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Background: In order to investigate the impact of Treg cell infiltration on the

immune response against pancreatic cancer within the tumormicroenvironment

(TME), and identify crucial mRNAmarkers associated with Treg cells in pancreatic

cancer, our study aims to delve into the role of Treg cells in the anti-tumor

immune response of pancreatic cancer.

Methods: The ordinary transcriptome data for this study was sourced from the

GEO and TCGA databases. It was analyzed using single-cell sequencing analysis

and machine learning. To assess the infiltration level of Treg cells in pancreatic

cancer tissues, we employed the CIBERSORT method. The identification of

genes most closely associated with Treg cells was accomplished through the

implementation of weighted gene co-expression network analysis (WGCNA).

Our analysis of single-cell sequencing data involved various quality control

methods, followed by annotation and advanced analyses such as cell trajectory

analysis and cell communication analysis to elucidate the role of Treg cells within

the pancreatic cancer microenvironment. Additionally, we categorized the Treg

cells into two subsets: Treg1 associated with favorable prognosis, and Treg2

associated with poor prognosis, based on the enrichment scores of the key

genes. Employing the hdWGCNA method, we analyzed these two subsets to

identify the critical signaling pathways governing their mutual transformation.

Finally, we conducted PCR and immunofluorescence staining in vitro to validate

the identified key genes.
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Results: Based on the results of immune infiltration analysis, we observed

significant infiltration of Treg cells in the pancreatic cancer microenvironment.

Subsequently, utilizing the WGCNA and machine learning algorithms, we

ultimately identified four Treg cell-related genes (TRGs), among which four

genes exhibited significant correlations with the occurrence and progression

of pancreatic cancer. Among them, CASP4, TOB1, and CLEC2B were associated

with poorer prognosis in pancreatic cancer patients, while FYN showed a

correlation with better prognosis. Notably, significant differences were found in

the HIF-1 signaling pathway between Treg1 and Treg2 cells identified by the four

genes. These conclusions were further validated through in vitro experiments.

Conclusion: Treg cells played a crucial role in the pancreatic cancer

microenvironment, and their presence held a dual significance. Recognizing

this characteristic was vital for understanding the limitations of Treg cell-targeted

therapies. CASP4, FYN, TOB1, and CLEC2B exhibited close associations with

infiltrating Treg cells in pancreatic cancer, suggesting their involvement in Treg

cell functions. Further investigation was warranted to uncover the mechanisms

underlying these associations. Notably, the HIF-1 signaling pathway emerged as a

significant pathway contributing to the duality of Treg cells. Targeting this

pathway could potentially revolutionize the existing treatment approaches for

pancreatic cancer.
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1 Introduction

Pancreatic cancer is a highly aggressive and malignant

gastrointestinal tumor, primarily located in the head of the

pancreas. Pancreatic ductal adenocarcinoma, originating from

pancreatic ductal cells, accounts for the majority of cases (> 90%)

(1). Several risk factors have been identified, including smoking (2),

obesity (3), alcohol intake (4), diabetes (5), family history (6), and

chronic pancreatitis (7), which contribute significantly to the

development of pancreatic cancer. Unfortunately, the prognosis

for pancreatic cancer is remarkably poor, with a mere 9% 5-year

survival rate (8), This disease is responsible for nearly the same

number of deaths (466,000) as the number of cases (496,000) (9).

Furthermore, based on a study encompassing 28 European

countries, pancreatic cancer is projected to surpass breast cancer

and become the third leading cause of cancer-related deaths by

2025, as its incidence remains relatively stable compared to the

declining incidence of breast cancer (10). Despite extensive research

efforts, the comprehensive understanding of the numerous

transcriptome changes occurring during pancreatic carcinogenesis

remains elusive. Hence, the identification of key mRNAs involved

in the pathogenesis of pancreatic cancer is crucial for unraveling its

underlying mechanisms.

Many factors influence tumor progression, such as drug

resistance and epigenetic changes in tumor cells (11, 12). The

tumor microenvironment plays a pivotal role in tumor
02
development (13–16). Cancer cells, through the secretion of

various cytokines, chemokines, and other substances, can actively

modulate their surroundings (17, 18). This functional alteration

leads to the reprogramming of neighboring cells, enabling them to

actively contribute to the tumor’s survival and growth (19, 20).

Immune cells constitute a critical component of the TME and

significantly influence this process (21, 22). Increasing evidence

highlights the involvement of both innate immune cells

(macrophages, neutrophils, dendritic cells, innate lymphocytes,

myeloid-derived suppressor cells, and natural killer cells) and

adaptive immune cells (T cells and B cells) in tumor progression

within the TME (23–25). In 2006, the crucial role of regulatory T

(Treg) cells, known for their negative regulation of autoimmunity,

was discovered in the development of pancreatic cancer

(26). Subsequent studies have further substantiated this

finding, demonstrating that Treg cells are the most potent

immunosuppressants known to dampen the activity of CD4+,

CD8+, and NK cells (27). The immunosuppressive mechanisms

mediated by Treg cells include the direct elimination of effector T

cells and competition with effector T cells for antigen-presenting

cells (28, 29). Therefore, understanding the secrets of the pancreatic

cancer tumor microenvironment, particularly the role of Treg cells

in pancreatic cancer, holds significant importance. It can shed light

on the immunosuppressive mechanisms at play and help overcome

the treatment challenges associated with pancreatic cancer (30). In

the past, technical limitations greatly constrained research on
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microenvironment cells (31). However, the advent of single-cell

sequencing technology has revolutionized the study of the patient

tissues at the single-cell level, enabling a more comprehensive

investigation of tumor microenvironments (32, 33).

However, investigations focusing on Treg cells using single-cell

transcriptomics and traditional transcriptomics remain relatively

scarce. Thus, our study aimed to utilize single-cell sequencing data

to delve into the involvement of classical immunosuppressive Treg

cells in the tumor microenvironment of pancreatic cancer, with the

goal of identifying key characteristics of Treg cells. This research

could offer novel insights into the mechanisms underlying

pancreatic cancer. Notably, the novelty of this study lied in its

pioneering exploration of the role of Treg cells in the pancreatic

cancer microenvironment, employing state-of- the-art

bioinformatics technology. Additionally, it presented a novel

approach by combining single-cell sequencing with traditional

transcriptomics analysis, thus providing fresh perspectives for

ongoing oncology research.
2 Materials and methods

2.1 Data download and collation

We conducted a comprehensive search in the GEO database

using the keyword ‘pancreatic cancer’ to identify relevant datasets

containing gene expression levels in pancreatic cancer tissues. The

inclusion criteria for the selected datasets were as follows: (1) the

samples were derived from human pancreatic tissue, (2) the dataset

comprised both tumor and normal tissue samples, (3) the patients

had not undergone prior chemotherapy or radiotherapy, and (4) the

total number of samples in the dataset was equal to or greater than

50. Following the application of these stringent criteria, we obtained

four datasets [GSE62452 (34), GSE15471 (35), GSE62165 (36),

GSE71729 (37)] that met our requirements. To merge and de-

batch the four datasets, we utilized the limma package (version

3.50.3) in R. Furthermore, we performed background calibration,

normalization, and log2 logarithm conversion of the original data

from the four datasets using the affy package (version 1.78.0). In

cases where multiple probes recognized the same gene, we

calculated the average value to estimate the gene expression. To

address any potential batch effects after integrating the datasets, we

employed the sva (Version 3.48.0) R package for batch effect

removal (38–40).

The single-cell sequencing data were obtained from the GEO

database under the registration number GSE155698. The dataset

consisted of sequencing results from both tumor tissues and normal

tissues, which were extracted and utilized for our analysis. The

original data had been preprocessed by the submitter, and the

following steps were undertaken: The samples were processed on

either the Illumina HiSeq 4000 or NovaSeq 6000 platforms,

employing paired-end 50-cycle reads to achieve a sequencing

depth of 100,000 reads. The raw data analysis and alignment were

performed by the DNA Sequencing Core at the University of

Michigan. For data processing, we utilized Cellranger count

version 3.0.0 with default settings and an initial estimated cell
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count of 10,000. Each sample was aligned using the hg19

reference included in the cellranger software.

