possessing a multitude of

antioxidant-based therapeutic properties, may boost the

physiological response in resistance to COVID-19 infection (92).

Lycopene prevents macrophages from producing proinflammatory

cytokines and chemokines, which reduces inflammation in several

organs (93, 94). The effects of 13 Bulgarian medicinal plant extracts

on the MCR-5 cell line transfected with the human coronavirus

229E strain were studied by Ilieva N. et al. (95) In their study, plant

extracts of T. vulgaris, M. chamomilla, A. sativum, and P. reptans,

among others, were portrayed to have prominent anti-coronavirus
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activity. Most of the plants suppressed extracellular virions and

showed potent redox-modulating effects. Another such study

published in February 2022 by Lizdany Flórez-Álvarez et al. (96)

studied the antiviral activity of Colombian plant extracts on

COVID-19. They transfected Vero E6 cells with SARS-CoV-2

viral stock and treated them with plant extracts. They found two

plant extracts from P. tuberculatum and G. sepium to effectively

inhibit SARS-CoV-2.

In some in-silico studies, plant extracts have been shown to be

active against coronaviruses. Hibiscus sabdariffa L., commonly

called the roselle flower, has three major active ingredients,

namely, anthocyanins, ascorbic acid, and tartaric acid. The in-

silico interaction of these active ingredients with the ACE-2 spike

and other inflammatory target proteins was studied by Ramadhani

et al. (97) Anthocyanin had the best binding affinity with all the

target proteins. For the ACE-2 spike and IL-10, the binding affinity

with anthocyanin was −7.5 kcal/mol and −6.5 kcal/mol,

respectively. In a paper published in Phytomedicine by Mukherjee

PK et al. (98), approximately 95 medicinal plants have been listed

that were found to have anti-inflammatory or antioxidant activities

reported between 2003 and 2021. They proposed to explore the use

of these medicinal plants as therapy against COVID-19. Table 2

depicts various natural products along with their immunological

effects on COVID-19.

Figure 2 illustrates the suppression of the immune system by

SARS-CoV-2 and the effect of natural antioxidant molecules on it.

There are some reported studies that demonstrate the practical

applications of antioxidant molecules in SARS-CoV-2 infection. In

one such case, ambulatory COVID-19 patients, in addition to

standard therapy, were supplemented with a mixture of combined

metabolic activators (CAMs) including glutathione and NAD+

precursors or placebo to investigate the effect of CAMs on

symptom-free recovery time (100). According to the findings, the

CMA group’s duration to full recovery was considerably less than

that of the placebo group in both phase 2 and 3 trials. The CMA

group also portrayed considerably better levels of plasma proteins

and metabolites linked to inflammation and antioxidant

metabolism than the placebo group.

Another randomized controlled trial assessed the potential of

quercetin to impede the progression of SARS-CoV-2 and lower

relevant inflammatory markers (101). In the control group, only

antiviral drugs were administered, whereas the intervention group

received both antivirals and 1,000 mg of quercetin every day for 7

days. The intervention group was found to have lower levels of

inflammatory molecules, namely, alkaline phosphatase, quantitative

C-reactive protein, and lactate dehydrogenase, in the serum.

It is a great challenge for the speedy development of vaccines

with full clinical efficacy and drugs against COVID-19 in this

pandemic situation. COVID-19 vaccination drives are in full

swing all over the world.
Vaccination

The development of vaccines for COVID-19 commenced in

early 2020. Since then, several vaccine candidates have been found
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to be efficacious in reducing the severity of the disease as well as in

preventing infection in clinical trials.

Vaccine breakthrough infections, as mentioned by the CDC, are

COVID-19-positive cases arising even after being immunized with

a primary series of vaccination courses or even with additional

booster doses after the primary series. Though vaccinated

individuals are likely to experience milder symptoms compared

with the unvaccinated ones, they can still pose as disease carriers for

others. During the higher number of cases being reported in a

population of individuals, the viral load in that population is

significantly high. Higher viral load causes more number of

vaccine breakthrough infections, despite having high vaccination
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rates (102). However, the death rates seemed to decrease with a

higher series of vaccination (103).

One limiting feature of vaccines is their stability. Vaccine stability

is the capability of a vaccine to retain its specific properties till the end

of its shelf life. This attribute is mainly related to mRNA vaccines

which show instability related to the vaccine’s critical quality

attributes (in-vitro stability) or to mRNA’s intrinsic features (in-

vivo stability). Therefore, an mRNA vaccine requires an extremely

low temperature and specific environmental conditions so as to retain

its stability. To overcome mRNA instability, various techniques are

employed. Retaining mRNA integrity, altering mRNA fragment

length, optimizing mRNA sequence, modifying mRNA, and using

circRNA are found to be useful in increasing the shelf life of the

vaccine. In addition, suitable excipients, appropriate lipid

nanoparticle (LNP) delivery systems, and following strict

manufacturing conditions such as pH/temperature maintenance

and lyophilization are also crucial to maintain vaccine stability (104).

Vaccine efficacy is also limited by the mutability of the virus. It

has been previously found that mutations induced in the spike

protein are chiefly responsible for dampening the effects of vaccines

which remain effective for various strains but are most effective for

the original strain against which they were made. Thus, it causes a

need for booster doses (105).

