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Pain imposes a significant urden on patients, affecting them physically,

psychologically, and economically. Despite numerous studies on the

pathogenesis of pain, its clinical management remains suboptimal, leading to

the under-treatment of many pain patients. Recently, research on the role of

macrophages in pain processes has been increasing, offering potential for novel

therapeutic approaches. Macrophages, being indispensable immune cells in the

innate immune system, exhibit remarkable diversity and plasticity. However, the

majority of research has primarily focused on the contributions of M1

macrophages in promoting pain. During the late stage of tissue damage or

inflammatory invasion, M1 macrophages typically transition into M2

macrophages. In recent years, growing evidence has highlighted the role of

M2 macrophages in pain relief. In this review, we summarize the mechanisms

involved in M2 macrophage polarization and discuss their emerging roles in pain

relief. Notably, M2 macrophages appear to be key players in multiple

endogenous pathways that promote pain relief. We further analyze potential

pathways through which M2 macrophages may alleviate pain.
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Abbreviations: CIPN, chemotherapy-induced peripheral neuropathy; NSAID, non-steroidal anti-

inflammatory drug; DRG, dorsal root ganglia; SPM, specialized pro-resolving mediator; JAK, Janus kinase;

STAT, signal transducer and activator of transcription; TGF-b, transforming growth factor-b; PPARg,

peroxisome proliferator-activated receptor gamma; OXPHOS, oxidative phosphorylation; aKG, a-

ketoglutarate; SNI, spared nerve injury; CCI, chronic constriction injury; OA, osteoarthritis; GPCR, G

protein-coupled receptor; EV, extracellular vesicle; BSCB, blood-spinal cord barrier.
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1 Introduction

Pain can be induced by tissue damage or inflammation

invasion. While most patients experience gradual pain relief as

wounds heal and inflammation subsides, some cases may progress

to chronic pain. For example, 30% of patients with chemotherapy-

induced peripheral neuropathy (CIPN) still experience pain six

months after chemotherapy (1). Additionally, approximately 10%

of patients undergoing surgical procedures suffer from chronic pain

that cannot be effectively managed (2). Chronic pain, an unpleasant

subjective sensation, has significant negative effects on physical and

mental health, affecting about 30% of patients worldwide (3).

Presently, opioids and non-steroidal anti-inflammatory drugs

(NSAIDs) are the main treatments for pain. However, opioids are

increasingly stigmatized due to their addictive, tolerant, and

analgesic side effects (4), while NSAIDs may lead to

gastrointestinal and cardiovascular reactions (5). Emerging studies

also suggest that NSAIDs during the acute phase may contribute to

the development of chronic pain (6). Therefore, pain management

remains unsatisfactory. While extensive preclinical studies have

investigated the mechanisms of pain development (7–10),

mechanisms of pain relief have received less attention.

Understanding pain relief offers an alternative perspective for

pain treatment, that is, to intervene in the mechanism of pain

relief, enhance this mechanism, thereby alleviating pain.

Macrophages are an important component of the body’s

immune system. Numerous studies suggest that immune cells

play crucial regulatory roles in pain development (10–12). Under

various stimuli, macrophages differentiate into different

phenotypes, each exhibiting distinct characteristics and functions,

and playing diverse regulatory roles in physiological and

pathological processes. Following peripheral nerve injury,

macrophages can transform into the M1 phenotype, producing

inflammatory factors that promote neuropathic pain (13). In

contrast, transitioning into the M2 phenotype can inhibit

inflammation, promote tissue healing, and subsequently relieve

neuropathic pain. While the promoting role of M1 macrophages

in pain has been extensively summarized, this review emphasizes

the role of M2 macrophages in pain relief (14, 15). In this review, we

emphasize the role of M2 macrophages in the process of pain relief.

