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Nucleotide-binding oligomerization domain-containing proteins, NOD1 and

NOD2, are cytosolic receptors that recognize dipeptides and tripeptides

derived from the bacterial cell wall component peptidoglycan (PGN). During

the past two decades, studies have revealed several roles for NODs beyond

detecting PGN fragments, including activation of an innate immune anti-viral

response, NOD-mediated autophagy, and ER stress induced inflammation.

Recent studies have also clarified the dynamic regulation of NODs at cellular

membranes to generate specific and balanced immune responses. This

review will describe how NOD1 and NOD2 detect microbes and cellular

stress and detail the molecular mechanisms that regulate activation and

signaling while highlighting new evidence and the impact on inflammatory

disease pathogenesis.
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Introduction

A wide diversity of commensal organisms and opportunistic pathogens constantly

interact with the human immune system. The success of the innate immune response to

these stimuli relies on the recognition of conserved pathogen-associated molecular patterns

(PAMPs) by various pattern recognition receptors (PRRs), and when needed the

subsequent initiation of an inflammatory response to promote clearance of infection.

Among the PRRs, the nucleotide-binding oligomerization domain (NOD)-like receptors

(NLR) provide intracellular surveillance through the detection of cytoplasmic PAMPs and

endogenous products of tissue injury termed damage-associated molecular patterns or

DAMPs (1, 2). Once activated by their cognate ligand, NLRs mediate host responses via

signal transduction mechanisms, including stimulation of nuclear factor kappa light chain

enhancer of activated B cells (NF-kB), stress kinases, interferon regulatory factors,

inflammatory caspases, and autophagy (1, 3, 4). In this review, we focus on NOD1/

NLRC1 and NOD2/NLRC2 – two seminal members of the NLR family – and describe
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molecular mechanisms that regulate activation and signaling. This

includes a discussion of host responses, including ER stress induced

inflammatory responses, and the impact of signaling on

inflammatory disease pathogenesis.
The structure of NOD1 and
NOD2 receptors

NOD1 and NOD2 belong to an evolutionarily conserved family of

innate immune receptors characterized by a tripartite domain

structure that includes a C-terminal domain comprising a variable

number of leucine-rich repeats (LRRs), a centrally located nucleotide-

binding NACHT domain (NBD), and a variable N-terminal effector

domain (Figure 1). This variable N-terminal domain is used to

distinguish NLRs into four subfamilies; a) NLRA possesses an acidic

transactivation domain, b) NLRB possesses a baculovirus inhibitor of

apoptosis repeat (BIR) domain, c) NLRP possesses a pyrin domain,

and d) NLRC possesses a caspase activation and recruitment domain

(CARD) (5). Members of the NLRC subfamily include NOD1

(NLRC1, CARD4, CLR7.1) and NOD2 (NLRC2, CARD15, CD,

BLAU, IBD1, PSORAS1, CLR16.3). NOD1 and NOD2 have similar

domain architecture but differ in the number of CARD domains –

NOD1 has one CARD domain, whereas NOD2 has two in tandem.

The CARD domain is the region responsible for interactions with the

downstream effector kinase receptor-interacting serine-threonine

kinase 2 (RIPK2) (6–8). The NBD portion of the proteins mediates

self-oligomerization following activation and contains Walker-A and

-B box motifs that are important for ATP binding and hydrolysis (9,

10). The binding of ATP to NOD2 enhances both ligand binding and

oligomerization, while disruption of the ATP binding domains

abrogates muramyl dipeptide (MDP) stimulated signal transduction
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and NF-kB activation (Figure 2) (9, 10). The LRRs constitute the

remaining portion of the NODs and are critical for ligand specificity

and binding (11).

Available structural evidence suggests that in the absence of

ligands, NOD1 and NOD2 exist as monomers in an autoinhibited

closed state i.e. ‘folded onto themselves’, producing hairpin-like

structures whereby the LRR domain masks the NBD and CARD

domains to prevent aberrant signal transduction (12–14). Upon

binding of their ligands through the LRRs, it is thought that NOD1

and NOD2 undergo a conformational change that “opens” the

protein exposing Walker-A and -B boxes to allow ATP binding,

homo-oligomerization and subsequent signaling events (Figure 2)

(15). However, other structural studies have suggested that the

exchange of ADP for ATP, rather than ligand binding, induces

structural changes in the NBD domain to shift the state of the

protein from inactive to active and vice versa (9, 10). This presumes

that binding to bacterial ligands is merely a regulatory mechanism

to maintain the proteins in an open, active conformation (12).

Currently, in the absence of additional structural data to

demonstrate how ligand binding could lead to oligomerization, it

is impossible to clarify the finer molecular dynamics of NOD1 and

NOD2 activation. Furthermore, how membrane association or

additional binding partners may influence conformational states

and oligomerization are currently unclear.
Activation of NOD1 and NOD2 by
peptidoglycan components

NOD1 is ubiquitously expressed in cells (16), whereas NOD2

has been found primarily in immune (e.g., macrophages, dendritic

cells) and epithelial (e.g., Paneth cells, keratinocytes) cells (17, 18).
B C

A

FIGURE 1

Domain architecture and structure of NOD1 and NOD2. (A) Schematic representation of NOD1 and NOD2 highlighting the domain boundaries and
amino acid stretches of the CARD, NBD, and LRRs. AlphaFold structures of (B) NOD1 and (C) NOD2.
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Nevertheless, both proteins play crucial roles in host defense and

survival primarily by conferring responsiveness to specific

muropeptides present in peptidoglycan (PGN) (19, 20). PGN is a

major component of the Gram-positive bacterial cell wall, while in

Gram-negative bacteria, PGN comprises only a thin layer in the

periplasmic space. Muropeptides are monomeric fragments that

can be generated from the degradation of PGN by either host or

bacterial enzymes (21). NOD1 activity is primarily triggered by

muropeptides containing the minimal core structure g-D-Glu-m-

diaminopimelic acid (iE-DAP) (22), that is found in Gram-negative

bacteria and a few Gram-positive bacteria, such as Listeria

monocytogenes and Bacillus spp. In contrast, NOD2 detects and

directly binds MDP (23), a motif broadly expressed in Gram-

positive and Gram-negative bacteria. Although several studies

have reported a direct interaction between NOD1 and NOD2

with their respective ligands, it remains to be determined if other

cofactors and accessory proteins are involved in ligand binding. In

this regard, a recent study has determined that MDP is

phosphorylated by a cytosolic host kinase N-acetyl-D-

glucosamine kinase (NAGK). Importantly, this study also

demonstrates that phospho-MDP is the cellular substrate for

NOD2 and NAGK knockout macrophages fail to respond to

MDP (24).

In contrast with Toll-like receptors (TLRs), which are integral

membrane receptors that recognize ligands at the cell surface or in

the lumen of endosomes, NOD1 and NOD2 are cytoplasmic

microbial sensors that survey for PGN after its transport across

the plasma membrane. There are multiple mechanisms by which

muropeptides derived from PGN can gain entry to the cytoplasm to

activate NOD1 and NOD2, reviewed extensively elsewhere

(Figure 3) (17, 25). Briefly, PGN or its monomeric muropeptides

can be transported across the plasma membrane or limiting

membrane of phagosomes/endosomes by peptide transporters

SLC15A family members (26, 27). In these situations, bacteria

may be internalized into host cells through phagocytosis or

bacterial invasion (28, 29). Extracellular PGN shed from bacteria

can also be internalized via endocytosis or micropinocytosis (30,

31), or outer membrane vesicles derived from bacteria can serve as a

carrier for PGN (32, 33). Alternatively, some instances do not

require the transport of muropeptides across host membranes. This

includes intracellular bacteria, such as Listeria monocytogenes, that

gain access to the cytosol and shed muropeptides directly (34), or
Frontiers in Immunology 03
bacteria that use their secretion systems to breach host membranes

and deliver effectors, and PGN, into the cytosol of host cells, as is the

case with activation of NOD1 by Helicobacter pylori (35). Thus,

peptide transporter-dependent and -independent mechanisms

contribute to the delivery of muropeptides to the cytosol.
NOD initiated signal transduction
pathways

RIPK2-dependent signaling –
the NODosome

Structural studies have revealed that oligomerization of NOD

receptors and subsequent engagement of RIPK2 brings individual

RIPK2 molecules into proximity to each other (Figure 3) (15). This

promotes homotypic interactions of the CARD domain of RIPK2

required for the activation of the canonical NF-kB pathway (15).