A study by Julián Andrés Mateus Rodriguez et al. published in

December 2021 quizzed whether the nutritional supplement of ABB

C1®, which is a b-glucan complex and a consortium of S. cerevisiae

enriched with selenium and zinc, could boost the immune response

of participants who had taken influenza vaccine (n = 34) or Pfizer-

BioNTech’s COVID-19 mRNA vaccine (n = 38). The participants

were divided into the ABB C1® group and the placebo group and

received supplementation the next day after getting the vaccine. The

study found that, after the second dose of the COVID-19 vaccine,

the mean levels of CD4+ T cells increased in the ABB C1® group,

whereas there was a decrease of CD4+ T cells in the placebo group.

For the influenza vaccine, although the mean levels of CD4+ T cells

increased in both groups, the magnitude of the increase was higher

in the ABB C1® group (106).

Thus, the data suggest that vaccination does seem to have an

effect, as shown by the decrease in the death rate, but it is not

enough to fully combat the COVID-19 pandemic. Adjuvant

precautionary therapy with plant extracts containing naturally

active ingredients should be considered a plausible solution, in

addition to vaccination.

Discussion

The SARS-CoV-2 pandemic has resulted in the loss of

thousands of lives and has led to various other side effects of

post-infection. Global and local data depicted the enhanced

spread and mortality caused by this novel virus. Comorbidity

data showed that patients with diabetes, hypertension, and

chronic obstructive pulmonary disease (COPD) are more

vulnerable to this infection. An increase in ROS level resulted in

the host antioxidant system’s impairment, causing DNA damage

and mitochondrial dysfunction. Though global vaccination is the
TABLE 2 Natural products and their immunological effects on
COVID-19.

Natural
product

Effect Targets References

Flavonoids,
quercetin,
catechin,
herbacetin,
rhoifolin,

pectolinarin,
myricetin,
scutellarein

Inhibits the replication
of SARS-CoV-2

SARS-
CoV

3CLpro

(67–70)

Syzygium
aromaticum,
resveratrol

Increases SOD,
CAT, GTH

SIRT1 (40, 47, 74)

Withania
somnifera

(ashwagandha)

Inhibits the entry of
virus by blocking the
host enzyme TMPRSS2

TMPRSS2 (75, 76)

Curcumin Inhibits ACE-2
receptor, viral protease,
and viral S protein

ACE-2
receptor,
viral

protease,
viral

S protein

(77)

Azadirachta
indica (neem)

Prevents malarial
pRBCs from adhering

to the vascular
endothelium, inhibits
HIV from penetrating

the target
T lymphocytes

Vascular
endothelium

(99)

Lycopene Boosts physiological
response to COVID-19
Prevents macrophages

from producing
proinflammatory

cytokines
and chemokines

Nitric oxide,
nitric oxide
synthase,
NF-kb,
TNF-a

(79)
(80, 81)

T. vulgaris, M.
chamomilla, A.

sativum,
P. reptans

Anti-coronavirus
activity, suppresses
extracellular virions,
redox modulation

ROS,
human

coronavirus
virions

(82)

P. tuberculatum,
G. sepium

Inhibits SARS-CoV-2 – (83)

Hibiscus
sabdariffa

L. anthocyanin

Binds ACE-2 spike and
IL-10

ACE-2
spike, IL-10

(84)
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ultimatum for eradicating the COVID-19 pandemic, achieving this

goal is a lengthy procedure.

The vaccination drill presently rolling across the world might

prove effective, but clinical solid evidence is yet to be established. In

the second wave in India, those who have comorbidities at a young

age are at a high risk. The virus is becoming more infectious and

some mutations escape the immune response, which infects even

after vaccination. After the regression of the second wave, the fear of

a possible third wave is high. It is believed that if the third wave hits

countries like India, the younger population, i.e., the age group

below 18, would be more prone to infection due to lack of

vaccination. Though the majority of vaccinated people are having

mild symptoms, still the risk of severity persists. The alternative

holistic therapeutic intervention to boost immunity for the

prevention of coronavirus may be the successful eradication of

the disease. All these variations and variabilities lead to dependence

on natural and innate immune molecules such as vitamin D,

vitamin E, sirtuins, sestrins, FOXO, and catalase. Augmentation

of the above innate molecules enhances the immune system’s ability

to counter the redox imbalance and has no harm or side effects on

one’s health. Thus, supplementation of natural products along with

the administration of vaccine could boost immunity to fight against

these VOCs. Though antioxidant supplementation with natural

products looks encouraging, there are a few limitations to be

overcome. Natural products alone have low solubility, rapid blood

clearance, potential toxicity to unwanted sites, and low

bioavailability and, thus, require a good lipophilic carrier such as

liposome formulations for adequate drug delivery in clinical settings

(107). Moreover, allergic dermatitis to natural products such as

neem may also be an associated risk for certain individuals (99).

Despite these limitations, the therapeutic potential of natural

products can be explored as drug delivery research using
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liposomes is promising, and monitoring for allergic reactions is

feasible (107). The review seeks to provide a strong message to use

activators of SIRT, SESN, medicinal plants, vitamins, and metals

with high antioxidant properties to boost the immune system by

controlling the autophagy and maintaining the antioxidant

enzymes as a conventional adjuvant therapy against the complex

pathophysiology of COVID-19 infections for long-term care.
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FIGURE 2

The effect of SARS-CoV-2 on the immune system and the effect of the antioxidant system on coronavirus. IFN, interferon; ROS, reactive oxygen
species; ARDS, acute respiratory distress syndrome; SIRT, sirtuin; SESN, sestrin; FOXO, forkhead box transcription factor; SOD, superoxide dismutase;
CAT, catalase; GSH, glutathione.
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