Notably, many pain relief measures function by promoting the

polarization of M2 macrophages. Consequently, we focus on

elucidating how M2 macrophages contribute to pain relief. This

review aims to provide evidence for pain relief through the

regulation of M2 macrophages and to present novel ideas for

pain treatment.
2 Pain relief is an active process

Pain relief, traditionally considered a passive process, linked to

the subsiding of inflammation, tissue healing, and dissipation of

pain-inducing factors, is now being recognized as an active and

dynamic phenomenon. The nervous system does not easily revert to

its baseline state after nociception occurs, instead transitioning to a
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state of “latent sensitization” or “hyperalgesic priming”, leading to

more severe pain upon reexposure to the stimulus (16, 17). Recent

research indicates that pain relief is an active and dynamic process,

distinct from pain maintenance. In the case of lower back pain,

patients who experience pain relief demonstrate significant

alterations in over 5500 genes in their peripheral blood during the

relief period compared to the acute phase. Conversely, patients

whose pain remains unresolved do not show significant changes in

gene expression levels before and after pain (6). A prolactin induced

mouse pain model revealed significant changes in gene expression

in the dorsal root ganglia (DRG) and hind paw tissues of both

female and male mice during the relief period (18). These findings

highlight the involvement of numerous active biological processes

that occur during pain relief. Moreover, recent evidence suggests

that the secretion of specialized pro-resolving mediators (SPMs)

such as lipoxins, maresins, resolvins, protectins, etc., alongside the

phenotypic conversion of immune cells (including macrophages, T

cells, and neutrophils), play pivotal roles in mediating inflammation

resolution and pain relief (19).Targeting these resolution pathways

offers a new perspective on pain treatment, holding promise in

effectively managing acute pain and potentially preventing

chronic pain.
3 Regulation of M2 macrophage
polarization

Macrophages are key immune cells involved in the innate

immune response. Their activation plays a critical role in the

inflammatory response, tissue recovery and homeostasis (20).

Macrophages can be classified into M1 macrophages with a pro-

inflammatory phenotype and M2 macrophages with an anti-

inflammatory phenotype in the latest classification. M2

macrophages are further divided into M2a (IL-4/IL-13), M2b

(immune complexes and Toll-like-receptor or IL‐1R agonists),

and M2c (IL‐10) (21, 22). Macrophages do not strictly exist in a

bipolar state; rather, they constantly switch and transition between

M1 andM2 states, suggesting the possibility of an intermediate state

with both pro-inflammatory and anti-inflammatory phenotypes

(23). In this study, we utilized known macrophage markers that

are altered during polarization to distinguish between M1 and M2

macrophages. Specifically, M1 macrophages were identified by

overexpression of CD80, CD86, iNOS, STAT-1 and MHC-II (24),

while M2 macrophages were characterized by the expression of

CD200R, CD206, CD163, Arg-1, STAT-3, and IL-10 (25). Several

signaling pathways and metabolic reprogramming are involved in

regulating macrophage polarization. As this paper primarily focuses

on M2 macrophages, the following content will summarize the

mechanisms involved in M2 macrophage polarization.
3.1 JAK/STATs signaling pathway

Janus kinase (JAK) is a tyrosine kinase with four types, JAK1,

JAK2, JAK3, and TYK2. The signal transducer and activator of
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transcriptions (STATs) include six isoforms, STAT1-6. The JAK/

STATs signaling pathway is activated during M2 macrophage

polarization and plays a role in regulating the transcription of

related genes. For example, M2 macrophage polarization induced

by IL4 is inextricably linked to the activation of the JAK1-STAT6

signaling pathway (26), leading to the activation of M2-like genes,

such as YM1, Arg1, Fizz1, IL-10, and MGL1 (27). Inhibition of the

JAK2-STAT3 signaling pathway results in M1 macrophage

polarization, and activation of the JAK2-STAT3 signaling

pathway promotes M2 polarization (28). Activation of the JAK1-

STAT1 signaling pathway facilitates macrophage conversion to the

M1-type (29), whereas STAT3 activation inhibits the expression of

STAT1, thereby suppressing its role in mediating M1 macrophage

polarization while enhancing M2 macrophage polarization (30).

