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Multiple myeloma (MM) is a hematologic malignancy characterized by the

proliferation of clonal plasma cells in the bone marrow (BM). It is known that

early genetic mutations in post-germinal center B/plasma cells are the cause of

myelomagenesis. The acquisition of additional chromosomal abnormalities and

distinct mutations further promote the outgrowth of malignant plasma cell

populations that are resistant to conventional treatments, finally resulting in

relapsed and therapy-refractory terminal stages of MM. In addition, myeloma

cells are supported by autocrine signaling pathways and the tumor

microenvironment (TME), which consists of diverse cell types such as stromal

cells, immune cells, and components of the extracellular matrix. The TME

provides essential signals and stimuli that induce proliferation and/or prevent

apoptosis. In particular, the molecular pathways by which MM cells interact with

the TME are crucial for the development of MM. To generate successful therapies

and prevent MM recurrence, a thorough understanding of the molecular

mechanisms that drive MM progression and therapy resistance is essential. In

this review, we summarize key mechanisms that promote myelomagenesis and

drive the clonal expansion in the course of MM progression such as autocrine

signaling cascades, as well as direct and indirect interactions between the TME

and malignant plasma cells. In addition, we highlight drug-resistance

mechanisms and emerging therapies that are currently tested in clinical trials

to overcome therapy-refractory MM stages.

KEYWORDS

multiple myeloma, malignant plasma cell, clonal evolution, tumor microenvironment,
TME, immunotherapy, drug resistance
Introduction

Multiple Myeloma (MM) belongs to the heterogeneous group of plasma cell disorders

comprising monoclonal gammopathy of undetermined significance (MGUS), smoldering

myeloma (SMM), plasma cell myeloma, plasmacytoma, monoclonal immunoglobulin

deposition disease and plasma cell neoplasms associated with paraneoplastic syndromes
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(1). Plasma cell myeloma/MM is the most frequent plasma cell

disorder and is characterized by the uncontrolled expansion of

malignant plasma cells in the bone marrow (BM) causing distinct

clinical symptoms such as bone pain, spontaneous fractures, and

renal impairment (1, 2). To date, MM is still considered incurable.

However, due to the introduction of novel immunotherapies that

directly target plasma cell surface markers such as CD38, the overall

and progression-free survival of myeloma patients has substantially

improved within the last years (3–5). For the diagnosis of MM, the

international myeloma working group (IMWG) requires 10% BM

plasma cells or a biopsy-proven bone or extramedullary

plasmacytoma with at least one or more CRAB criteria (calcium

elevation, renal insufficiency, anemia, bone lesions) and/or

myeloma-defining molecular aberrations (6). MGUS and SMM

are considered as the precursor lesions of MM (2, 6, 7). Patients

with MGUS and SMM have increased BM plasma cell counts and/

or monoclonal proteins, but lack MM-defining symptoms (6, 7).

Early genetic alterations in the malignant transformation process

include hyperdiploidy or translocations involving the

immunoglobulin heavy chain (IGH) locus on chromosome 14

that lead to the overexpression or overactivation of defined

oncogenes stimulating plasma cell proliferation and/or preventing

apoptosis (8–11).

As a consequence of early cytogenetic alterations that occur in

postgerminal center B/plasma cells, a small group of abnormal cells,

so called founder clones, expand and initiate the process of

myelomagenesis. Subsequently, the clonal evolution of malignant

plasma cells emerges through a series of additional copy number

modifications, epigenetic changes, and the acquisition of additional

secondary mutations that enhance the intratumoral heterogeneity

finally resulting in the co-existence of multiple clonal

subpopulations with various selection and/or fitness advantages

(2, 12). Indeed, the spatio-temporal clonal landscape drastically

changes in the course of MM progression thus favoring disease-

promoting clones during repetitive cycles of myeloma cell

engraftment, dissemination and re-engraftment at another BM

site, as previously shown for MM xenografts grown in severe

combined immunodeficiency (SCID) mice (12). Moreover, so

called focal lesions - clonally heterogeneous and spatially

distributed tumor clusters - are seen as mutational “hot spots” in

MM, consistent with the regional outgrowth of advanced tumor

clones (13, 14). In relapsed and therapy-refractory MM end-stages,

single myeloma clones might even lose their BM dependency,

survive and expand in the circulation, or spread to distant body

regions, resulting in plasma cell leukemia or extramedullary

myeloma (15, 16). Both, plasma cell leukemia and extramedullary

myeloma are defined by rapid disease onset, poor therapy response,

and an overall poor prognosis (15).