The transcriptome data and survival data from the TCGA

database were acquired through the UCSC Xena online website.

The downloaded data had undergone preprocessing, and we

removed samples with gene expression values of ‘0’. Paired

samples were retained for paired sample analysis. To facilitate

further analysis, the Toil technique was employed to transform

and standardize the RNA sequencing data into transcripts per

thousand bases per million fragments (TPM) format, which was

then converted to log2 per million reads. The patients’

characteristics included in the analysis comprised survival time

and survival status. Patients under the age of 18 and those with a

survival time of less than 30 days were excluded from the analysis.
2.2 Obtaining differential genes and
module genes based on the GEO
expression matrix

To assess the immune infiltration patterns and the differences in

immune cell infiltration between tumor tissue and normal tissue, we

employed the CIBERSORT method. This approach utilizes linear

support vector regression and is based on a known reference dataset

(default: LM22) containing gene expression features of 22 immune

cell subtypes. We applied the CIBERSORT method to deconvolute

the expression matrix of human immune cell subtypes within the

combined GEO expression matrix. The resulting immune cell

infiltration percentages were visualized using a bar plot, providing

an overview of the immune cell composition. Furthermore, we

employed box plots to assess whether there were significant

differences in the infiltration of each immune cell subtype

between the tumor and normal tissue groups. These analyses

aimed to identify module genes associated with immune infiltration.

To identify differentially expressed genes (DEGs), we utilized

the limma package (version 3.50.3) (41–43). The analysis was

performed by comparing the expression levels between different

groups, and genes with a p-value less than 0.05 were initially

selected as DEGs.

To examine the relationship between gene sets and sample

phenotypes, construct regulatory networks connecting gene sets,

and identify crucial regulatory genes, we employed the WGCNA

method (44, 45). The WGCNA analysis relied on packages such as

WGCNA (version 1.71). In the WGCNA process, we utilized a

signed network approach. Initially, the Pearson correlation

coefficient between pairs of genes was calculated to construct the

gene co-expression network. A threshold was applied to identify

modules consisting of closely related genes. In constructing the co-

expression network, we determined the optimal soft threshold as 6

and the average connectivity as 4.26. The minimum module size

was set to 60, and a deepsplit value of 2 was used. The thresholds for

module membership (MM) and gene significance (GS) were set at |

MM| > 0.9 and |GS| > 0.2, respectively. Subsequently, we correlated

the module information with the results obtained from the

CIBERSORT immune infiltration analysis (46). This analysis

allowed us to identify 22 modules that were associated with
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immune cell infiltration. Through further screening based on

correlation coefficients (R ≥ 0.5) and a significance threshold (P <

0.05), we identified the most relevant module genes associated with

Treg cell infiltration.
2.3 Preliminary processing of single-cell
sequencing data

The comprehensive analysis of single-cell sequencing data was

performed using the Seurat package (Version 4.3.0). To ensure the

exclusion of low-quality data resulting from cell damage or library

preparation failures, we conducted quality control on the single-cell

sequencing data according to the following criteria: (1) Cells with

less than 500 or more than 6000 expressed genes were excluded; (2)

Cells with a unique molecular identifier (UMI) count value less than

1000 were removed, and the top 3% of cells with the highest UMI

count were eliminated. (3) Cells with mitochondrial gene

expression exceeding 35% of the total gene expression were

excluded, and the top 2% of cells with the highest mitochondrial

gene expression were removed. (4) The proportion of ribosomal

RNA (rRNA) expression in the total gene expression was calculated,

and the smallest top 1% and largest top 1% of cells based on rRNA

expression were removed.

As this study involved multiple samples, it was necessary to

account for experimental variations introduced by different factors.

We addressed this by integrating and de-batching the samples using

the Harmony package (version 0.1.0). The NormalizeData function

was applied to normalize the data, accounting for different cell

sequencing depths. The FindVariableFeatures function was used to

select 2000 highly variable genes for downstream analysis (33, 47).

The ScaleData function transformed gene expression values into z-

scores to follow a Gaussian distribution, and the RunPCA function

performed initial linear dimension reduction on the single-cell data.

To further reduce the data dimensions while preserving important

features, we employed the uniform manifold approximation and

projection (UMAP) method for final nonlinear dimension

reduction (48, 49). This mapping process aimed to capture the

maximum data variance in a lower-dimensional space suitable for

observation. The FindNeighbors function constructed a K Nearest

Neighbor (KNN) network based on Euclidean distance in the

principal component analysis (PCA) space (50–52). The edge

weights between cells were then adjusted based on the shared

overlap (Jaccard similarity) in their local neighborhood to finalize

the cell clustering. Cell clusters were determined using the

FindClusters function, optimizing the standard modular

functionality with a resolution of 0.5. Finally, the Dimplot

function was utilized to visualize the effectiveness of cell clustering.
2.4 Annotation and reclassification
of cell clusters

To ensure the accuracy of cell cluster annotation, we employed

various methods for integration. Initially, we performed a

preliminary annotation of each cell cluster using the singleR
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package (version 1.8.1) (53). Subsequently, we utilized the

FindAllMarkers method with a significance threshold of P < 0.05

to identify genes that exhibited differential expression between each

subgroup and all other subgroups. These differentially expressed

genes served as cell markers. To refine the annotation, we manually

reviewed relevant literature and consulted online databases such as

CellMarker and BMC Genome Biology (54). This comprehensive

approach allowed us to annotate each cell subgroup accurately. In

order to distinguish between benign and malignant cells in the

tumor microenvironment, we employed the copykat program

(version 1.0.8) to determine the genome copy number

distribution of individual cells. By integrating Bayesian techniques

and hierarchical clustering, copykat enabled us to classify cells into

diploid normal cells or aneuploid tumor cells. The copykat program

utilized a Gaussian Mixture Model (GMM) definition model,

assuming that a cell’s gene expression was a mixture of three

Gaussian models: amplification, deletion, and neutral state. Cells

that had the neutral gene accounting for at least 99% of the

expressed genes were classified as high-confidence diploid cells.

Consequently, we categorized the cells into diploid cells (benign)

and aneuploid cells (tumor). Since Treg cells were part of the T cell

clusters, we further conducted an in-depth analysis of Treg cells. We

extracted the T cell clusters, performed data normalization,

identified highly variable genes, applied dimensionality reduction

techniques such as centralization, PCA, and UMAP, and identified

cell clusters. Finally, we annotated the Treg cells within the

identified clusters for further analysis.
2.5 Quasi-timing analysis and cell
communication analysis

To understand the differentiation trajectory of T cells and the

evolution of cell subtypes during development, we utilized the

monocle package (version 2.22.0) to perform pseudo-time series

analysis on T cell subsets based on their gene expression changes

over time. After estimating size factors and dispersions, we applied

the detect_genes function to filter out low-quality cells, setting the

expression threshold to 0.1. Next, we selected the top 200 clusters of

differentially expressed genes and used the DDRTree method within

the reduced dimension function to reduce the data dimensionality.

This enabled us to calculate the development time, infer the

trajectory, and sort the cells based on their pseudo-time ordering.

The results were visualized in the form of a tree diagram,

representing the inferred differentiation trajectory. To identify key

genes involved in the inferred development trajectory, we employed

the beam statistical method. This involved analyzing the cell data

after pseudo-time sorting and specified nodes, calculating the

contribution value of each gene during cell development. The key

genes were then ranked and outputted based on their contribution

value. These genes were considered differential genes that played a

crucial role in cell development and differentiation.

To investigate the cell communication between Treg cells and

other cells in the tumor microenvironment, as well as the specific

activated cell signaling pathways, we conducted an analysis using the

cellchat package (version 1.1.3). The analysis was based on the
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CellChatDB database, which encompasses 1939 validated molecular

interactions in the human body. These interactions comprise 61.8%

paracrine/autocrine signaling interactions, 21.7% extracellular matrix

(ECM)-receptor interactions, and 16.5% cell-cell contact interactions.