Overall, the activation of STAT3 and STAT6 promotes the

transcription of M2 macrophage-associated genes, leading to

metabolic and functional alterations in M2 macrophages and

enhancing their anti-inflammatory effects.
3.2 TGF-b signaling pathway

Transforming growth factor-b (TGF-b) is a multifunctional

cytokine that plays an important role in the polarization process of

M2 macrophages. It not only polarizes monocyte to M2 macrophages

but also repolarizes LPS-induced M1 macrophages into M2

macrophages (31). This process involves the binding of TGF-b to

type 2 TGF-b receptors and the recruitment of type 1 TGF-b receptors,
followed by the activation of Smad2/3. The activated Smad2/3 forms a

heterodimer with Smad4 and enters the nucleus, where it can

subsequently regulate the expression of M2 macrophage-related

genes and facilitate the process of M2 macrophage polarization (32).

Additionally, TGF-b can also promote M2 macrophage polarization

through non-Smad pathways (33). In summary, TGF-b plays an

important role in regulating M2 macrophage polarization and

modulating immune responses.
3.3 PPARg signaling pathway

Peroxisome proliferator-activated receptor gamma (PPARg) is a
nuclear receptor that directly regulates the transcription of target

genes upon ligand binding in the nucleus, thereby influencing

cellular functions. Activation of PPARg increases gene expression

of Mrc1 and Arg1 while decreasing gene expression of iNOS,

promoting the conversion to the M2 type. Conversely, inhibiting

of PPARg suppresses M2macrophages and increases the proportion

of M1 macrophages (34). He et al. conducted a comprehensive

analysis of dynamic changes in cell signaling and metabolism

during macrophage polarization using quantitative time-course

proteomics and phosphoproteomics. They also identified

pharmacological inhibitors that can prevent M2-type macrophage

polarization. The study results indicated that PPARg/retinoic acid

plays a crucial role in inducing the polarization of M2 macrophages.

Additionally, the activation of mitogen-activated protein kinase was

found to be necessary for this process to occur (35).
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3.4 Metabolic regulation of M2
macrophage polarization

In response to a series of external cues, macrophages undergo a

significant switch in their metabolic pathways. Numerous studies have

demonstrated that glycolysis is significantly enhanced in M1

macrophages, while M2 macrophages rely more on fatty acid

oxidation and oxidative phosphorylation (OXPHOS) (36). Pyruvate

generated from glycolysis can enter OXPHOS, but inM2macrophages,

OXPHOS can occur independently of this pathway. Inhibiting

glycolysis does not impact M2 macrophage polarization, as long as

OXPHOS remains functional (37). Fatty acid oxidation is fueled by the

breakdown of triglycerides. M2 macrophages obtain triglyceride-rich

lipid droplets from adipose tissue via CD36, which they can take up

and catabolize for energy. Additionally, M2macrophages are capable of

de novo triglyceride synthesis (38). Lysosomal acid lipase is involved in

the breakdown of triglycerides and the release of fatty acids. M2

macrophages express lysosomal acid lipase at a much higher level

than M1 macrophages (38). The oxidative metabolism of fatty acids

contributes to the expression of M2 macrophage characteristic genes

such as Arg-1 and IL-10 (39). Components involved in triglyceride

catabolism and fatty acid oxidation can influence M2 macrophage

polarization. For instance, orlistat, a lipolysis inhibitor, has been shown

to hinder the polarization of M2 macrophages (38). Dioscin has been

found to promoteM2macrophage polarization by enhancing fatty acid

catabolism through the mTORC2/PPAR-g signaling pathway.