Specifically, RIPK2 contains both N- and C-terminal CARD

domains that bind with the CARD domains of NOD1 and NOD2

to form a hetero-CARD complex. This promotes RIPK2

polymerization that not only results in a long filamentous

assembly that is presumably the core of the NODosome (36), but

is also required for Lys63-linked polyubiquitination of RIPK2.

Polyubiquitination of RIPK2 can be accomplished by several E3

ubiquitin ligases including TRAF6, XIAP, cIAP1/cIAP2, ITCH,

PELLINO3, and LUBAC (37–42). Regardless of the identity of the

E3 ligase, the polyubiquitination enables the recruitment of

downstream effector proteins (43, 44). Critical mediators

downstream of polyubiquitinated RIPK2 include transforming

growth factor B-activated kinase 1 (TAK1) and TAK1-binding

protein (TAB) to mediate ubiquitination-dependent signaling (7,

45). RIPK2 also interacts with NK-kB essential modulator kinase

(NEMO), the regulatory subunit of the IkB kinase (IKK) complex.

The simultaneous recruitment of TAK1 and NEMO promotes IKK-

mediated phosphorylation of the NF-kB inhibitor IkBa subunit

(15), which results in its own polyubiquitination and subsequent

proteasomal degradation. This allows the cytoplasmic release and

translocation of NF-kB to the nucleus to influence the transcription

of proinflammatory cytokines and mediators (45) (Figure 3).

RIPK2-TAK1 is also an activator of MAPK cascades.

Phosphorylation of MKK6 by the TAK1 complex leads to
FIGURE 2

Putative assembly for the NOD2 containing NODosome. Interactions with heat shock proteins, HSP70 and HSP90, stabilize monomeric NOD2.
Binding to its ligands ATP via the NBD domain and phosphorylated MDP to the LRR results in conformation changes transitioning from a closed to
an open state. Ligand-bound NOD2 is then predicted to assemble into a 7-mer or 8-mer base structure that then serves as a platform for RIPK2
recruitment and poly-ubiquitination, resulting in the functional NODosome. NOD2 is used in this illustration, but it is presumed that a similar
activation pathway occurs with NOD1.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1242659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dixon et al. 10.3389/fimmu.2023.1242659
activation of MAPKs, including p38, ERK (extracellular signal-

regulated protein kinase), and JNK (c-Jun N-terminal kinase) (46–

51). Phosphorylated MAPKs translocate into the nucleus and

phosphorylate AP-1 transcription factors that further promote

cytokine, chemokines, and antimicrobial peptide expression (52).

Thus, the oligomerization of NODs and the subsequent engagement

of RIPK2 and other downstream effectors results in key

antimicrobial transcriptional responses.

Both NF-kB and MAPK activation has the capacity to induce

the transcription of proinflammatory cytokines and mediators,

including antimicrobial peptides. However, the exact mediators

are context and cell-type dependent. For example, NOD signaling

in antigen-presenting cells produces proinflammatory cytokines

such as IL-1b, IL-6, TNFa, IL-10, IL-18, chemokines (IL-8), cell

adhesion molecules, and nitrite oxide (22, 53–62). Epithelial cells,

however, produce pro-inflammatory mediators such as TNF, IL-6,

IL-8, macrophage inflammatory protein 2 (MIP2), and

antimicrobial peptides (e.g., b-defensin2) (61, 62), in response to

NOD activation. Furthermore, in addition to mediating the

induction of various proinflammatory genes in innate immune

cells, NF-kB regulates the activation, differentiation, and effector

function of inflammatory T cells (63, 64) and activation of

inflammasomes (65). Thus, context and cell-specific responses

can be initiated by NOD1 and NOD2.

The NODosome has been used to describe the core signaling

complex of multiple NODs with RIPK2 (28, 66). Thus, the

formation of the NODosome is a critical event required for

activating downstream signaling networks that include NF-kB,
MAPKs, and the interferon regulatory factors for regulating host
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defense and tissue homeostasis (6–8, 43, 67, 68). The NODosome

acts as a scaffold for several effectors at the site of bacterial entry,

activating multiple downstream inflammatory signaling pathways

to promote the production of cytokines and chemokines that are

ultimately important for pathogen clearance (45, 66, 69–71). Other

NLR proteins are known to assemble in larger structures including

the NLRP3 scaffolded inflammasome and the Apaf-1 mediated

apoptosome (8, 15, 72). Indeed, the NACHT-associated NBD

domain is part of the larger ATPases associated with diverse

cellular activities (AAA-ATPase) superfamily of proteins that

typically form hexamers and heptamers (73) (Figure 2). As such,

the NODosome is generally believed to also function as a hexameric

or heptameric protein complex.
RIPK2-independent signaling
and autophagy

Although PGN can potentiate type I interferon (IFN) responses

(74) via a RIPK2-dependent pathway (75–77), NOD1 and NOD2

have also been shown to also induce type I IFN signaling in the

absence of PGN stimulation and independent RIPK2 (Figure 3) (78,

79). NOD2 responds in vitro to viral ssRNA and in vivo to viruses

that express ssRNA during viral infection (70). This response

involves binding of ssRNA to NOD2, followed by translocation of

NOD2 to the mitochondria, which fosters interaction with the

adaptor protein MAVS (mitochondrial anti-viral signaling) via the

CARD and NBD domains of NOD2. This interaction leads to

interferon regulatory factor-3 (IRF-3) activation in a TRAF-
FIGURE 3

RIPK2 dependent and independent signal transduction in response to pathogen-associated molecular patterns. RIPK2-dependent – activation of
NOD1 and NOD2 by peptidoglycan (PGN) components typically leads to recruitment of RIPK2. PGN can enter the cytosol via several mechanisms.
This includes co-delivery with injected bacterial effector proteins or the fusion of bacterial outer membrane vesicles with host cells. PGN shed by
bacteria can also be delivered to the cytosol by a variety of solute carrier channels (SLC15A family members) residing in the plasma membrane,
endosomes, and phagosomes. Binding of RIPK2 to NOD1 and NOD2 results in its phosphorylation and polyubiquitination by TRAF2 and other E3
ligases. This, in turn, can result in the polyubiquitination of NEMO, leading to NF-kB phosphorylation and transit to the nucleus. Tab2/3 and Tak1
recruitment and activation transduces a signal to map kinase family members, further potentiating pro-inflammatory gene induction through c-Jun
and AP-1. Invasive bacterial species can induce damage to the bacteria containing vacuole and release PGN. This event has been described as
recruiting NOD proteins and the autophagy scaffold ATG16L1. RIPK2-independent – this response is described as occurring in the absence of RIPK2.
In addition to PGN, NOD1 and NOD2 bind to ssRNA from RNA viruses and induce upregulation of interferon through MAVS and the transcription
factors IRF3 and IRF7.
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dependent manner and induction of IFNb production (70, 80).

Although NOD1 was not as responsive to ssRNA as NOD2, it can

also induce IFN signaling via MAVS in epithelial cells (81, 82).

NODs have also been described to activate autophagic

responses, but whether this absolutely requires RIPK2 is unclear.

Both NOD1 and NOD2 can detect intracellular bacteria and

activate host responses through an alternate pathway involving

the cell’s autophagic machinery. This induction of autophagy

depends on the interaction of NODs with the adaptor protein

ATG16L1 to promote the lysosomal degradation of the invading

microbe. However, NF-kB activation is not required. Studies by

Travassos et al. (83), and Cooney et al. (84) demonstrated the NOD-

mediated induction of autophagy, albeit by contrasting RIPK2-

independent and dependent pathways, respectively. Travassos et al.

provide evidence that NOD1 and NOD2 interact with ATG16L1 at

the plasma membrane in RIPK2-deficient cells (83). On the

contrary, Cooney et al. report that a NOD2-specific autophagic

response to PGN requires intact RIPK2 function (84), and

subsequent studies have also reported the importance of RIPK2

for NOD-dependent autophagy induction (85–87). Yet, the

presence of ATG16L1 has been shown to interfere with the

polyubiquitination of RIPK2 and thus limit NOD1- and NOD2-

induced NF-kB dependent cytokine expression (88, 89).