In our analysis, we identified overexpressed ligands or receptors

within a specific cell population and subsequently identified

overexpressed ligand-receptor interactions when both ligands and

receptors were found to be overexpressed. This allowed us to infer cell

state-specific communication. CellChat assigned a probability value

to each contact and performed a permutation test to determine

biologically significant cell-cell communication. The likelihood of cell

communication was simulated by combining gene expression data

with known information about the interaction between signal ligands,

receptors, and their cofactors, using the law of mass action. Based on

the inferred cell-cell communication network, we employed various

visualization techniques and quantitative analysis to visualize the

major senders (sources) and receivers (targets) in the signaling

pathways. This approach enabled us to identify the signals that

significantly influenced the outgoing or incoming signals of specific

cell populations, providing insights into the key players involved in

cell communication within the tumor microenvironment.
2.6 Acquisition and verification of Treg
cell-related genes

From the above analyses, we obtained four gene sets: the

differential genes identified from the GEO expression matrix, the

module genes identified through WGCNA, the Treg cell marker

genes identified from single-cell subgroup analysis, and the

differential genes implicated in T cell differentiation and

development from pseudo-temporal analysis. To identify Treg

cell-related genes, we performed an intersection of these four

gene sets. The results of the intersection were visualized using a

Venn diagram. The obtained Treg cell-related genes were further

validated and screened in the TCGA database. We examined the

association between these TRGs and the survival of pancreatic

cancer patients using survival analysis methods, enabling us to

identify genes that were significantly associated with patient

prognosis. Furthermore, we evaluated the diagnostic efficacy of

Treg cells for pancreatic cancer patients in the TCGA cohort using

receiver operating characteristic curve (ROC) analysis (55). Genes

that exhibited an area under the ROC curve (AUC) greater than 0.7,

along with their prognostic relevance, were selected as the most

critical genes within the Treg cell gene set. To verify the expression

of these TRGs in pancreatic cancer tissues, we accessed the human

protein atlas database, which provided immunohistochemistry data

for further validation. Overall, this comprehensive approach

allowed us to identify a set of Treg cell-related genes associated

with prognosis and diagnostic potential in pancreatic cancer.
2.7 Drug sensitivity analysis
guided by TRGs

The drug sensitivity analysis was conducted using the

oncoPredict package (version 0.2) developed by Danielle Maeser
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et al. in 2021 (56). This algorithm leverages three functions: GLDS,

calcPhenotype, and IDWAS, as well as two databases, namely the

Cancer Therapeutics Response Portal (CTRP) and the Genomics of

Drug Sensitivity in Cancer (GDSC). The GLDS function was

employed to identify markers in cell l ines, while the

calcPhenotype function utilized large-scale gene expression and

drug screening data to establish a ridge regression model. This

model was then applied to new gene expression data to predict

clinical chemotherapy response. The IDWAS function was utilized

to measure drug-gene interactions and identify biomarkers

associated with drug response. This function incorporated drug

response data along with somatic mutation or copy number

variation (CNV) data obtained from population sequencing. The

expression score of TRGs was calculated as the average sum of their

expression levels. In the context of pancreatic cancer, patients

whose TRGs expression score exceeded the median score of all

patients were classified as high-risk, while those below the median

were considered low-risk. This approach facilitated the

identification of patients who were more likely to exhibit drug

resistance or sensitivity, providing valuable information for

personalized treatment strategies.
2.8 Identification of key signaling pathways
regulating two kinds of Treg cell different
survival outcomes by hdWGCNA

The implementation of WGCNA for single-cell data utilized the

hdWGCNA package (version 0.2.2) developed by Sam Morabito

et al. (57, 58). This package specifically catered to the analysis of

single-cell sequencing data, allowing for the construction of co-

expression networks across multi-scale cells and spatial hierarchies.

To begin, we established a Seurat object to facilitate the WGCNA

process. The hdWGCNA package employed the KNN algorithm to

identify similar cell groups that could be aggregated. The average or

sum expression of these cells was then calculated, resulting in a low

sparse metacell gene expression matrix. The SetDatExpr function

was utilized to specify Treg cells for constructing the expression

matrix. Next, we performed parameter scans using the

TestSoftPowers function to determine the optimal soft power

threshold for constructing the co-expression network. By

evaluating the resulting network topology at different power

values, we selected the soft power threshold that retained a strong

gene-gene correlation adjacency matrix while removing weak

connections. In this study, a scale-free topology model was

chosen, with a minimum soft power threshold set at 0.8 or

higher. The ConstructNetwork function was employed to

establish the co-expression network based on the optimal soft

threshold. Subsequently, the ModuleEigengenes function was

utilized to calculate the module feature genes (ME) by performing

principal component analysis (PCA) on a subset of the gene

expression matrix specific to each module (59).

Additionally, the ModuleExprScore function, using either

the Seurat or UCell algorithm, was used to compute the central

gene feature score for each module. To visualize the correlation

between modules, the ModuleCorrelogram function was applied,
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consider ing the hME, ME, or hub gene scores . The

GetModuleTraitCorrelation function was utilized to screen for

important modules based on their correlation coefficients and P-

values in relation to specific traits or characteristics of interest.

Through these steps, the hdWGCNA package facilitated the

identification of robust modules of interconnected genes in

single-cell sequencing data, allowing for comprehensive WGCNA

analysis and exploration of gene co-expression patterns.
2.9 Polymerase chain reaction

For the PCR analysis, tumor tissues from 24 patients with

pancreatic cancer were obtained from the First Affiliated Hospital of

Soochow University. The study protocol was approved by the Ethics

Committee of the First Affiliated Hospital of Soochow University

and adhered to the principles of the Helsinki Declaration. RNA

extraction was performed using RNAeasy reagent (Vazyme,

Nanjing, China), and reverse transcription was carried out using

the HiScript III first-strand cDNA synthesis kit (Nanjing, China) as

per the manufacturer’s instructions. Real-time PCR was performed

on the ABI StepOne PlusTM real-time PCR system using SYBR®

Green for Master Mix (Vazyme, Nanjing, China) (60). The relative

mRNA expression was calculated in triplicate using the 2-DDCt
method (61, 62).

As the relative mRNA expression levels of PDCD1 and CTLA4

measured by PCR were skewed, the correlation analysis between

TRGs and immune checkpoints was performed using Spearman’s

rank correlation analysis. See Table S1 for primer sequence.
2.10 Hematoxylin-eosin staining

Use xylene solution and gradient alcohol for dewaxing of the

sections. After immersing in hematoxylin staining solution for 10

minutes, remove and rinse with deionized water. Perform

differentiation using 1% hydrochloric acid alcohol solution,

immerse for 5 seconds, then remove and rinse with deionized

water. After counterstaining with 1% ammonia water for 1 minute,

rinse with deionized water. Finally, perform eosin staining. Immerse

in eosin staining solution for 1 minute, then rinse with deionized

water. Sequentially immerse in gradient ethanol (70%, 80%, 90%) for

20 seconds each, followed by absolute ethanol for 1 minute, and

xylene solution for 5 minutes (repeat this step twice). After removing

the sections, dry them and observe after mounting.
2.11 Immunohistochemical staining

The prepared wax blocks were dewaxed at 60°C, followed by

sequential immersion in pure xylene and gradient ethanol (100%,

95%, 80%, 75%), and soaked in 3% hydrogen peroxide for 10-15

minutes. Subsequently, perform antigen retrieval, block the antigen,

and incubate with primary and secondary antibodies separately.