However, the fatty acid catabolism inhibitor etomoxir can reverse the

pro-M2 macrophage polarizing effect of dioscin. Glutamine, an

important amino acid metabolite, plays an important role in cellular

metabolism and is vital for M2 macrophage polarization. Deprivation

of glutamine in bone marrow-derived macrophages impairs M2

macrophage polarization (40). Glutamine is catabolized by glutamate

dehydrogenase 1 to producea-ketoglutarate (aKG), which inducesM2

macrophage polarization and is regulated by SENP1-Sirt3 (41). The

catabolism of glutamine generatesaKG, an intermediate product of the

tricarboxylic acid cycle. aKG can enter the mitochondrial OXPHOS

metabolism pathway to produce ATP and also plays a role in histone

modification. Histone modification involving H3K27 trimethylation is

a common regulatory mechanism for gene expression. aKG can

decrease H3K27 trimethylation in the nucleus, resulting in the

upregulation of genes associated with M2 polarization (41).

Additionally, aKG is also involved in fatty acid oxidation (42),

indirectly affecting M2 macrophage polarization. Thus, regulating

macrophage metabolism is a way of modulating the polarization of

macrophages towards the M2 type.
4 The role of M2 macrophages in
pain relief

Following inflammatory insults or tissue injury, macrophages

derived from circulating monocytes infiltrate into tissues. Both

infiltrating and tissue-resident macrophages become activated and

accumulate around damaged sites and the DRG of nociceptive

neurons. Recent research indicates that while bone marrow-derived
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macrophages increase in number at the DRG following nerve

injury, the majority of macrophages in this area are of tissue

origin (43). Macrophages in the DRG, but not those around the

injured-site, are believed to be the primary contributors to the

initiation and development of neuropathic pain and inflammatory

pain (13, 44, 45). However, Shepherd et al. hold the opposite view,

suggesting that macrophages around the injured-site play a more

vital role in pain compared to those in the DRG (46). The exact

contribution of macrophages in the DRG versus those at the injury

site, or both, in pain, remains unclear. However, we are more

inclined to believe that macrophages in the DRG play a role in

regulating pain because macrophages at the site of injury often

exhibit inconsistent behaviors in the development of pain (45).

Nevertheless, the dialogue between macrophages and neurons plays

a regulatory role in the occurrence and development of pain.

When the body is damaged, macrophages are activated and

polarized to M1. M1 macrophages release a large number of

inflammatory factors, such as IL6, IL-1b, TNF-a, IGF-1, and so

on. These inflammatory factors play critical roles in increasing

the excitability of nociceptive neuron, thereby promoting the

development of pain (15). In the first few days after injury, the

injury or inflammation region and corresponding DRG are

dominated by M1 macrophages, whereas several days later,

during the resolution of pain, the level of M1 macrophages

returns to the baseline level, and M2 macrophages take over

(13, 45, 47, 48). Under normal conditions, DRG neurons are

surrounded by satellite glial cells with a narrow gap of only 20

nm (49). After nerve injury, the gap between neurons and

satellite glial cells increases, and M2 macrophages undergo

enlargement and develop an astral shape. This shape allows

M2 macrophages to penetrate between neurons and glial cells,

a phenomenon observed both in injured and uninjured neurons.

The neurons in close contact with M2 macrophages are

protected from neuronal death (43).On the seventh day after

the injury, a significant increase in M2 macrophages was

observed in the DRG on the injured side compared to the
Frontiers in Immunology 04
contralateral side, coinciding with pain relief. However, there

was no significant difference in the number of M1 macrophages

between the two sides (43). A similar phenomenon of

macrophage changes over time after an injury can also be

found in the spinal cord (50).

Additionally, there is abundant direct evidence demonstrating

the crucial role of M2 macrophages in pain relief, which is

summarized in Table 1. MRC1+ macrophages, markers of M2

macrophages in the spinal cord, proliferate during pain relief,

highlighting their importance in pain relief (50). However,

compared to those in superficial injury, the expansion of spinal

M2 macrophages in nerve injury is noticeably blunted,

accompanied by delayed pain relief (50). Although no research

study has directly addressed whether this phenomenon still exists in

the DRG or at the injured-site, other evidence supports the

importance of M2 macrophages during the pain relief. Michiel

et al. discovered that diphtheria toxin, which induced the complete

depletion of monocytes and macrophages, delayed the recovery of

acute inflammatory pain induced by Carrageenan. Intrathecal

injection of M2 macrophages but not M1 macrophages can

reverse this situation (47). Moreover, intrathecal injection of M2

macrophages can also resolve the persistent inflammatory pain

induced by monoiodoacetate in the osteoarthritis (OA) model (13).