Collectively, these studies would suggest that NODs can engage

ATG16L1 independently of RIPK2 but that, under some

circumstances, downstream signaling is still initiated. Given that

ATG16L1 can function in both canonical autophagy as well as non-

canonical LC3-associated phagocytosis, perhaps some of the

discrepancies are that the NOD−ATG16L1 interaction can initiate

more than one type of response depending on the context and

cell type.
NODs and an ER stress-induced
inflammatory response

The endoplasmic reticulum (ER) contributes to protein

homeostasis by regulating protein folding, processing, and

transport. The aberrant accumulation of proteins overwhelms the

protein folding capacity of the ER, resulting in ER stress (90, 91).

The cell responds to ER stress by initiating unfolded protein

response (UPR), which is aimed at restoring ER proteostasis by

increasing the ability of ER to fold proteins properly, regulating

protein translation, and, if all else fails, inducing cell death (92–94).

The UPR also contributes to inflammation associated with diseases

such as Crohn’s disease (95, 96). Specifically, ER stress induced UPR

signaling is coupled with the activation of pro-inflammatory

pathways, mediated by NF-kB (96). Upon activation of UPR, the

ER stress sensor inositol-requiring enzyme 1a (IRE1a) (97) is

phosphorylated, resulting in the recruitment of the E3 ligase

TRAF2 and the kinase ASK1 to the ER membrane. The IRE1a/
TRAF2/ASK1 complex activates the inhibitor of nuclear factor

kappa-B kinase (IKK), which phosphorylates IkB leading to its

degradation and release of the p65 subunit (NF-kB/RelA), allowing

it to translocate into the nucleus and stimulate transcription of pro-
Frontiers in Immunology 05
inflammatory genes (98). Thus, the potential for crosstalk or

synergy between UPR and NOD signaling is apparent.

Beyond the potential convergence of signals, NOD1 and NOD2

have also been implicated in ER stress-induced UPR through IRE1a
in a TRAF2- and RIPK2-dependent manner (Figure 4) (99). Several

chemical inducers of UPR, including dithiothreitol and

thapsigargin, induce IL-6 production in a NOD-RIPK2-

dependent manner. Additionally, the Brucella abortus effector

protein VceC induces UPR due to its ability to bind and

sequester the ER chaperone BiP (100). Infecting cells with wild-

type B. abortus resulted in NODs and RIPK2-dependent NF-kB

activation, however these proinflammatory responses were notably

reduced with the VceC-deficient mutant. Importantly, treating mice

and cells with the chemical chaperone t-UDCA was able to reduce

ER stress and the NOD-RIPK2 activation of the NF-kB pathway

(99, 101). Mechanistically, how NODs sense ER stress in these

studies is unclear and has its limitations. Thapsigargin, a molecule

that reduces ER luminal Ca2+ leading to sustained cytosolic Ca2+,

resulted in cytokine production in epithelial cells that was only

partly dependent on NOD1 and NOD2. However, other ER stress

inducers that are not associated with changes in cytosolic Ca2+

levels, such as tunicamycin or the bacterial cytotoxin subtilase, that

also targets BiP, induced a pro-inflammatory response regardless of

NOD1 and NOD2 (102). The authors suggest that rather than UPR

directly activating NODs, endocytosis of trace amounts of PGN

present in serum stimulates NODs and that this process is

potentiated by high cytosolic Ca2+ and calcium release-activated

channels (102). Indeed, this is a possible confounder in many of the

NOD studies as, while vendors routinely report endotoxin levels,

they typically do not report levels of PGN or other PAMPs. Still, are

either of these mechanisms probable? Could sustained cytosolic Ca2

+,increase uptake of PGN, and prolong IRE1a activation and

TRAF2-mediated polyubiquitination of RIPK2 result in enhanced

NF-kB activation? Or could there be yet another signal? In this

regard, a general marker and messenger of cell stress, sphingosine-

1-phosphate (S1P), was recently shown to bind to the NBD region

of both NOD1 and NOD2, triggering downstream NF-kB
activation and the induction of pro-inflammatory cytokines (103).

Numerous cellular stresses impact a variety of cytoskeletal elements

and organelles, resulting in this S1P-mediated response, including

the ER stresses tunicamycin and thapsigargin. Whether this

response also occurs with DTT and the bacterial effectors VceC

and subtilase remains to be examined.
Post-translational modifications of
NOD1 and NOD2

S-acylation and NOD-mediated
immune signaling

NOD1 and NOD2 are mainly soluble in the cytosol, yet a small

fraction of both is associated with the plasma membrane in

unstimulated cells. Upon intracellular infection, both microbial

sensors are rapidly redistributed to bacteria-containing phagosomes
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and endosomal compartments to transduce signals in response to

PGN (26, 28, 29, 32). Both proteins lack a transmembrane region and

traditional lipid-binding motifs. Instead, the post-translational

addition of fatty acids, specifically S-acylation, is required for

membrane targeting and subsequent signaling in response to PGN

detection (104, 105) (Figure 5). S-acylation of NOD1 was mapped to

three cysteine residues Cys558, 567, and 952, whereas NOD2 is

modified at Cys395 and 1033 (Figure 5). The addition of palmitate or

potentially other fatty acids, mediated by the zinc finger DHHC-type

palmitoyl transferase 5 (zDHHC5) enzyme, results in NOD proteins

with an increased affinity for the plasma membrane. To date, the

specific identity of the fatty acid attached to NODs has not been

identified but a recent study demonstrated that zDHHC5 has a strong

preference of palmitate over other fatty acids tested (106) Cys to Ser

mutants of NODs lacking acylation are completely soluble and are

unable to induce NF-kB signaling in response to PGN (105, 106).

Following the internalization of bacteria, both zDHHC5 and the

NODs are recruited to the bacteria-containing phagosomes, a feature

absent in the zDHHC5-deficient macrophage (104). Furthermore, the

presence of zDHHC5 and SLC15 channels on nascent phagosomes

may help NODs locally detect PGN and induce signals.

Still, a complete picture of how NODs are recruited to

intracellular membranes remains to be fully elucidated. It was

also determined that many human NOD2 mutations associated

with Crohn’s disease are inefficiently acylated, explaining their loss-

of-function phenotype. Conversely, the C495Y mutant associated

with Blau Syndrome displays hyper-acylation in the absence of

peptidoglycan while stimulating inflammatory signaling. Restoring

the acylation levels of the NOD2 C495Y to baseline reduced the

pro-inflammatory signaling in cells. Thus, manipulating the levels

of NOD2 acylation could be beneficial for treating Blau syndrome.
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NOD proteostasis – further roles of
ubiquitination and chaperones

In addition to S-acylation, NOD-mediated signaling is

modulated by post-translational ubiquitination. Downregulation

of NOD2-induced NF-kB signaling is accomplished through the

recruitment of multiple ubiquitin ligases and ubiquitin-editing

enzymes. NOD2, but not NOD1, is polyubiquitinated at steady

state (107). The E3 ubiquitin ligase TRIM27 binds to NOD2 via the

NBD domain and induces K48-linked polyubiquitination, which

targets NOD2 for degradation by the 26S proteasome (107), while

TRIM22, another E3 ubiquitin ligase, mediates the K63-linked

polyubiquitination of NOD2 that is required for the activation of

NOD2 signaling, but not its degradation (108). SQSTM1/p62 is an

autophagic cargo receptor that recognizes ubiquitinated cargoes,

including organelles and protein aggregates, including NOD2 (109).