Employ DAB staining, monitor the progress under an optical

microscope, and then counterstain using hematoxylin. After each

step, rinse with PBS (63).
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2.12 Immunofluorescence staining

Immunofluorescence analysis involved collecting paraffin

sections of paired pancreatic cancer tissues and adjacent normal

tissues from the First Affiliated Hospital of Soochow University. The

sections underwent dewaxing, hydration, antigen retrieval, and

blocking procedures (64). FOXP3 (Servicebio, Wuhan, China)

was detected using immunofluorescence staining. The number of

CD4/FOXP3-positive cells in cancer and adjacent tissues was

counted using fluorescence microscopy (65).
2.13 Statistical methods and
online database

All data processing in this study was conducted using R (version

4.1.3). The differential analysis for all experimental groups and

comparison groups was performed using the Wilcoxon rank sum

test (66, 67). Correlation analysis of public databases was conducted

using the Pearson correlation method. For the correlation analysis

of PCR data, the Spearman correlation method was applied (68). A

significance level of 0.05 was used for all analyses, and the

corresponding difference multiples and correlation coefficients

were specified for each step. The P-values were adjusted using the

default Benjamini-Hochberg correction method.
GEO: https://www.ncbi.nlm.nih.gov/geo/

TCGA: https://www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga/

UCSC Xena: https://xenabrowser.net/datapages/

CIBERSORTx: https://cibersortx.stanford.edu/

CellMarker: http://xteam.xbio.top/CellMarker/

BMCGenome Biology: https://genomebiology.biomedcentral.com/

The human protein atlas: https://www.proteinatlas.org/

Cancer Therapeutics Response Portal: http://portals.broad

institute.org/ctrp/

Genomics of Drug Sensitivity in Cancer: https://www.cancerrx

gene.org/

Ensemble: http://asia.ensembl.org/index.html
3 Results

3.1 CIBERSORT deconvolution
demonstrated the infiltration of immune
cells in the tumor microenvironment of
patients with pancreatic cancer

Supplementary Figure 1 showed the flow of this study. After

merging four samples from GEO, we obtained an expression matrix

comprising 530 samples, including 159 normal tissues and 371

pancreatic cancer tissues. Immune infiltration analysis of the

expression matrix revealed the presence of 22 immune cell types
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infiltrating the pancreatic cancer microenvironment. To provide a

clearer visualization of immune cell infiltration, a qualitative

analysis was conducted. The boxplot demonstrated varying

degrees of infiltration for several immune cell types between

pancreatic cancer tissues and normal tissues, such as B cells naive,

B cells memory, T cells CD8, T cells CD4 naive, NK cells resting,

NK cells activated, Monocytes, among others. However, no

significant difference in Treg cell infiltration between the tissues

was observed. However, upon conducting immune infiltration

analysis on the four datasets separately, we observed differences

in the infiltration of Treg cells between the two groups in GSE15471

and GSE71729. This suggests a potential association between the

infiltration of Treg cells and pancreatic cancer (Figures 1A, B). The

immune infiltration correlation heat map revealed a positive

correlation between Treg cell infiltration and Macrophages M0,

while no significant correlations were observed with the infiltration

of other cell types (Figure 1C).
3.2 Differential analysis and functional
enrichment revealed unique genetic and
functional changes in pancreatic cancer

To minimize the potential influence of different batches,

sequencing personnel, and machines on the analysis, we initially

standardized the expression matrix. In order to retain a substantial

number of genes, we applied a threshold of P < 0.05 for the initial

screening. Consequently, a total of 10,759 genes passed this

screening, including 4,696 up-regulated genes and 6,163 down-

regulated genes. The heatmap visually depicted the top 30 up-

regulated and down-regulated genes with the highest logFC values
Frontiers in Immunology 07
(Figure 2A), while the volcano plot displayed the genes with logFC >

1 (Figure 2B). Through gene set enrichment analysis (GSEA), we

observed significant up-regulation of processes such as allograft

rejection, ECM-receptor interaction, and Mucin type O-glycan

biosynthesis in pancreatic cancer tissues compared to normal

tissues. Conversely, down-regulated functions included 2-

Oxocarboxylic acid metabolism, Fat digestion and absorption, as

well as Glycine, serine, and threonine metabolism (Figures 2C–E).

The results of the enrichment analysis not only further validated the

accuracy of the differential analysis but also provided insights into

the significantly altered biological functions and signaling pathways

in pancreatic cancer tissues.
3.3 WGCNA identified yellow module as
most relevant to Treg cell infiltration

We performed correlation coefficient calculations and found

that a correlation coefficient greater than 0.9 (with a soft cutoff of 6)

indicated a strong and suitable basis for constructing multiple gene

modules (Figures 3A, B). Utilizing the correlation and adjacency

matrices of gene expression profiles, we constructed a topological

overlap matrix (TOM). The resulting gene cluster tree was displayed

in Figure 3C. Subsequently, we applied a hierarchical average

linkage clustering approach and TOM to identify gene modules

within each gene network. The heatmap visualized the identified

gene modules, and by employing a dynamic tree-cutting technique,

we identified a total of 17 gene modules (Figures 3D, E). Based on

the criteria of a correlation coefficient (R) ≥ 0.5 and P < 0.05, we

found that the yellow module exhibited a strong negative

correlation with Treg cell infiltration (r = -0.58, P = 2e-49), while
A

B

C

FIGURE 1

Analysis of immune cell infiltration in patients with GEO large sample data. (A, B) Boxplot qualitatively analyzed the difference of infiltration of 22
immune cells in tumor tissues and normal tissues. (A) GSE15471, (B) GSE71729, (C) Heatmap of co-expression relationship among 22 immune cells.
Red represents positive correlation and blue represents negative correlation. ns: P < 0.1. *: P < 0.05. **: P < 0.01. ***: P < 0.001.
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displaying weak correlations with other immune cell infiltrations.

Finally, we extracted 1,283 genes from the yellow module for

further analysis.
3.4 Single-cell sequencing data revealed
unique tumor microenvironment features
of pancreatic cancer

We obtained 20 single-cell sequencing samples of pancreatic

cancer and normal tissues from the GEO database, encompassing

55,339 cells and 24,904 genes. After filtering out low-quality cells,

we obtained a final dataset of 40,084 cells and 24,904 genes,

including 3 normal tissues and 17 pancreatic cancer tissues.

Utilizing the FindVariableFeatures function, we selected 2,000

highly variable genes for subsequent analysis. Principal

component analysis (PCA) was performed for dimension

reduction, and the first 30 dimensions were selected for UMAP

dimension reduction. Consequently, we identified 26 distinct cell

subsets (Figure 4A). The expression patterns of these cell subsets in

different tissue types were illustrated in Figure 4B, and 4C depicted

the distribution of gene expression across different cell types.
Frontiers in Immunology 08
Figure 4D showcased the distribution of stromal cells, tumor cells,

and immune cells in pancreatic cancer tissues based on specific

marker genes.

By employing various annotation methods, we successfully

annotated the identified cell types (Figure 4E). In total, we

identified 14 cell types in this study. The T/NK cell marker genes

included CD3D, CD4, CD8A, and CD7, while B cell marker genes

comprised MS4A1 and CD19. Plasma cell marker genes consisted

of CD38 and CD27, and mononuclear/macrophage marker genes

included CD68, CD163, ITGAM, and CD14. Neutrophil marker

genes were S100A8, FCGR3B, MNDA, and CXCR2. Mast cell

marker genes were SLC18A2, ENPP3, FCER1A, and ACSL4.

Dendritic cell marker genes were PTCRA and GZMB. Progenitor

cell marker genes encompassed CD34, KDR, ASPM, and CDKN3.

Acinar cell marker genes were PRSS1, ALB, AQP8, and AMY2A.

The duct cell marker gene was CD133, and endocrine cell marker

genes included SLC30A8, GCG, CRYBA2, and TTR. Fibroblast cell

marker genes comprised FGF7, ACTA2, and COL11A1. Vascular

endothelial cell marker gene was VWF, stromal cell marker gene

was MME, immune cell marker gene was PTPRC, and epithelial cell

marker gene was EPCAM (Supplementary Figure 2). Copykat

analysis revealed that the primary source of malignant cells in the
A B

D EC

FIGURE 2

Difference and enrichment analysis of normal and tumor tissues in GEO cohort. (A) Differential gene heatmap, the left side is the normal group, the
right side is the tumor group. (B) Differential gene volcano map, the horizontal axis is the difference multiple takes log2 logarithm, the vertical axis is
the P value takes - log10 logarithm. Blue represents high expression, yellow represents low expression. (C–E) Enrichment analysis. (C) All differential
gene enrichment analysis results. (D) The results of up-regulated differential gene enrichment analysis. (E) Results of down-regulated differential
gene enrichment analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1242909
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1242909
pancreatic cancer tumor microenvironment was ductal cells,

followed by acinar cells (Figure 4F). The proportions of different

subsets and cell types in various tissues and samples were presented

in Figures 4G–L.
3.5 T/NK cell subsets reclassification and
pseudo-sequential analysis revealed Treg
differentiation related genes

To investigate Treg cells and explore their transitional

relationship with T/NK cells, we isolated and reclassified the T/

NK cell cluster. Using UMAP dimension reduction with 15

dimensions, we identified nine distinct cell clusters (Figure 5A).