Selectively depleting M2 macrophages by intrathecal injection of m-

clodrosome was enough to delay the recovery of the mechanical

pain threshold decreased by cisplatin (52). Additionally, intrathecal

injection of M2-like bone marrow derived macrophages can relieve

spared nerve injury (SNI) -induced pain (51). These are direct

evidence of the involvement of M2 macrophages in pain relief.

M2 macrophages may be common participants in multiple

endogenous pathways that promote pain relief. T cells, SPMs, and IL-

4 all play crucial roles in the natural course of pain relief (55–57). The

polarization of M2 macrophages is essential in these processes. These

factors regulate the polarization of M2 macrophages through various

mechanisms, thereby promoting pain relief. In cisplatin-induced pain

relief, the secretion of IL-13 by CD8+ T cells promotes the conversion of
TABLE 1 The role of M2 macrophages in different pain models.

Region Pain model Species Intervene Effect Reference

DRG OA Mice Intrathecal injection of M2 macrophages Mechanical hypersensitivity↓ (13)

Joint K/BxN serum
transfer model

Mice – The number of M2 macrophages at the joint does
not consistently correlate with pain progression

(45)

DRG Carrageenan-induced
inflammatory pain

Mice Intrathecal injection of M2 macrophages The delayed pain relief caused by macrophage
depletion is rescued.

(47)

Spinal
cord

SNI Mice – The expansion of spinal MRC1 macrophages is
obviously blunted.

(50)

DRG SNI Mice Intrathecal injection of M2-like bone
marrow derived macrophages

M2 macrophages↑
Mechanical hypersensitivity↓

(51)

DRG CIPN Mice Intrathecal injection of m-clodrosome M2 macrophages↓
Resolution of mechanical allodynia↓

(52)

Injured
nerve

CCI Mice Injection of IL-4 (200 ng) at the injured
site from day 14 to day 21 after CCI

M2 macrophages↑
Mechanical hypersensitivity↓

(53)

Hind paw Zymosan-induced
inflammatory pain

Mice Systemic injection of the MF toxin
clodronate

Pain relief was delayed, which can be rescued by the
transplantation of normal macrophages.

(54)
↑ means rise or promotion.↓ means decline or inhibition.
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macrophages to the M2 phenotype. Blocking IL-13 signaling from T

cells inhibits this conversion process and prevents pain relief (52). In the

chronic constriction injury (CCI) model, a single injection of IL-4 at the

injured nerve resulted in pain relief through the release of opioid

peptides from macrophages located at the site of damage. However,

this effect is short-lived and the macrophages at the site of damage

remain predominantly of theM1 phenotype (58). Prolonged application

of IL-4 to the injured nerve over several days leads to a shift of

macrophages from a pro-inflammatory M1 phenotype to an anti-

inflammatory M2 phenotype. This shift in macrophage polarization

results in a significant prolongation of the pro-resolving effect (53).

Notably, even after discontinuation of IL-4, a pro-relieving effect

persists, indicating a critical role of macrophages in pain regulation

(59). Multiple preclinical studies have demonstrated the pain-relieving

effects of SPMs on various types of pathological pain. Macrophages

express GPR37, a receptor for NPD1 (a type of SPM), and the absence

of this receptor impairs the polarization of M2 macrophages, ultimately

resulting in the failure of pain relief and the persistence of pain (54).

Conversely, activation of macrophage GPR37 exerts a palliative effect on

pain-like behavior (60). In summary, M2 macrophage polarization is a

common mechanism by which multiple pro-pain relief mediators act.