NOD2 S-acylation by zDHHC5 attenuates the interaction between

NOD2 and cargo receptor SQSTM1/p62. This autophagic

degradation of NOD2 is crucial for avoiding an excessive NOD2-

mediated response. Ultimately, SQSTM1/p62 provides a negative

feedback mechanism for NOD2 signaling and ensures appropriate

response during host defense.

The assembly and stability of NOD1/2-RIPK2 complexes

require the heme-regulated inhibitor (HIR), an eIF2a kinase, and

the associated heat shock protein, HSPB8A to promote the

solubility of NOD1 oligomers (110). HSPs are also involved in

NODosome assembly (111), and are required for both NOD1- and

NOD2-mediated NF-kB activation (112, 113). Genetic silencing

and small molecule inhibitor studies demonstrated that HSP90 is

important for the stability of NOD1 and NOD2 in MCF-7 cells

(114). Furthermore, overexpression of HSP70 increases NF-kB
FIGURE 4

ER stress pathways and NOD activation. Several small molecules and bacterial proteins are known to induce ER stress and activate NOD proteins.
Depletion of the ER calcium stores using thapsiagargin, fatty acids, and dithiothreitol is known to activate NOD1/2. However, this may be explained,
at least in part, by the sustained increase in cytosolic calcium resulting in enhanced uptake of PGN from the extracellular fluid. Sphingosine 1-
phosphate a molecule produced in response to numerous cell stresses, binds to NOD1 and NOD2 leading to upregulation of IL-6 and IL-8.
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activity following NOD2 ligand-mediated stimulation, whereas

HSP70 knockdown reduced NF-kB signaling (115). Analysis of

NOD2 protein levels demonstrated that HSP70 acts to stabilize the

NOD2 protein, as low HSP70 levels reduced the half-life of NOD2.

The association between HSP90 and NOD2 was reproduced by Lee

et al. (116), who confirmed its importance for NOD2 stability.

HSP90 was suggested to act as part of a negative feedback loop,

wherein activation of NOD2 causes its dissociation from HSP90,

leading to recognition by SOCS3 and a yet-to-be-identified E3 ligase

ultimately leading to proteasome-dependent degradation (116).

Several of the described protein interactions and ubiquitination

act as negative feedback mechanisms to fine-tune or attenuate

inflammatory signaling. The E3 ligase TRAF4 binds directly to

NOD2 to inhibit the activation of NF-kB, creating a negative

feedback loop (117, 118). Erbin, an LRR domain-containing

protein that is localized to the plasma membrane, binds to NOD2

through an interaction involving the Erbin LRR and the NOD2

CARD domains (119). Downregulation of Erbin enhances MDP-

induced NOD2-dependent NF-kB activation, indicating that Erbin

is also involved in the negative regulation of NOD2.
Roles of O-GlcNAcylation in
protein stability

O-GlcNAcylation of NOD2 is a non-canonical glycosylation

that involves the attachment of O-N-acetylglucosamine (O-

GlcNAc) moieties to Ser and Thr residues. This dynamic

modification is mediated by two enzymes: O-GlcNAc transferase

(OGT) catalyzes the attachment of O-GlcNAc to NOD2, while O-

GlcNAcase (OGA) hydrolyzes O-GlcNAc and returns NOD2 to its

unmodified state. Notably, when treated with the OGA inhibitor
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Thiamet G, NOD2’s O-GlcNAcylation levels increased. This

elevation had a dual effect: it bolstered the stability of NOD2 and

amplified NOD2-mediated NF-kB signaling in response to MDP

stimulation (120). Interestingly, Crohn’s disease-associated mutant

forms of NOD2, namely R702W and 3020insC, exhibit diminished

protein stability. Intriguingly, O-GlcNAcylation has been shown to

counteract this instability and promote downstream NF-kB activity

when subjected to TNF-a and MDP stimulation (120). Like NOD2,

O-GlcNAcylation also stabilizes NOD1 and enhances its signal

transduction capability (121). While O-GlcNAcylation has been

validated as a mechanism that augments NOD1/2 signaling by

fortifying protein stability, the specific O-GlcNAcylation sites

remain unidentified.
Small G-proteins activation, actin dynamics
and NOD recruitment

Several small Rho family G-proteins Rac1, Ccd42, or RhoA lead

to the assembly of the NODosome at the plasma membrane (122).

Furthermore, several secreted bacterial effector proteins result in

prolonged activation of small Rho GTPases and NOD signaling

pathways (112, 119, 123–125). Mechanistically, the Rho family

GTPase could facilitate the activation of NODs in two non-

exclusive ways. First, the Rho family member could recruit more

NOD1/2 to the plasma membrane or endosomes through direct

protein interactions. Second, stimulation of Rho family G-proteins

can lead to cytoskeletal rearrangement and the subsequent

internalization of pathogens or PAMPs into the host cell (126–

128). The relative importance of these two possibilities is unclear,

yet the activation of the G-proteins in these circumstances leads to

proinflammatory responses (129). The membrane localization of
FIGURE 5

Aberrant S-palmitoylation of NOD2 in Crohn’s disease and Blau Syndrome. Loss-of-function mutations in NOD2 predispose individuals to developing
Crohn’s disease, whereas gain-of-function mutations result in Blau syndrome and early-onset sarcoidosis. NOD2 loss-of-function mutations manifests in a
variety of ways, including an inability to bind RIPK2 or PGN. NOD2 also contains two essential S-palmitoylation sites for its functionality, and several of the
Crohn’s associated NOD2 mutant proteins are hypo-palmitoylated. Conversely, one extensively studied Blau syndrome mutation, NOD2C495Y displays
enhanced levels of S-palmitoylation. S-palmitoylation of NOD2, and NOD1, is catalyzed by the protein palmitoyltransferase zDHHC5. S-palmitoylation is a
reversible post-translational modification, however the acyl thioesterase(s) that mediate fatty acid removal from NODs have not been identified. The
current evidence suggests that both hypo- and hyper-palmitoylation of NOD2 results in aberrant signal transduction.
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small Rho GTPases is essential for their ability to activate the

NODosome because a constitutively active form of Rac1 lacking its

prenyl-group is unable to activate NOD1 (112). Altogether, this

indicates that the association of NODs with Rho GTPases is a

possible contributor of NOD recruitment to the plasma membrane.

Whether this requires the S-acylation of NOD1 and NOD2 or

whether the hyperactivation of small G-proteins can bypass this

requirement has yet to be determined.

NOD1 is recruited to membrane ruffles by a complex consisting

of Rac1, CDC42, and Hsp90 (112, 130). Rac1 and NOD2 co-localize

at membrane ruffles, while Rac2 and NOD2 colocalize with RIPK2

at ruffles; however, if Rac1 is knocked down, NOD2 membrane

localization is abrogated (112, 131–133). Like NODs, the small Rho

GTPase Rac2 colocalizes with RIPK2 at membrane ruffles (131,

134). These interactions may reinforce the idea that the actin

cytoskeleton recruits NODs as Rac1 modulates actin in cell

movement and membrane protrusions (135). NOD2 also

colocalizes with GEF-H1, a GEF for RhoA (136). The finding that

activation of Rac1/2, Cdc42, and RhoA trigger NOD signaling and

NODosome assembly is significant as small Rho GTPases are well-

known targets of bacterial virulence factors (137).