Subsequently, we subdivided the T/NK cell clusters into CD4+ T
Frontiers in Immunology 09
cells, CD8+ T cells, Treg cells, and NK cells based on specific cell

marker genes such as CD4, CD8A, FOXP3, and NKG7 (Figures 5B–

D). Quasi-temporal analysis revealed the presence of three pivotal

branching points and seven branches during the redevelopment and

differentiation of the T/NK cell cluster (Figure 5E). The distribution

of cell types along the cell trajectories within different subgroups

was displayed in Figures 5F–H. By considering biological

significance and statistical algorithms, we determined the starting

point of the quasi-temporal trajectory (69). As cells moved further

away from the starting point, their developmental maturity

increased (Figure 5I). Treg cells infiltrating the pancreatic cancer

microenvironment exhibited low expression of CD4 molecules and

displayed a mature differentiation state, primarily derived from

CD4+ T cells. Furthermore, Treg cells exhibited higher expression

of genes such as TNFRSF4, CTLA4, RTKN2, compared to other T
A B

DE

C

FIGURE 3

Identification of Treg cell related mRNA by weighted gene co-expression network (WGCNA). (A) Sample clustering tree diagram, cluster analysis of
all samples, the tree diagram shows that there is no significant outlier in the sample. (B) Determine the optimal soft thresholding or power to make
the constructed network more consistent with the scale-free topology. Left figure: scale-free fit index (y-axis) under different soft thresholds (x-axis).
The red line represents the subjectively selected scale-free fitting index value, which is 0.9 in this study. (C) Construct a co-expression network
based on the optimal soft threshold, and divide the genes into different modules to draw a gene clustering tree. The upper part is the hierarchical
clustering tree of genes, and the lower part is gene module, namely network module. (D) Calculate the correlation and significance between the
module and 22 kinds of immune cell infiltration, and draw a correlation heat map. The first-row number in each module is the correlation
coefficient, and the second-row number is the P value. Red represents positive correlation; blue represents negative correlation. (E) Drawing the
correlation heat map between genes based on topological overlap matrix. The darker the color, the stronger the interaction between genes. The
diagonal represents the interaction between genes within the module, and the color is the deepest.
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cells and NK cells. Through Beam analysis, we identified 1,235

genes that displayed gradual increases or decreases in expression

during cell differentiation, suggesting their crucial role in

determining cell state transitions.
3.6 Cell communication analysis identified
the pathways and optimal ligand-receptor
of Treg cell

The analysis of cell communication revealed the extent and

pathways through which Treg cells interacted with other cells within

the pancreatic cancer microenvironment. We identified a total of 38

significantly altered signaling pathways in the microenvironment. Treg
Frontiers in Immunology 10
cells displayed close associations with various cell types in the

microenvironment (Figures 6A, B). Notably, Treg cells were

prominently involved in five pathways: the CD99 pathway, FN1

pathway, MHC-II pathway, MIF pathway, and MPZ pathway

(Figures 6C, D). Within the CD99 pathway, the CD99-CD99

receptor interaction exhibited the greatest contribution. In the FN1

pathway, the FN1-CD44 receptor interaction played a major role. The

HLA-DRA-CD4 ligand-receptor interaction made the most significant

contribution to the MHC-II pathway. Within the MIF pathway, the

MIF-CD74 + CD44 receptor interaction was highly influential. Finally,

the MPZ1-MPZ1 pathway demonstrated the highest contribution to

the MPZ pathway (Figures 6E, F, Supplementary Figures 3–7).

Figures 6G–J visualized the roles of Treg cells and other cell types as

both signal transmitters and receivers within these five pathways.
A B

D E F

G IH J K L

C

FIGURE 4

Cell annotation and proportion display of 20 single-cell sequencing samples (A–F) 20 samples of all cell UMAP dimension reduction map. (A) Cluster
distribution of 26 cells. (B) Cell distribution in normal and tumor tissues. (C) Each cell gene expression showed. (D) All cells were classified based on
tumor cells, stromal cells and immune cells. (E) Distribution of all cell types after cell annotation. (F) Aneuploid cells (tumor cells) based on copykat
recognition. (G–L) The proportion of each cell component in different tissues. (G) Proportion of 26 cell clusters in normal and tumor tissues. (H) The
proportion of 14 cells in normal tissues and tumor tissues. (I) The proportion of three cell components (immune cells, tumor cells and stromal cells)
in 20 tissue samples. (J) Proportion of 26 cell subsets in 20 samples. The proportion of tumor cells, non-tumor cells and unrecognized cells
identified by (K) Copykat method in 20 tissues. (L) The proportion of three cell types (immune cells, tumor cells and stromal cells) in normal tissues
and tumor tissues.
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3.7 CASP4, FYN, TOB1, CLEC2B were
identified as TRGs

Following the aforementioned analyses, we obtained 85 genes based

on four gene sets: differentially expressed genes between pancreatic

cancer and normal tissues, Treg cell-related genes identified by

WGCNA, marker genes of Treg cells in single-cell sequencing, and

differentiation-related genes from pseudo-temporal analysis (Figure 7A).

To further refine the gene selection and identify the most crucial genes,

we validated and screened these 85 genes using the TCGA cohort.

Kaplan-Meier (K-M) survival analysis narrowed down the selection to 12

genes that exhibited a significant correlation with the survival of

pancreatic cancer patients (Figures 7B–I). Subsequently, we applied the

COX regression model and conducted ROC analysis to identify the final

set of tumor-related genes (TRGs), which included CASP4, FYN, TOB1,

and CLEC2B (Figures 7J, K). Immunohistochemical expression analysis

of these four genes in both normal and pancreatic cancer tissues further

confirmed our findings (Figures 7L–O).
3.8 Patients in different risk groups had
different immune checkpoint expression
and potentially effective drugs

Immune checkpoints represented a class of regulatory

mechanisms involved in suppressing the function of human
Frontiers in Immunology 11
immune cells. These checkpoints were frequently overexpressed

in the tumor immune microenvironment, leading to immune

evasion and inhibition of the body’s anti-tumor immune

response. In our analysis of the immune microenvironment in

patients with high expression of TRGs, we observed a significant

upregulation of immune checkpoints in pancreatic cancer. Several

immune checkpoints, including TNFSF4, ICOS, CTLA4, and

PDCD1, have been identified as playing crucial roles in the

progression of pancreatic cancer (Figure 8A).

Through OncoPredict drug sensitivity analysis, we identified

potential therapeutic drugs for clinical treatment of pancreatic

cancer based on the TRGs. Gemcitabine, cisplatin and paclitaxel

demonstrated distinct therapeutic effects based on the expression

levels of TRGs in patients. Notably, there were no discernible

differences in the sensitivity to conventional chemotherapy drugs

such as irinotecan, oxaliplatin, and 5-Fluorouracil for the treatment

of pancreatic cancer (Figures 8B–G).
3.9 Identification of the HIF-1 signaling
pathway involved in the transformation of
Treg cell clusters by hdWGCNA

Based on the identified TRGs, we investigated the dual role of

Treg cells in pancreatic cancer and their impact on patient

prognosis. Treg cells were extracted from the T/NK cell cluster
A B D
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C