Therefore, the modulation of M2 macrophage polarization could be a

promising strategy to alleviate pain.
5 Mechanisms of M2 macrophages in
pain relief

5.1 IL-10

A study found that mice deficient in IL-10 or intrathecal

administration of anti-IL-10 antibody have difficulty recovering from

CIPN (61). Both T cells and macrophages can secrete IL-10. However,

CD8+ T cells from IL-10−/− mice retain their capability to promote the

resolution of pain induced by paclitaxel, indicating that CD8+ T cells

are not the source of IL-10 during pain relief, at least in this model (62).

Meanwhile, CD8+ T cells can interact with macrophages via IL-13 to

shift macrophages toward M2 (CD206+CD11c–) macrophages during

the resolution of CIPN. This shift increases IL-10 production by

macrophages (52).These studies suggest that M2 macrophages are

the main source of IL-10 during the resolution of CIPN. Whether this

conclusion remains valid in other models requires further research.

CD163 on M2 macrophages mediates the production and secretion of

IL-10 (50, 63). On the one hand, IL-10 can induce the macrophage

itself to promote efferocytosis and inhibit neuroinflammation (64),

which will be described in detail later. On the other hand, IL-10 directly

interacts with IL-10R on sensory neurons to down-regulate the voltage-

gated sodium channels in DRG, regulating spontaneous activity and

depolarizing spontaneous fluctuations (65).
5.2 Opioid

Opioid peptides are endogenous neurotransmitters that exert

analgesic effects by binding to opioid peptide receptors (66). They

reduce the excitability of neurons and inhibit the transmission of
Frontiers in Immunology 05
pain signals, thereby relieving pain. Various types of leukocytes,

including macrophages and T cells, are capable of producing opioid

peptides (67–71). Among macrophages, M2 macrophages release

higher levels of opioid peptides, such as Met-enkephalin,

dynorphin, and b-endorphin, both in vivo and in vitro, compared

to M1 and M0 macrophages (72). When these macrophages are

transferred to injured sites, they alleviate pain hypersensitivity.

However, this effect can be reversed by opioid receptor

antagonists (72). Considerable research has shown that IL4, as an

anti-inflammatory cytokine, has neuroprotective effects on the

injured nervous system and can alleviate pain. The application of

IL4 at the site of nerve injury can alleviate pain by polarizing

macrophages to become M2 macrophages that release opioid

peptides. Similarly, this effect can be reversed by opioid receptor

antagonists (53).
5.3 Specialized pro-resolving mediators

M2 macrophages have been found to possess a higher

proportion of pro-resolving mediators than pro-inflammatory

mediators (73). In a study investigating the lipid mediator profiles

of different subtypes of human macrophages, it was observed that

M2 macrophages synthesize significantly higher levels of SPMs

compared to M1 macrophages. These SPMs include D/E-series

resolvins, protectins, maresins, and lipoxins (74). Notably, SPMs

have demonstrated efficacy in alleviating various types of pain,

including neuropathic, inflammatory, postoperative, and cancer

pain (75, 76). SPMs exert their antinociceptive effects through the

activation of G protein-coupled receptors (GPCRs) (77). These

SPM receptors are widely expressed on sensory neurons and

immune cells including macrophages, glial cells and neutrophils

(76). SPMs play vital roles in promoting macrophage phagocytosis,

suppressing microglia activation, preventing neutrophil

recruitment, and inhibiting the release of inflammatory factors to

alleviate pain (78–80). Meanwhile, SPMs potently inhibit TRPV1

and TRPA1 on nociceptive sensory neurons, thereby affecting

excitatory synaptic transmission and pain signal transduction

(80, 81).
5.4 Extracellular vesicles

Macrophages can produce a large number of extracellular

vesicles (EVs) containing miRNAs, proteins, lipids, and many

other biologically active substances, which contribute to several

signaling events and physiological and pathological processes.