Type III secretion systems (T3SSs) of enteric pathogens inject

effectors activate small Rho GTPases. Some examples include

Salmonella Typhimurium inositol phosphatase/phosphotransferase

SopB, which activates Cdc42 (138–140), Escherichia coli ESpM2

which activates RhoA (141) and Cytotoxic Necrotizing Factor 1

which activates Rac1 (142–144). Furthermore, Campylobacter jejuni

secretes Campylobacter invasion antigens that ultimately

translocated into the cytosol of host cells (145), contributing to

the activation of Rac1 (146). The S. Typhimurium T3SS effector

SipA has actually been shown to activate NOD-dependent NF-kB
signaling (133). In a NOD1- and RhoA-dependent manner, Shigella

flexneri T3SS effectors OspB and IpgB2 induce membrane ruffling

resulting in the recruitment of GEF-H1 and downstream NF-kB
signaling (147, 148). More specifically, it has been demonstrated

that SopE introduces membrane ruffles and recruits the NOD1 into

a multiprotein complex containing SopE, Rac1, Cdc42, and Hsp90

at the host cell membrane (112, 130).
Adjuvant activity of NOD signaling and
links to adaptive immunity

Impairment of NOD1 and NOD2 activity in some infections

abrogated innate and adaptive immune responses (149, 150). Innate

sensing of PGNs by NOD1 primes antigen-specific T cell immunity

and the resultant antibody response (151). NOD ligands may also

enhance B and T cell activation after the engagement of their

respective receptors (152–154). MDP-stimulated NOD2 can drive

the production of B lymphocyte chemoattractant in an NF-kB
inducing kinase-dependent manner (155). In human tonsillar B

cells, iE-DAP or MDP was insufficient to trigger B cell activation or

proliferation, but the combination of these ligands and IgM or IgD

stimulation resulted in enhanced cellular proliferation and

induction of cell surface markers, as well as prolonged survival

(152). Peripheral B cells were activated by NOD1 and NOD2
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ligands, while tonsillar B cells responded solely to NOD1. CD3+

human tonsillar T cells stimulated with either NOD1 or NOD2

ligands alone or after TCR activation with anti-CD3/CD28 failed to

induce cellular proliferation or T-cell cytokine production.

However, anti-CD3 stimulation followed by NOD1 ligand did

enhance IFNg production in CD3+ T cells (154).

Both NOD1 and NOD2 promote thymic s tromal

lymphopoietin protein production and upregulate OX40 ligand

surface expression, both promoting Th2 immunity (156, 157).

Mice immunized with the NOD1 agonist FK156 and ovalbumin

(OVA) demonstrated an enhanced Th2 polarized antigen-specific

response (151). Immunization of mice with MDP and OVA results

in a Th2 polarized antigen-specific T and B cell response that was

NOD2-dependent (156, 158). The NOD2-induced antigen-specific

immune response consists of a Th2-type polarization profile that is

characterized by IL-4 and IL-5 and IgG1 Ab responses (158).

NOD signaling is also critical for cross-priming in dendritic

cells (DCs), as exposure of NOD ligands to mice increased cross-

presentation by enhancing antigen presentation and costimulatory

molecule expression in DCs (159). Additionally, NOD2 was shown

to trigger CD4- DC maturation, and CD4+ DCs showed 10-fold

higher NOD2 mRNA than CD4- CDs (160). Additionally, mice

deficient in NOD1 (151) or NOD2 (149) exhibited reduced IFNg
levels and decreased antibody production. NOD1-/- mice had

reduced amounts of CD4+ and CD8+ cells (151). Similarly,

NOD2 -/- mice showed a lack of CD4+ cells and impaired

production of IL2 (149). Furthermore, RIPK2 modulates the

activation of CD11cintCD11b+ DCs in the spleen upon NOD

activation (161). adjuvants and their effects on DC maturation

markers, yet it is important to acknowledge the extensive body of

research on the synergistic interactions between NOD and TLR

signaling pathways (162). One compelling example can be seen in

the cooperation between NOD2 and TLR2 agonists in inducing

CD80, CD83, CD86, and major histocompatibility complex class II

(MHC II) molecules in human monocyte-derived DCs (163).

However, due to the extensive nature of NOD/TLR interactions

and their implications in immunology, a comprehensive discussion

of these interactions is beyond the scope of this review.

Moreover, NOD1 and NOD2 stimulation induces an increased

expression of MHC II proteins on the surface of APCs (83, 87, 164).

NOD2-induced autophagy in DCs is required for MHC-II antigen

presentation and antigen-specific CD4+ T cell responses (84). This

requires the fusion of autophagosomes with multivesicular MHC

class II-loading compartments in APCs (165).

One of the more well-known ways in which NODs contribute to

adaptive immunity is the adjuvant activity of MDP and its

derivatives. Specifically, muropeptides express strong synergy with

other ligands, eliciting a stronger immune response together. NOD2

enhances the production of IgG1-type antibodies to T-cell-

dependent antigens (166), which means MDP can be used as an

adjuvant to increase antibody production, boosting the potency of

therapeutic molecules (167). In this way, muropeptides drive the

expression of surface markers necessary for cell adhesion and

antigen presentation, increasing phagocytic and anti-pathogenic

activity and amplifying cytokine production (168–170). Adjuvant

MDP synergizes with IL2, IL4, and LPS (170, 171). Priming mice
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with MDP increased resistance to microbial infection and enhanced

cytokine release (172, 173). Muropeptides increase IFNg,
stimulating the differentiation and proliferation of lymphocytes

(170, 171, 174). In fact, pre-stimulation of NOD2 with bacterial

ligands improved the ability of dendritic cells (DCs) to prime virus-

specific CD8+ T cells in the context of influenza A virus infection

(80). Muropeptides and MDP derivatives are also studied to boost

immune responses for clinical purposes.
NODs in inflammatory disease states

NOD1 and NOD2 have been implicated in both acute and

chronic inflammatory diseases (2, 19, 20), most recent of which

includes Whipple disease (175) and SARS-CoV-2 (176). Mutations

and single nucleotide polymorphisms of NOD2 create a genetic

predisposition for autoimmune (Crohn’s disease (177, 178)) and

autoinflammatory diseases (Blau syndrome (179), Yao syndrome

(180), early-onset sarcoidosis (181), and atopic disorders (182)).

Genetic variations in NLRC1 (NOD1), though not serving as direct

genetic markers of disease, may be more closely associated with an

elevated susceptibility to ulcerative colitis, arthritis, asthma, and

Behçet’s syndrome (183). Polymorphisms in NLRC2 (NOD2) are

the strongest known genetic risk factors in the development of

Crohn’s disease (178). Three common NOD2 variants (R702W,

G908R, and 3020insC) are linked to the development of Crohn’s

disease (177, 184).

However, the mechanisms by which NOD2 variants contribute

to disease pathogenesis remain incompletely understood but

involves both genetic and environmental components. NOD2 is

highly expressed in Paneth cells and responsible for the expression

and secretion of anti-microbial peptides such as b-defensin 2 (185).

It is believed that a reduction of antimicrobial peptides causes

dysbiosis, which leads to the recruitment of pro-inflammatory

immune cells and a shift towards more pathogenic bacteria. To

better understand the disease, several NOD2 loss-of-function mouse

lines have been generated to elucidate its role in Crohn’s disease and

Blau Syndrome (186–188). NOD2-deficient mice display increased

susceptibility to bacterial infection while spontaneous intestinal

inflammation is consistently absent in NOD2-/- mice or knock-in

mice (166, 188, 189). The challenges associated with developing a

robust animal model have hindered some of the progress in this

field. Instead, there has been a move towards using more patient-

derived samples and 3D cell culture models to complement in vitro

and 2D culture models.

NOD2 mutations associated with Crohn’s disease tend to be

confined to the LRR domain and have been shown to abrogate MDP

detection and activation of NF-kB in transient transfection

experiments (190). Additionally, monocytes from Crohn’s disease

patients with the 3020insC frameshift mutation display defects in

the secretion of TNFa, IL-6, IL-8, and IL-10 (191, 192). Together

these studies suggest that Crohn’s disease-linked mutations result in

a loss-of-function phenotype. However, Crohn’s disease has also

been associated with the presence of activated NF-kB and

inflammatory NF-kB target gene products in epithelial cells and

lamina propria macrophages (193, 194), resulting in a protracted
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controversy as to whether Crohn’s disease-linked mutations in

NOD2 diminish or enhance its activity in the context of the disease.

Blau syndrome is associated with apparent NOD2 gain-of-

function mutations rather than a loss-of-function typically

observed for Crohn’s disease. In the context of Blau syndrome,

NOD2 mutations are primarily confined to the NBD region,

resulting in an overactivation of the NOD2 phenotype (179, 195,

196). These mutations have been shown to increase NF-kB activity

independent of MDP (197). However, complementary mutations in

NOD1 do not reflect the same phenotypic expression, suggesting

that activation and regulation of NOD1 and NOD2 proceed by

distinct mechanisms (196). While most NOD2 mutations

associated with Blau syndrome development are thought to be

gain-of-function, there are also reports pointing to NOD2 loss-of-

function in Blau syndrome development. Notably, in animal model

experiments, mice carrying the Blau syndrome R314Q mutation do

not develop the disease but instead, show decreased MAPK and NF-

kB activation and reduced levels of circulating inflammatory

cytokines despite MDP stimulation (187).