FIGURE 5

Reclassification and pseudo-timing analysis of T/NK cell cluster. (A, B) Reclassification of T/NK cell cluster. (A) The display of 9 cell subsets after
UMAP dimensionality reduction. (B) Four cell types after annotation. (C, D) Characteristic distribution of marker genes. (E–I) Cell trajectory analysis
revealed the developmental trajectories of various subgroups and cell types. (E) Trajectory analysis All branches are displayed. (F) Trajectory analysis
according to 9 cell subsets. (G) According to the trajectory analysis of 4 cell types. (H) Trajectory analysis according to 4 cell types and 9 cell
subsets. (I) Differentiation trajectory of cell differentiation maturity.
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using the marker “CD4+ FOXP3.” These Treg cells were then

reclassified into seven distinct clusters (Figure 9A). Our goal was

to identify Treg cell clusters associated with either favorable (Treg1)

or poor (Treg2) prognosis. To achieve this, we examined the

expression of FYN, which positively correlated with prognosis,

and the enrichment scores of three genes (CASP4, TOB1,

CLEC2B), which negatively correlated with prognosis. Our

analysis revealed widespread expression of FYN in all clusters

except cluster 5 (Figure 9B). Additionally, clusters 0, 4, and 6

exhibited higher enrichment scores for the three genes of interest

(Figure 9C). Consequently, we designated clusters 0, 4, and 6 as

Treg2 due to their higher three-gene enrichment scores, while the

cluster with lower three-gene enrichment scores and high FYN

expression was labeled as Treg1. Next, we performed hdWGCNA

analysis on the two Treg cell clusters (Figure 9D). By selecting an

optimal soft threshold of 2, we constructed a co-expression matrix
Frontiers in Immunology 12
for the single-cell transcriptome (fraction = 0.05) (Figure 9E). The

TestSoftPowers function (networkType = ‘signed’) was then

employed to perform parameter scans across various soft power

thresholds (range from 1 to 30). Merging the module similarities

yielded three modules (Figures 9F, G). The enrichment of all

module genes and core genes in Treg cells was presented in

Figures 9H, I, respectively. Figure 9J displayed the correlation

between the three modules, revealing that module 1 (Treg cell-

M1) exhibited the strongest association with prognosis. We

extracted the core genes of module 1 and performed KEGG

enrichment analysis, which indicated a high enrichment score in

the HIF-1 signaling pathway (P < 0.05) (Figures 9K, L). This finding

suggested that the HIF-1 signaling pathway plays a critical role in

the transition between the two Treg cell clusters, ultimately

influencing the anti-tumor immune response in patients with

pancreatic cancer and leading to divergent prognosis outcomes.
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FIGURE 6

Analysis of communication between Treg cell and other cells in pancreatic cancer microenvironment. (A) Integrated map of the overall
communication intensity of each cell in pancreatic cancer tissues. (B) Show the overall communication intensity of each cell in pancreatic cancer
tissues. (C, D) Treg cells are important signaling pathways involved as signal senders and receivers. (E, F) Treg cells are important ligands-receptors
in important signaling pathways involved in signal senders and receivers. (G) Overall strength of Treg cells as signal receivers (vertical axis) and
transmitters (horizontal axis). (H, I) Treg cells are important ligand-receptors in the five most important signaling pathways involved by signal senders
and receivers. (J) Intensity demonstration of all cells as signal receivers and transmitters in different pathways.
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3.10 Further validation of the correlation
between four TRGs and pancreatic
cancer in vitro

Regarding the H&E staining of adjacent normal tissue and

tumor tissue, pancreatic cancer tissue exhibited a higher infiltration

of immune cells. (Figures 10A–B) Immunohistochemistry staining

of pancreatic cancer tissues and adjacent normal tissues was

performed using CD3/FOXP3 markers, revealing higher

infiltration of T/NK cells and Treg cells in tumor tissues

compared to adjacent normal tissues (Figures 10C–D). Further

CD4/FOXP3 immunofluorescence co-staining confirmed the

higher levels of infiltration of Treg cells in pancreatic cancer

tissue (Figures 10E–F). To validate our findings, we conducted

PCR analysis to assess the relative expression of the four identified

genes in a cohort of 24 patients with available survival data

(Figures 11A–D). Subsequently, survival analysis was conducted

using the Kaplan-Meier (K-M) method. The results confirmed our

previous conclusions, demonstrating that CASP4 (P = 0.0034),

CLEC2B (P = 0.0011), and TOB1 (P = 0.0013) exhibited a

significantly negative correlation with patient prognosis.

Conversely, FYN (P = 0.00062) was identified as a protective

factor for prognosis (Figures 11E–H). To further corroborate our

immunoassay results, we investigated the correlation between two
Frontiers in Immunology 13
representative immune checkpoints and the four identified genes

(Figures 11I–J). Correlation analysis revealed that CASP4 exhibited

a moderate correlation with PDCD1 (R = 0.47, P = 0.0022) and a

strong correlation with CTLA4 (R = 0.72, P = 0.00012). CLEC2B

demonstrated a strong correlation with PDCD1 (R = 0.56, P =

0.0043) and CTLA4 (R = 0.7, P = 0.00021). Conversely, FYN

showed no significant association with PDCD1 (R = 0.14, P =

0.51) or CTLA4 (R = 0.16, P = 0.45). Notably, TOB1 displayed a

strong correlation with PDCD1 (R = 0.72, P < 0.001) and CTLA4 (R

= 0.57, P = 0.0041) (Figures 11K–R).
4 Discussion

Approximately thirty years ago, Sakaguchi et al. reported the

discovery of a unique cluster of CD4+ CD25+ T cells with

immunosuppressive functions, which they named regulatory T

cells (Treg) (70). Subsequent studies have confirmed that Treg

cells represent a diverse population of T cells, predominantly

expressing CD4 molecules on their cell surface. Despite their

relatively small proportion, accounting for about 1% of

developing CD4 single-positive thymocytes and 10% to 15% of

CD4+ T cells in secondary lymphoid organs, Treg cells play crucial

roles (71, 72). Treg cells can be classified into two subsets based on
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FIGURE 7

Identification and Validation of TRGs. (A) Venn diagram shows the number of intersection genes of four gene sets. (B–I) Verify the 8-gene K-M
survival curve closely related to the prognosis of pancreatic cancer patients in the TCGA cohort. (J) COX regression model of 8 Gene. (K) ROC
analysis of 8 Gene. (L–O) Final identification of 4 gene immunohistochemical results. The left is normal tissue and the right is tumor tissue.
(L) CASP4. (M) CLEC2B. (N) FYN. (O) TOB1.
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their developmental sites. Natural Treg cells (nTreg) are generated

in the thymus, while induced Treg cells (iTreg) are derived from

peripheral naïve T cells in response to TCR stimulation with

retinoic acid or TGF-b (73–75). Treg cells possess potent

immunosuppressive capabilities and exert specific and nonspecific

regulatory effects on the immune system. They achieve this by

inhibiting dendritic cell function and maturation, secreting anti-

inflammatory cytokines, and suppressing the induction and

proliferation of antigen-specific effector T cells (Teff) (44-46).

Treg cells prevent immune-mediated attacks on self-tissues and

cells, promoting immune tolerance to autologous components and

maintaining immune homeostasis. Over the years, research has

highlighted the significant role of Treg cells in various pathological

processes, including autoimmune diseases and organ transplant

rejection. Moreover, a growing understanding of the tumor
Frontiers in Immunology 14
microenvironment has revealed the importance of Treg cells in

cancer, elucidating certain mechanisms through which they

contribute to tumor progression (76–78).

The high expression of immune checkpoints on the surface of

Treg cells and antigen-presenting cells (APCs) directly suppresses

APC activity and hinders their ability to activate conventional

effector T cells through interactions with Treg cells (79, 80).

Additionally, the overexpression of CD39 on Treg cells facilitates

the conversion of adenosine triphosphate (ATP) to adenosine.

Adenosine, in turn, binds to A2A receptors (A2AR) and/or A2B

receptors (A2BR) expressed on dendritic cells, effector T cells, and

natural killer (NK) cells, resulting in immunosuppression (81, 82).

Furthermore, studies have demonstrated that Treg cells directly

induce cytotoxicity in effector T and NK cell populations by

secreting perforin and granzyme (83). Given the prominent role
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FIGURE 8

Analysis of immune checkpoint expression and drug sensitivity in patients with different risk groups. (A) The expression of immune checkpoints in
patients with different risk groups, blue represents the low-risk group, red represents the high-risk group. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
(B–G) Five drugs were shown to have significant differences in sensitivity between the two groups of patients. (B) Irinotecan. (C) Oxaliplatin. (D) 5-
Fluorouracil. (E) Cisplatin. (F) Gemcitabine. (G) Paclitaxel.
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of Treg cells in promoting immune tolerance within the tumor

microenvironment, researchers have developed various therapeutic

approaches targeting Treg cells, such as CTLA-4 blockade (84),

CD25 modulation (85), and interventions involving receptor

superfamilies including tumor necrosis factor receptor (TNFR),

immunoglobulin, immune checkpoint receptor, and G protein-

coupled receptor (GPCR) superfamily proteins (86, 87).