Among them, miRNAs, short pieces of single-stranded RNAs

(21-24 nucleotides), play important roles in the regulation of

pain. Extensive studies have shown significant changes in miRNA

expressions in the DRG and spinal cord following inflammatory

pain and peripheral nerve injuries, including CFA, SNI, nerve crush,

CCI, nerve transection, and spinal nerve ligation (82, 83). The

altered miRNAs can be reversed by intrathecal injection of EVs

derived from M2 macrophages (M2j-Evs) that deliver miRNAs,

leading to the recovery of pain threshold (83, 84). These functional
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miRNAs in EVs can be taken up by primary cortical neurons,

microglia, and astrocytes, where the expression of pro-

inflammatory miRNA target genes is downregulated (85).
5.5 Mitochondrial transfer

Due to their special structure, neurons have a greater energetic

demand compared to other cell types (86). Approximately 66.7% of

patients with mitochondrial disease are accompanied by chronic

pain, often with a neuropathic nature (87). Disturbances in

mitochondrial OXPHOS, oxidative stress and Ca2+ buffering are

closely associated with both inflammatory and neuropathic pain,

which might facilitate the development and maintenance of pain

and drive the transition from acute pain to chronic pain (88–90).

Several preclinical studies have been devoted to relieving pain by

scavenging reactive oxygen species (91), inhibiting apoptotic

pathways (92), altering mitochondrial membrane potential (91),

or altering mitochondrial dynamics (93). However, these studies

only aimed at improving specific aspects of mitochondrial

dysfunction and its clinical translation has not been achieved so

far. In contrast to M1 macrophages, the mitochondria of M2

macrophages are not dominated by glycolysis but by OXPHOS

(47). During the physiological process of pain relief, M2

macrophages surrounding the sensory neurons in the DRG

transfer mitochondria to sensory neurons through an interaction

between the CD200R on M2 macrophages and the non-canonical

CD200R-ligand iSec1 on sensory neurons. This transfer might be

helpful for the recovery of mitochondria dysfunction containing

OXPHOS and Ca2+ buffering in sensory neurons (52). Once the

process is disrupted, pain resolution becomes challenging.
5.6 Efferocytosis

Efferocytosis is the process of phagocytosis of cellular debris by

macrophages, especially M2 macrophages, after cell death or

apoptosis, followed by cytokine release from macrophages (94).

This process is crucial in inflammatory remission. During

neuropathic pain, the expression of efferocytosis-related

molecules, such as MerTK, on M2 macrophages is significantly

downregulated at the site of injury compared to M2 macrophages at

normal sites. Consequently, efferocytosis is significantly deficient,

and dead or dying cells cannot be completely cleared (95). It was

also found that the efferocytosis of synovial macrophages in OA

patients was markedly reduced compared to that in healthy

individuals (96). However, 3,3’-diindolylmethane (DIM) enhances

macrophage efferocytosis, leading to the subsequent relief of visceral

pain. And inhibition of macrophage efferocytosis reversed the pain-

relieving effect of 3,3’-diindolylmethane (97). This implies that

inadequate efferocytosis of M2-like macrophages plays a crucial

role in the development of chronic inflammation in damaged nerves

and reflects the critical role of normal efferocytosis of M2-like

macrophages in the pain relief process.
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5.7 Increase in barrier stability

The blood-spinal cord barrier (BSCB) is formed by tightly

connected capillary endothelial cells, basal laminae, pericytes and

astrocyte peduncles around neurons. It serves as a bridge mediating

the interaction between the immune and nervous systems (98). The

tight junctions between the endothelial cells of the BSCB create a

physical barrier that separates the blood from the spinal cord (99),

where claudin-1, claudin-5, occluding and ZO-1 play important

roles in maintaining the integrity of the BSCB (100). It prevents the

influx of blood cells and neurotoxic substances into the spinal cord,

thereby playing a crucial role in maintaining the stability of the

perineuronal environment and ensuring normal neuronal function

(99). Pain induced by peripheral neuropathy is often accompanied

by the disruption of BSCB integrity (100–102). Inflammatory

factors and immune cells, including T cells, invade around spinal

cord neurons, thereby inducing nociceptive hyperalgesia. Recent

research has shown that M2 macrophages can help restore BSCB

integrity by secreting large amounts of TGF-b, which binds to

receptors on endothelial and pericytes, leading to the upregulation

of ZO-1, occludin, and N-cadherin (103). On the other hand,

endothelial cells can also promote M2 macrophage polarization

by releasing lactic acid (104). Besides the BSCB, the blood-nerve

barrier and blood-DRG barrier also play an important role in pain

maintenance (105). In the diabetic neuropathic pain model, the

content of vascular-associated macrophages was significantly

down-regulated (105). To some extent, this also reflects the role

of macrophages in maintaining barrier integrity during pain relief.