Yao syndrome, formerly broadly referenced as NOD2-

associated autoinflammatory disease, is a genetically complex

multifactorial disease characterized by periodic fever, dermatitis

and inflammatory arthritis and gastrointestinal symptoms without

inflammatory bowel disease (198). Recently, specific NOD2 variants

(IVS8 + 158 and R702W), have been linked to Yao syndrome (70,

180, 199). Other rarer NOD2 variants have also been identified at a

low frequency in the disease (200) and several of these NOD2

variants are common to CD and have been demonstrated to impair

NOD2 function in vitro (184, 200, 201). Autoinflammatory diseases

like Yao disease may remain silent until an exogenous trigger

activates the pathway (199, 202, 203), and are often polygenetic

and may require several mutations to act in concert. While NOD2

variants are a characteristic genotypic feature of Yao disease, it

remains unclear how NOD2 dysfunction influences inflammation

or disease progression.

Circulating monocytes from patients with type 2 diabetes have

increased expression of both NOD1 and NOD2 as well RIPK2 and

NF-kB (204). Feeding mice a high-fat diet (HFD) used to mimic a

Western diet, results in weight gain and upregulation of both NOD1

and NOD2 (205, 206) and mice on an HFD regimen also induces

insulin resistance and chronic low-grade inflammation. The NOD1/

2-/- double knockout (DKO) mice, when fed an HFD, were

protected from many of the detrimental effects, including

inflammation, lipid accumulation, and peripheral insulin

resistance (207).

Given that NOD1 and NOD2 have different ligands and tissue

distribution, subsequent studies interrogated the role of each

individually. Like the DKO, the NOD1-/- mice were resistant to

the development of HFD-induced metabolic syndrome (208), and

this effect was mediated by both hematopoietic and non-

hematopoietic cells (209). Further support for the role of NOD1

in response to the HFD diet was obtained by injecting mice with the

NOD1 ligand tetra-DAP, which was sufficient to cause whole-body

insulin resistance and reduced glucose clearance (208). Importantly,

this NOD1 activation and NOD2 activation effects were lost in

RIPK2-lacking animals (210).
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In contrast, to the role of NOD1 in promoting metabolic

syndrome, NOD2 was demonstrated to counteract it. For

instance, the NOD2-/- displayed both increased inflammation and

impaired insulin signaling in response to HFD (211). Alternatively,

both a prophylactic and treatment regimen of MDP in HFD fed

mice improved insulin sensitivity and glucose tolerance (212). As

mentioned in the previous paragraph, the NOD2 effect required

functional RIPK2 and was mediated in part by the transcription

factor IRF4 (212) which is known to have anti-inflammatory

pathways in the liver and adipose tissues (213). However, like

Crohn’s disease, dysbiosis and impaired barrier function in

animals without NOD2 allow bacteria to disseminate from the

gut to the liver and adipose tissue (211), a feature that has been

recapitulated using biopsy samples including liver, various adipose

tissue, and plasma in persons with type 2 diabetes (214).

Collectively, these results highlight the importance of microbe

sensing, barrier function, inflammation, and metabolism.

Remarkably, a recent study has also demonstrated that NOD2

activation can support insulin production and signaling in

undernourished infant mice, adding yet another layer of

complexity to this system (215).
Concluding remark

In the 20+ years since the discovery of NOD1 and NOD2,

various studies have highlighted both their importance and the

complexity of these proteins. The inherent complexity of these

proteins and their signal transduction pathway is found not only at

the protein level but also at the cellular and whole-body levels,

including the shaping of the microbiome. Many questions remain

unresolved, including the structural regulation and assembly of the

NODosome, the relative importance of the numerous protein

binding partners and how NODs may contribute to sensing ER

stress and the UPR. Furthermore, while much of the work has been

studied from the perspective of PGN detection and signaling, the

specific roles of NODs in other pathways and potential crosstalk

with other inflammatory and anti-viral pathways remains a fruitful

area for further study.
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11. Girardin SE, Jéhanno M, Mengin-Lecreulx D, Sansonetti PJ, Alzari PM, Philpott
DJ. Identification of the critical residues involved in peptidoglycan detection by nod1. J
Biol Chem (2005) 280(46):38648–56. doi: 10.1074/jbc.M509537200
frontiersin.org

https://BioRender.com
https://doi.org/10.1111/j.1600-065X.2008.00734.x
https://doi.org/10.3389/fimmu.2013.00333
https://doi.org/10.1042/BSR20181709
https://doi.org/10.3349/ymj.2011.52.3.379
https://doi.org/10.1016/j.immuni.2008.02.005
https://doi.org/10.1016/j.immuni.2008.02.005
https://doi.org/10.1074/jbc.274.19.12955
https://doi.org/10.1074/jbc.M008072200
https://doi.org/10.1074/jbc.274.21.14560
https://doi.org/10.1177/1753425910394002
https://doi.org/10.1074/jbc.M112.344283
https://doi.org/10.1074/jbc.M509537200
https://doi.org/10.3389/fimmu.2023.1242659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dixon et al. 10.3389/fimmu.2023.1242659
12. Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T. Crystal structure of NOD2
and its implications in human disease. Nat Commun (2016) 7(1):11813. doi: 10.1038/
ncomms11813

13. Schaefer AK, Melnyk JE, Baksh MM, Lazor KM, Finn MG, Grimes CL.
Membrane association dictates ligand specificity for the innate immune receptor
NOD2. ACS Chem Biol (2017) 12(8):2216–24. doi: 10.1021/acschembio.7b00469

14. Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, et al. Crystal structure of NLRC4
reveals its autoinhibition mechanism. Science (2013) 341(6142):172–5. doi: 10.1126/
science.1236381

15. Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, et al. An induced
proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling
pathways. J Biol Chem (2000) 275(36):27823–31. doi: 10.1074/jbc.M003415200

16. Rivers SL, Klip A, Giacca A. NOD1: an interface between innate immunity and
insulin resistance. Endocrinology (2019) 160(5):1021–30. doi: 10.1210/en.2018-01061

17. Al Nabhani Z, Dietrich G, Hugot J-P, Barreau F. Nod2: The intestinal gate
keeper. PloS Pathogens (2017) 13(3):e1006177. doi: 10.1371/journal.ppat.1006177

18. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved
in host defense and Crohn's disease. Mucosal Immunol (2011) 4(5):484–95.
doi: 10.1038/mi.2011.29

19. Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host
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RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive
immune systems. Nature (2002) 416(6877):194–9. doi: 10.1038/416194a

68. McCarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappaB-activating and cell
death-inducing kinase. J Biol Chem (1998) 273(27):16968–75. doi: 10.1074/
jbc.273.27.16968

69. Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE. The
Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin
Immunopathol (2007) 29(3):289–301. doi: 10.1007/s00281-007-0083-2

70. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, et al.
Activation of innate immune antiviral responses by Nod2. Nat Immunol (2009) 10
(10):1073–80. doi: 10.1038/ni.1782

71. Yeretssian G, Correa RG, Doiron K, Fitzgerald P, Dillon CP, Green DR, et al.
Non-apoptotic role of BID in inflammation and innate immunity. Nature (2011) 474
(7349):96–9. doi: 10.1038/nature09982

72. Riedl SJ, Salvesen GS. The apoptosome: signalling platform of cell death. Nat Rev
Mol Cell Biol (2007) 8(5):405–13. doi: 10.1038/nrm2153

73. Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the
structural and mechanistic principles of these molecular machines. Critical reviews in
biochemistry and molecular biology. Crit Rev Biochem Mol (2021) 57(2):156–87.
doi: 10.1080/10409238.2021.1979460