Alterations in metabolism and cytokines in the microenvironment

of lesions of disease greatly influence disease progression (88, 89). In

recent years, with the advancement of immune microenvironment

studies, it has been increasingly recognized that certain cells, previously

considered “accomplices” in tumor progression, may also exhibit

inhibitory effects on tumor growth (90, 91). This phenomenon is

also observed in Treg cells. A study conducted by Yaqing Zhang et al.

(92) investigated this aspect in a mouse model of pancreatic cancer.

Upon depletion of Treg cells, mice exhibited a robust inflammatory
Frontiers in Immunology 15
response, with the inflammation in the pancreas synergistically

promoting pancreatic cancer development driven by the carcinogenic

Kras mutation. Furthermore, Treg cell depletion also influenced the

number and function of other cells. For instance, immunosuppressive

bone marrow cells significantly increased, while tumor-associated

macrophages demonstrated heightened immunosuppressive capacity.

Similar findings have been supported by other researchers (93, 94).

Therefore, the clinical value of Treg cell depletion therapy and the

delineation of the tumor suppressor/tumor promoter role of Treg cells

in clinical treatment warrant further investigation (53). It is essential to

address these questions to gain a comprehensive understanding of the

therapeutic potential and limitations associated with targeting Treg

cells in cancer treatment.

In our study, Treg cells played an important role in the tumor

microenvironment of pancreatic cancer. In the T cell cluster, the

Treg cell was more mature, but even those identified as Treg cell was
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FIGURE 9

hdWGCNA identifies key signaling pathways regulating the exchange between Treg1 and Treg2. (A) Treg cells reclassification dimension reduction
diagram. (B) The expression level of FYN in Treg cells. (C) The results of single cell level enrichment analysis of three genes (CASP4, TOB1, CLEC2B)
based on Ucell package. (D) Use hdWGCNA to obtain metacell from the Seurat object. (E) The scale-free topology model was selected to fit the
lowest soft power threshold greater than or equal to 0.8, which made the constructed network more consistent with the scale-free topology.
(F) The co-expression network was constructed based on the optimal soft threshold, and the gene clustering tree was drawn after genes were
divided into different modules. The upper part was the hierarchical clustering tree of genes, and the lower part was gene module, namely network
module. (G) Feature gene-based connectivity (kME) for each gene was calculated in co-expression network analysis to identify highly connected
genes (hub genes) within each module. (H) Based on the UCell algorithm, the gene scores of each module gene were calculated. (I) Based on UCell
algorithm, the gene scores were calculated for central genes of each module. (J) The correlation between modules based on Pearson correlation
analysis. (K) The correlation heatmap drawn by the PlotModuleTraitCorrelation in the hdWGCNA package. (L) The result of KEGG enrichment
analysis of Module 1 core gene.
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still in different branches on the differentiation trajectory. This

seemed to indicate that although the infiltrating Treg cell in the

microenvironment of pancreatic cancer has the main function of

inhibiting tumor immunity and assisting tumor escape after

differentiation and maturation, there might be some differences in

the way of achieving their main functions or secondary functions. In

addition, the communication between cells in the pancreatic cancer

microenvironment was extremely close, and a variety of traditional

tumor signaling pathways were significantly activated. After our

statistics, among the 38 abnormal activated signaling pathways

identified by cell communication analysis, Treg cells were

involved in 27 pathways (CD46, TNF, ITGB2, and other signaling

pathways), of which 15 pathways bear the identity of important
Frontiers in Immunology 16
participants (in addition to the five pathways analyzed above, there

were GRN, APP, GALECTIN, IL-16, and other signaling pathways).

Only 11 pathways were not active (including NOTCH, CCL, EPHA,

etc.). The number of Treg cells infiltrated in different tumor samples

was not constant, and there was no significant difference in the

immune infiltration analysis of large samples in the GEO cohort.

Nevertheless, Treg cell still through the functional transformation

in the infiltration of pancreatic cancer has become an important

accomplice, that making it difficult for anti-tumor immunity to kill

tumor cells effectively.

Moreover, in our study, we investigated the potential

mechanisms underlying Treg cell heterogeneity using single-cell

sequencing data. The four Treg cell marker genes identified in this
A B

D

E F

C

FIGURE 10

Tissue staining has demonstrated significant infiltration of Treg cells in the tumor microenvironment of pancreatic cancer. (A, B) Histopathological
staining (Hematoxylin and Eosin staining) results of pancreatic cancer and adjacent normal tissues. (C, D) CD3-FOXP3 immunofluorescence staining
of pancreatic cancer tissues and adjacent normal tissues. (E, F) Immunofluorescence co-staining results of CD4/FOXP3 in pancreatic cancer and
adjacent normal tissues.
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study were found to be involved in the development and

differentiation of Treg cells, as confirmed by pseudo-timing

analysis. Furthermore, through our subsequent classification

and hdWGCNA analysis, we identified the HIF-1 signaling

pathway as a critical pathway associated with Treg cell

heterogeneity. Hypoxia is a characteristic feature of the tumor

microenvironment. As the tumor grows, it becomes distanced

from blood vessels, and the dense interstitial cell population

within the tumor microenvironment contributes to a hypoxic

milieu (95). To adapt and thrive in this hypoxic environment,

tumor cells undergo metabolic reprogramming by activating the

HIF-1 signaling pathway, which enhances their anaerobic

metabolism capabilities (96). Further studies have demonstrated

that HIF-1 signaling pathway activation is not limited to tumor cells

but is also observed in other cell types. For instance, HIF-1a has

been found to bind to FOXP3 and promote FOXP3 degradation,
Frontiers in Immunology 17
thereby inhibiting Treg cell differentiation (97). HIF-1a regulates T

cell metabolism, including glycolysis, which in turn inhibits Treg

cell development (98). Additionally, targeting HIF-2a to disrupt

Treg cells may represent a potential approach to modulate the

functional activity of Treg cells (99). Therefore, we propose that the

four identified TRGs have significant potential to modulate the

“double-edged sword” effect of Treg cells by influencing the HIF-1

signaling pathway. These findings highlight the importance of

understanding the role of Treg cell heterogeneity and its

regulation, particularly through the involvement of the HIF-1

signaling pathway.

During this investigation, we identified four TRGs that

exhibited significant expression in Treg cells, directly correlating

with Treg cell infiltration in pancreatic cancer and influencing

disease progression. Let’s delve into the characteristics and roles

of these genes. CASP4, an inflammatory caspase, plays a crucial role
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FIGURE 11

PCR confirmed the results of bioinformatics analysis. (A–D) PCR results of four genes (CASP4, FYN, CASP4 and TOB1) in 24 pancreatic cancer tissue
samples. (E–H) Survival analysis of four genes (CASP4, FYN, CASP4 and TOB1). (I, J) PCR results of two immune checkpoints (PDCD1, CTLA4) in 24
pancreatic cancer tissue samples. (K–R) Results of Spearmancorrelation analysis between the four genes (FYN, CASP4 and TOB1) and the two
immune checkpoints (PDCD1, CTLA4).
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in the innate immune response by facilitating the fusion of

phagosomes and lysosomes carrying pathogens. It inhibits

intracellular pathogen replication and promotes the maturation

and secretion of pro-inflammatory cytokines. Knockdown of

CASP4 has been shown to impede cell migration, cell-matrix

adhesion, and tissue invasion in epithelial cancer cell lines (100).

Fyn, a member of the Src kinase family (SFK), is a non-receptor

tyrosine kinase involved in signal transduction pathways in the

nervous system, as well as T lymphocyte formation and activation.

Numerous studies have revealed that Fyn overexpression directly

promotes the proliferation and invasion of various tumor cell lines,

potentially through the Ras/PI3K/Akt signaling pathway (101, 102).