However, further research in this area is needed.
6 Discussion and conclusion

As crucial components of the immune system, macrophages

play significant roles in the process of pain modulation. In recent

years, more and more studies have focused on the role of M2

macrophages in pain relief. In this review, we have summarized the

regulation of M2 macrophages and their important role in pain

relief. M2 macrophage polarization is primarily associated with

JAK-STATs, TGF-b and PPARg signaling pathways, and multiple

metabolic pathways. Targeting these pathways can modulate M2

macrophage polarization. In the process of pain relief, the number

of M2 macrophages increased significantly. Manipulating M2

macrophages can also relieve pain. These polarized M2

macrophages exert their effects through various direct or indirect

mechanisms. Firstly, M2 macrophages release substances such as

IL-10, opioids, and SPMs, which can act on the relevant receptors

on the nociceptive sensory neurons. Additionally, M2 macrophages

transfer their miRNAs and mitochondria to nociceptive sensory

neurons via EVs. Moreover, they can phagocytose apoptotic

sensory neurons through efferocytosis and enhance vascular

stability, thus providing a favorable environment for neurons and

contributing to pain relief (see Figure 1 for summary).
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However, several unresolved issues remain. M1 macrophages

play indispensable roles in the development of pain following

injury, and the failure of macrophages to transition from the M1

to M2 phenotype may contribute to the persistence of acute pain

and its progression into chronic pain. Of course, it would be

imprudent to block the bactericidal and phagocytic effects of M1

macrophages as they are required in the early stages of injury (106).

Therefore, further exploration is needed to determine the optimal

timing for M2 macrophage polarization. Besides, the process of M2

macrophages polarization is dynamic, which is tissue, injury and

time-dependent. It is not rigorous to infer the mechanism of M2

macrophages polarization in one injury or tissue type from that in

another injury or tissue type. Therefore, it is necessary to study

macrophages in a spatiotemporal-specific manner. Last, several

studies have confirmed that efferocytosis is one of the most vital

mechanisms in M2-mediated pain relief. But the role played by the

molecules involved in efferocytosis or other scavenger receptors has

hardly been studied. Gas6, one of the molecules involved in

efferocytosis, has been reported to regulate efferocytosis during

obesity-related OA development (107). OA is closely related to

pain (108). We speculate that Gas6 is involved in M2-mediated pain

relief through regulating efferocytosis. Therefore, the molecules

involved in efferocytosis or other scavenger receptors may also

play important roles in M2-mediated pain relief, which is also the

direction for the further research.

Pain often coexists as a symptom of many diseases (109–111),

and numerous studies have demonstrated that M2 macrophages

play a positive role in alleviating symptoms of various diseases, such

as rheumatoid arthritis and OA (112–114). By deepening our

understanding of the mechanisms through which M2

macrophages promote pain relief, we can develop novel strategies
Frontiers in Immunology 07
for pain management that not only provide symptomatic relief but

also actively address the underlying causes of pain, achieving a dual

effect of treating both symptoms and root causes.

In conclusion, M2 macrophages have a positive impact on pain

relief, and targeting the regulation of M2 macrophage polarization

holds promise as an effective approach for pain relief.
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FIGURE 1

The mechanisms of M2 macrophages in pain relief. M2 macrophages exert pain relief through opioid, IL-10, SPMs, efferocytosis, mitochondrial
transfer, EVs, and increase in barrier stability. SPM, specialized pro-resolving mediator; GPCR, G protein-coupled receptor; EV, extracellular vesicle.
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