74. Leber JH, Crimmins GT, Raghavan S, Meyer-Morse NP, Cox JS, Portnoy DA.
Distinct TLR- and NLR-mediated transcriptional responses to an intracellular
pathogen. PloS Pathog (2008) 4(1):e6. doi: 10.1371/journal.ppat.0040006

75. Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, et al. NOD2,
RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium
tuberculosis. PloS Pathog (2009) 5(7):e1000500. doi: 10.1371/journal.ppat.1000500

76. Fan YH, Roy S, Mukhopadhyay R, Kapoor A, Duggal P, Wojcik GL, et al. Role of
nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human
cytomegalovirus control in vitro and in vivo. Proc Natl Acad Sci USA (2016) 113(48):
E7818–e27. doi: 10.1073/pnas.1611711113

77. Watanabe T, Asano N, Fichtner-, Gorelick PL, Tsuji Y, Matsumoto Y, et al.
NOD1 contributes to mouse host defense against Helicobacter pylori via induction of
type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest (2010) 120
(5):1645–62. doi: 10.1172/JCI39481

78. Seth RB, Sun L, Chen ZJ. Antiviral innate immunity pathways. Cell Res (2006) 16
(2):141–7. doi: 10.1038/sj.cr.7310019

79. Coutermarsh-Ott S, Eden K, Allen IC. Beyond the inflammasome: regulatory
NOD-like receptor modulation of the host immune response following virus exposure.
J Gen Virol (2016) 97(4):825–38. doi: 10.1099/jgv.0.000401

80. Lupfer C, Thomas PG, Kanneganti TD. Nucleotide oligomerization and binding
domain 2-dependent dendritic cell activation is necessary for innate immunity and
optimal CD8+ T Cell responses to influenza A virus infection. J Virol (2014) 88
(16):8946–55. doi: 10.1128/JVI.01110-14

81. Vegna S, Gregoire D, Moreau M, Lassus P, Durantel D, Assenat E, et al. NOD1
participates in the innate immune response triggered by hepatitis C virus polymerase. J
Virol (2016) 90(13):6022–35. doi: 10.1128/JVI.03230-15

82. Wu XM, Zhang J, Li PW, Hu YW, Cao L, Ouyang S, et al. NOD1 promotes
antiviral signaling by binding viral RNA and regulating the interaction of MDA5 and
MAVS. J Immunol (2020) 204(8):2216–31. doi: 10.4049/jimmunol.1900667

83. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG, et al.
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at
the site of bacterial entry. Nat Immunol (2010) 11(1):55–62. doi: 10.1038/ni.1823

84. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2
stimulation induces autophagy in dendritic cells influencing bacterial handling and
antigen presentation. Nat Med (2010) 16(1):90–7. doi: 10.1038/nm.2069

85. Anand PK, Tait SW, LamkanfiM, Amer AO, Nunez G, Pagès G, et al. TLR2 and
RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-
regulated kinase (ERK) activation. J Biol Chem (2011) 286(50):42981–91. doi: 10.1074/
jbc.M111.310599
Frontiers in Immunology 12
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113. Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J. A crucial function of
SGT1 and HSP90 in inflammasome activity links mammalian and plant innate
immune responses. Nat Immunol (2007) 8(5):497–503. doi: 10.1038/ni1459

114. da Silva Correia J, Miranda Y, Leonard N, Ulevitch R. SGT1 is essential for
Nod1 activation. Proc Natl Acad Sci USA (2007) 104(16):6764–9. doi: 10.1073/
pnas.0610926104

115. Mohanan V, Grimes CL. The molecular chaperone HSP70 binds to and
stabilizes NOD2, an important protein involved in Crohn disease. J Biol Chem
(2014) 289(27):18987–98. doi: 10.1074/jbc.M114.557686

116. Lee KH, Biswas A, Liu YJ, Kobayashi KS. Proteasomal degradation of Nod2
protein mediates tolerance to bacterial cell wall components. J Biol Chem (2012) 287
(47):39800–11. doi: 10.1074/jbc.M112.410027

117. Marinis JM, Homer CR, McDonald C, Abbott DW. A novel motif in the
Crohn's disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate
immune responses. J Biol Chem (2011) 286(3):1938–50. doi: 10.1074/jbc.M110.189308

118. Marinis JM, Hutti JE, Homer CR, Cobb BA, Cantley LC, McDonald C, et al. IkB
kinase a phosphorylation of TRAF4 downregulates innate immune signaling. Mol Cell
Biol (2012) 32(13):2479–89. doi: 10.1128/MCB.00106-12

119. McDonald C, Chen FF, Ollendorff V, Ogura Y, Marchetto S, Lécine P, et al. A
role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J Biol Chem
(2005) 280(48):40301–9. doi: 10.1074/jbc.M508538200

120. Hou CW, Mohanan V, Zachara NE, Grimes CL. Identification and biological
consequences of the O-GlcNAc modification of the human innate immune receptor,
Nod2. Glycobiology (2016) 26(1):13–8. doi: 10.1093/glycob/cwv076

121. Drake WR, Hou CW, Zachara NE, Grimes CL. New use for CETSA:
monitoring innate immune receptor stability via post-translational modification by
OGT. J Bioenerg Biomembr (2018) 50(3):231–40. doi: 10.1007/s10863-018-9754-z

122. Perona R, Montaner S, Saniger L, Sánchez-Pérez I, Bravo R, Lacal JC.
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Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
Nature (2001) 411(6837):599–603. doi: 10.1038/35079107

178. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A
frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature
(2001) 411(6837):603–6. doi: 10.1038/35079114

179. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S,
Häfner R, et al. CARD15 mutations in Blau syndrome. Nat Genet (2001) 29(1):19–20.
doi: 10.1038/ng720

180. Yao Q, Zhou L, Cusumano P, Bose N, Piliang M, Jayakar B, et al. A new
category of autoinflammatory disease associated with NOD2 gene mutations. Arthritis
Res Ther (2011) 13(5):R148. doi: 10.1186/ar3462

181. Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, et al.
LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting
opposing effects on linear ubiquitin in signaling complexes. Cell Rep (2015) 13
(10):2258–72. doi: 10.1016/j.celrep.2015.11.009

182. Macaluso F, Nothnagel M, Parwez Q, Petrasch-Parwez E, Bechara FG, Epplen
JT, et al. Polymorphisms in NACHT-LRR (NLR) genes in atopic dermatitis. Exp
Dermatol (2007) 16(8):692–8. doi: 10.1111/j.1600-0625.2007.00589.x

183. Li L, Yu H, Jiang Y, Deng B, Bai L, Kijlstra A, et al. Genetic Variations of NLR
family genes in Behcet's Disease. Sci Rep (2016) 6:20098. doi: 10.1038/srep20098
Frontiers in Immunology 14
184. Chamaillard M, Philpott D, Girardin SE, Zouali H, Lesage S, Chareyre F,
et al. Gene-environment interaction modulated by allelic heterogeneity in
inflammatory diseases. Proc Natl Acad Sci USA (2003) 100(6):3455–60. doi: 10.1073/
pnas.0530276100

185. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schröder JM, Harder J. NOD2/
CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2.
J Biol Chem (2006) 281(4):2005–11. doi: 10.1074/jbc.M511044200

186. Kim YG, Shaw MH, Warner N, Park JH, Chen F, Ogura Y, et al. Cutting edge:
Crohn's disease-associated Nod2 mutation limits production of proinflammatory
cytokines to protect the host from Enterococcus faecalis-induced lethality.
J Immunol (2011) 187(6):2849–52. doi: 10.4049/jimmunol.1001854

187. Dugan J, Griffiths E, Snow P, Rosenzweig H, Lee E, Brown B, et al. Blau
syndrome-associated Nod2 mutation alters expression of full-length NOD2 and limits
responses to muramyl dipeptide in knock-in mice. J Immunol (2015) 194(1):349–57.
doi: 10.4049/jimmunol.1402330

188. Pauleau AL, Murray PJ. Role of nod2 in the response of macrophages to toll-
like receptor agonists. Mol Cell Biol (2003) 23(21):7531–9. doi: 10.1128/
MCB.23.21.7531-7539.2003

189. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2
mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing.
Science (2005) 307(5710):734–8. doi: 10.1126/science.1103685

190. Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tanabe T, et al. Crohn's
disease-associated NOD2 variants share a signaling defect in response to
lipopolysaccharide and peptidoglycan. Gastroenterology (2003) 124(1):140–6.
doi: 10.1053/gast.2003.50019

191. Netea MG, Kullberg BJ, de Jong DJ, Franke B, Sprong T, Naber TH, et al. NOD2
mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's
disease. Eur J Immunol (2004) 34(7):2052–9. doi: 10.1002/eji.200425229

192. van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM, Ahmad T, et al.
Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's
disease. Lancet (2005) 365(9473):1794–6. doi: 10.1016/S0140-6736(05)66582-8

193. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, et al. Nuclear factor
kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa.
Gastroenterology (1998) 115(2):357–69. doi: 10.1016/S0016-5085(98)70202-1

194. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B
inflammatory bowel disease. Gut (1998) 42(4):477–84. doi: 10.1136/gut.42.4.477

195. Girardelli M, Loganes C, Pin A, Stacul E, Decleva E, Vozzi D, et al. Novel NOD2
mutation in early-onset inflammatory bowel phenotype. Inflamm Bowel Dis (2018) 24
(6):1204–12. doi: 10.1093/ibd/izy061

196. Parkhouse R, Boyle JP, Monie TP. Blau syndrome polymorphisms in NOD2
identify nucleotide hydrolysis and helical domain 1 as signalling regulators. FEBS Lett
(2014) 588(18):3382–9. doi: 10.1016/j.febslet.2014.07.029

197. Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S,
et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-
kappaB activation: common genetic etiology with Blau syndrome. Blood (2005) 105
(3):1195–7. doi: 10.1182/blood-2004-07-2972

198. Esse I, Kincaid C, Horton L, Arnold JD, Mesinkovska NA. Yao syndrome:
Cyclical folliculitis, fevers, and abdominal pain. JAAD Case Rep (2023) 35:71–3.
doi: 10.1016/j.jdcr.2023.01.039

199. Yao Q. Nucleotide-binding oligomerization domain containing 2: structure,
function, and diseases. Semin Arthritis Rheumatol (2013) 43(1):125–30. doi: 10.1016/
j.semarthrit.2012.12.005

200. Yao Q, Shen M, McDonald C, Lacbawan F, Moran R, Shen B. NOD2-associated
autoinflammatory disease: a large cohort study. Rheumatol (Oxford) (2015) 54
(10):1904–12. doi: 10.1093/rheumatology/kev207

201. McDonald C, Shen M, Johnson EE, Kabi A, Yao Q. Alterations in nucleotide-
binding oligomerization domain-2 expression, pathway activation, and cytokine
production in Yao syndrome. Autoimmunity (2018) 51(2):53–61. doi: 10.1080/
08916934.2018.1442442

202. Trueb B, Zhuang L, Keller I, Köckritz LV, Kuchen S, Dufour JF, et al.
Coincidence of NOD2-associated autoinflammatory disease (Yao syndrome) and
HCV infection with fatal consequences: interaction between genes and environment.
J Clin Rheumatol (2021) 27(8s):S592–s4. doi: 10.1097/RHU.0000000000000963

203. Yao Q, Gorevic P, Shen B, Gibson G. Genetically transitional disease: a new
concept in genomic medicine. Trends Genet (2023) 39(2):98–108. doi: 10.1016/
j.tig.2022.11.002

204. Shiny A, Regin B, Balachandar V, Gokulakrishnan K, Mohan V, Babu S, et al.
Convergence of innate immunity and insulin resistance as evidenced by increased
nucleotide oligomerization domain (NOD) expression and signaling in monocytes
from patients with type 2 diabetes. Cytokine (2013) 64(2):564–70. doi: 10.1016/
j.cyto.2013.08.003

205. Zhao L, Hu P, Zhou Y, Purohit J, Hwang D. NOD1 activation induces
proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes. Am J
Physiol Endocrinol Metab (2011) 301(4):E587–98. doi: 10.1152/ajpendo.00709.2010

206. Martinez-Medina M, Denizot J, Dreux N, Robin F, Billard E, Bonnet R, et al.
Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host
barrier function favouring AIEC colonisation. Gut (2014) 63(1):116–24. doi: 10.1136/
gutjnl-2012-304119
frontiersin.org

https://doi.org/10.4049/jimmunol.177.2.1007
https://doi.org/10.4049/jimmunol.177.2.1007
https://doi.org/10.1002/eji.201040827
https://doi.org/10.1002/JLB.2RU0718-290R
https://doi.org/10.1189/jlb.0906588
https://doi.org/10.1016/j.it.2010.12.007
https://doi.org/10.1016/j.immuni.2006.10.018
https://doi.org/10.1126/science.1104911
https://doi.org/10.2174/157340711796817913
https://doi.org/10.1093/clinids/14.5.1100
https://doi.org/10.1016/S0162-3109(00)00195-8
https://doi.org/10.1016/S0162-3109(00)00195-8
https://doi.org/10.1016/0008-8749(90)90304-A
https://doi.org/10.1016/0008-8749(90)90304-A
https://doi.org/10.1074/jbc.M310556200
https://doi.org/10.7164/antibiotics.36.1059
https://doi.org/10.7164/antibiotics.36.1059
https://doi.org/10.7164/antibiotics.36.1059
https://doi.org/10.4049/jimmunol.135.1.684
https://doi.org/10.1093/rheumatology/kead372
https://doi.org/10.1016/j.clim.2022.109027
https://doi.org/10.1038/35079107
https://doi.org/10.1038/35079114
https://doi.org/10.1038/ng720
https://doi.org/10.1186/ar3462
https://doi.org/10.1016/j.celrep.2015.11.009
https://doi.org/10.1111/j.1600-0625.2007.00589.x
https://doi.org/10.1038/srep20098
https://doi.org/10.1073/pnas.0530276100
https://doi.org/10.1073/pnas.0530276100
https://doi.org/10.1074/jbc.M511044200
https://doi.org/10.4049/jimmunol.1001854
https://doi.org/10.4049/jimmunol.1402330
https://doi.org/10.1128/MCB.23.21.7531-7539.2003
https://doi.org/10.1128/MCB.23.21.7531-7539.2003
https://doi.org/10.1126/science.1103685
https://doi.org/10.1053/gast.2003.50019
https://doi.org/10.1002/eji.200425229
https://doi.org/10.1016/S0140-6736(05)66582-8
https://doi.org/10.1016/S0016-5085(98)70202-1
https://doi.org/10.1136/gut.42.4.477
https://doi.org/10.1093/ibd/izy061
https://doi.org/10.1016/j.febslet.2014.07.029
https://doi.org/10.1182/blood-2004-07-2972
https://doi.org/10.1016/j.jdcr.2023.01.039
https://doi.org/10.1016/j.semarthrit.2012.12.005
https://doi.org/10.1016/j.semarthrit.2012.12.005
https://doi.org/10.1093/rheumatology/kev207
https://doi.org/10.1080/08916934.2018.1442442
https://doi.org/10.1080/08916934.2018.1442442
https://doi.org/10.1097/RHU.0000000000000963
https://doi.org/10.1016/j.tig.2022.11.002
https://doi.org/10.1016/j.tig.2022.11.002
https://doi.org/10.1016/j.cyto.2013.08.003
https://doi.org/10.1016/j.cyto.2013.08.003
https://doi.org/10.1152/ajpendo.00709.2010
https://doi.org/10.1136/gutjnl-2012-304119
https://doi.org/10.1136/gutjnl-2012-304119
https://doi.org/10.3389/fimmu.2023.1242659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dixon et al. 10.3389/fimmu.2023.1242659
207. Schertzer JD, Tamrakar AK, Magalhães JG, Pereira S, Bilan PJ, Fullerton MD,
et al. NOD1 activators link innate immunity to insulin resistance. Diabetes (2011) 60
(9):2206–15. doi: 10.2337/db11-0004

208. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG,
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