TOB1, an anti-proliferative protein from the Tob/BTG family, is

often implicated in tumorigenesis and T cell activation. TOB1’s

promotion of tumor cell lines may be attributed to its activation of

classical tumor pathways such as WNT, JNK, and P38 (103–105).

CLEC2B is predominantly expressed in human platelets/

megakaryocytes and functions to activate platelets and facilitate

coagulation. Studies have also suggested that CLEC2B activation in

platelets plays a crucial role in development, inflammation, and

cancer (106, 107). Although previous studies have shed light on the

potential mechanisms underlying the expression changes of these

four TRGs in promoting tumor cells, the focus has primarily been

on their effects within tumor cell lines. The mechanisms by which

altered expression of TRGs influences Treg cells and promotes

tumor progression remain elusive. Moreover, research investigating

the relationship between TRGs and pancreatic cancer is limited.

Therefore, we believe that further investigation into the co-culture

of Treg cells and pancreatic cancer cells is necessary to elucidate the

associated mechanisms.

Prior research has employed bioinformatics methodologies to

explore the correlation between immune cells and tumors.

However, the methods utilized were outdated, and there was a

lack of relevant investigations into the mechanisms underlying Treg

involvement in regulating pancreatic cancer. In contrast to previous

studies, this research incorporates state-of-the-art statistical analysis

techniques and integrates sequencing data from various platforms.

This not only facilitates a more comprehensive and rigorous

analysis of key genes in Treg cells but also introduces novel

approaches to transcriptomic studies of the interaction between

tumors and immune cells. However, there were certain limitations

to our research. Although our conclusions were primarily based on

bioinformatics analysis, additional experimental validation was

necessary to support our findings. While we conducted some in

vitro validation, such as immunofluorescence staining and PCR

analysis, the limited availability of pancreatic cancer patient samples

hindered us from obtaining a sufficiently large sample size.

Nonetheless, the experimental results we obtained align closely

with our bioinformatics analysis conclusions, providing

substantial evidence. In addition, conducting cytological

experiments or organoid experiments involving the co-culture of

Treg cells with pancreatic ductal adenocarcinoma cells could

potentially provide further insights and enhance the evidential

basis for our research.

Moreover, our research provided valuable recommendations for

clinical practice. Immunological checkpoints, which involve ligand-
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receptor interactions that either suppress or enhance immune

responses, play a critical role in maintaining self-tolerance and

regulating the duration and intensity of immune reactions to

minimize tissue damage. It has been increasingly recognized that

tumor types often exhibit the expression of inhibitory or

stimulatory immune checkpoint molecules (108–110).

Consequently, the expression of immune checkpoints can serve as

a descriptor for tumor behavior patterns and responsiveness to

targeted therapies. In our study, we observed that patients in the

high-risk group exhibited a high expression of numerous

checkpoints, as determined by the stratification of patients based

on TRG expression levels. To enhance treatment efficacy, a potential

approach was to consider dual-targeted therapy that simultaneously

targeted TRGs and specific immune checkpoints based on their

expression patterns. Additionally, we predicted the potential

therapeutic sensitivity of traditional chemotherapy drugs for both

patient groups. We also identified potential therapeutic agents that

could disrupt the immunosuppressive effects mediated by Treg cells

within the pancreatic cancer microenvironment, thereby enhancing

the clinical effectiveness of pancreatic cancer treatments. These

findings offered practical implications for improving treatment

outcomes in pancreatic cancer and suggested avenues for

personalized therapeutic interventions targeting both TRGs and

immune checkpoints, as well as identifying potential drugs to

counteract Treg cell-mediated immunosuppression.

5 Conclusion

In conclusion, our study provided evidence of Treg cell

infiltration within the microenvironment of pancreatic cancer. We

analyzed the differentiation status of Treg cells within the T/NK cell

cluster and investigated their communication pathways with other

cells. Moreover, we identified four Treg cell-related genes that

significantly contributed to the development and progression of

pancreatic cancer. Importantly, we examined the clinical relevance

of these genes based on their expression patterns. Overall, our

findings shed light on the role of Treg cells in pancreatic cancer

and elucidated the significance of the identified Treg cell-related

genes. This research added to our understanding of the molecular

mechanisms underlying pancreatic cancer and paved the way for

potential therapeutic interventions targeting Treg cells in this disease.
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SUPPLEMENTARY FIGURE 2

Expression of selected marker genes for cell type annotation in
each subpopulation

SUPPLEMENTARY FIGURE 3

Performance and ligand-receptor display of Treg cells in CD99 pathway. (A,
B) Total communication intensity of each cell in the CD99 pathway. (C) The
heatmap quantitatively showed the total communication intensity of each

cell in the CD99 pathway. (D) All ligand-receptor contribution values in the
CD99 pathway. (E) Each cell was based on CD99-CD99 ligand-receptor

exchange intensity. (F) Visualization of the communication intensity of

individual cells as signal transmitters and receivers in the CD99 pathway.
(G) The expression of each receptor in the CD99 pathway between cells. (H)
The heatmap of the intensity of communication between individual cells in
the CD99 pathway as signal senders and receivers in the CD99 pathway.

SUPPLEMENTARY FIGURE 4

Performance and ligand-receptor display of Treg cells in FN1 pathway. (A, B)
Total communication intensity of each cell in the FN1 pathway. (C) The
heatmap quantitatively showed the total communication intensity of each

cell in the FN1 pathway. (D) All ligand-receptor contribution values in the FN1
pathway. (E) Each cell was based on FN1-CD41 ligand-receptor exchange

intensity. (F) Visualization of the communication intensity of individual cells as
signal transmitters and receivers in the FN1 pathway. (G) The expression of

each receptor in the FN1 pathway between cells. (H) The heatmap of the

intensity of communication between individual cells in the FN1 pathway as
signal senders and receivers in the FN1 pathway.

SUPPLEMENTARY FIGURE 5

Performance and ligand-receptor display of Treg cells in MHC-II pathway. (A,
B) Total communication intensity of each cell in the MHC-II pathway. (C) The
heatmap quantitatively showed the total communication intensity of each

cell in the MHC-II pathway. (D) All ligand-receptor contribution values in the
MHC-II pathway. (E) Each cell was based on HLA-DRA-CD4 ligand-receptor

exchange intensity. (F) Visualization of the communication intensity of
individual cells as signal transmitters and receivers in the MHC-II pathway.

(G) The expression of each receptor in the MHC-II pathway between cells. (H)
The heatmap of the intensity of communication between individual cells in

the MHC-II pathway as signal senders and receivers in the MHC-II pathway.

SUPPLEMENTARY FIGURE 6

Performance and ligand-receptor display of Treg cells in MIF pathway. (A, B)
Total communication intensity of each cell in the MIF pathway. (C) The

heatmap quantitatively showed the total communication intensity of each
cell in the MIF pathway. (D) All ligand-receptor contribution values in the MIF

pathway. (E) Each cell was based on MIF-(CD47+CD44) ligand-receptor

exchange intensity. (F) Visualization of the communication intensity of
individual cells as signal transmitters and receivers in the MIF pathway. (G)
The expression of each receptor in the MIF pathway between cells. (H) The
heatmap of the intensity of communication between individual cells in the

MIF pathway as signal senders and receivers in the MIF pathway.

SUPPLEMENTARY FIGURE 7

Performance and ligand-receptor display of Treg cells in MPZ pathway. (A, B)
Total communication intensity of each cell in the MPZ pathway. (C) The

heatmap quantitatively showed the total communication intensity of each
cell in the MPZ pathway. (D) All ligand-receptor contribution values in the

MPZ pathway. (E) Each cell was based on MPZL1- MPZL1 ligand-receptor
exchange intensity. (F) Visualization of the communication intensity of

individual cells as signal transmitters and receivers in the MPZ pathway. (G)
The expression of each receptor in the MPZ pathway between cells. (H) The
heatmap of the intensity of communication between individual cells in the

MPZ pathway as signal senders and receivers in the MPZ pathway.

SUPPLEMENTARY TABLE 1

Primer sequences for PCR detection of genes
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