Multiple molecular mechanisms might influence the outgrowth

of MM clonal subsets. Based on specific cytogenetic alterations that

occur in clonal plasma cells during MM progression, myeloma cells

may develop resistance to standard MM treatments such as

proteasome inhibitors and immunomodulatory agents driving the

selection of drug-resistant populations that outcompete drug-

sensitive populations. Furthermore, the activation of autocrine

signaling loops might inhibit tumor cell death or enhance cell
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proliferation of clonal subsets that co-express the corresponding

ligand-receptor pairs. Finally, the cross-talk between tumor cells

and the tumor microenvironment (TME) promotes the

dissemination of distinct clonal populations that are seen as the

main drivers of MM progression (12). In summary, this review

outlines the central pathways and mechanisms that drive

myelomagenesis and contribute to the clonal evolution and

expansion of malignant plasma cells finally leading to MM

progression and therapy-refractory end-stages.
MM stem cells/stem cell-like cells

Cancer stem cells (CSCs) are a small subpopulation of cancer

cells harboring an unlimited capacity of self-renewal. Low

proliferation or quiescence make CSCs resistant to radiation and

chemotherapies that predominantly target rapidly reproducing

cancer cells. As a result, CSCs are often considered crucial for

disease recurrence (17–20). CSCs have been identified in a variety of

cancer entities including colorectal cancer, lung cancer, pancreatic

cancer and acute myeloid leukemia (21–26). However, the presence

and (immuno-) phenotypic characterization of MM CSCs or

cancer-stem cell like cells have been controversially discussed in

the past (27). So far, no particular cellular or molecular markers

have been identified to accurately distinguish myeloma CSCs from

the remaining tumor mass. Plasma cells, both normal and

malignant, are terminally differentiated cells. Thus, myeloma stem

cells are thought to be derived from abnormal postgerminal center

B cells (27, 28). Rasmussen et al. discovered clonotypic memory B

cells in most MM patients (29). In immunodeficient mice, injection

of blood-derived CD19+ CD27+ B cells from myeloma patients

successfully initiated the disease, whereas CD138+ plasma cells

failed to engraft in vivo (30). Myeloma-derived CD19+ CD138-

leukemic cells engrafted in NOD/SCID mice, indicating a role of

clonotypic late-stage B-cells in disease initiation (31). In line,

RPMI8226 and NCI H929 cell line derived CD138- cell fractions

had increased ALDH1 enzyme activity and superior clonogenic

potential both in vitro and in vivo (32). In colony formation assays –

an approach to investigate clonogenicity, stemness and self-renewal

– MM cell line and patient derived CD138- fractions showed

increased colony formation upon serial replatings compared to

CD138+ fractions (33). In contrast, other studies postulated that

myeloma stem cells are characterized by a CD38+ CD138+ CD19-

CD45- immunophenotype suggesting that stem cell related markers

might undergo dynamic changes or differ between MM patients and

the experimental model systems (34, 35). Indeed, environmental

factors influence the expression of distinct plasma cell surface

molecules. Xenografts created by the injection of CD19+ CD138-

myeloma cell fractions showed partial CD138 re-expression in the

primary engrafted tumor, whereas CD138 expression was almost

non-existent in circulating B cells, suggesting that CD138

expression is dependent on environmental cues (30, 31). Nutrient

deprivation changes CD138 surface expression, and CD138+

Vk*MYC murine myeloma cells showed better engraftment and

tumor development, whereas CD138- cells were characterized by

increased motility, intravasation, and dissemination (36). In
frontiersin.org
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addition, low oxygen levels decrease CD138 expression and induce

a mature B cell-like transcriptional signature with upregulation of

PAX5 and BCL6 in myeloma cells, as previously described by

Kawano et al. (37). Hypoxia resulted in the upregulation of the

stem cell-related transcription factors OCT4 and SOX2 in the MM

cell line RPMI8226 (37).

A small side population (SP) of clonogenic myeloma cells has

been revealed by reduced Hoechst 33342 staining (30, 38, 39).

Multiple independent studies demonstrated that SP cells harbor

stem cell like features with decreased drug sensitivity and over-

activation of stem cell related pathways including Notch-,

Hedgehog-, PI3K/Akt or Wnt-signaling that are also found

enriched in most MM patients (40–50). In line with previous

findings, Wang et al. reported that SP myeloma cells are more

resistant to bortezomib or melphalan chemotherapy and that SP

abundance and clonogenicity are regulated by the activated-

leukocyte-cell-adhesion-molecule (ALCAM)/EGFR-EGF signaling

axis (49, 51). Interestingly, combination therapy with melphalan

and an EGFR inhibitor resulted in a reduction of the SP and a

significantly lower disease burden in 5TGM1 myeloma bearing

mice compared to monotherapies (49). Furthermore, the expression

of specific molecules such as CD24, CD34 and ATP binding cassette

subfamily G member 2 (ABCG2) have been linked to a MM stem

cell-like phenotype (52–54). CD24 expression is increased in MM

SP and the stem cell related genes KLF4, OCT4, NANOG and SOX2

were enriched in isolated CD24+ cells. In vivo limiting dilution

assays revealed that CD24+ myeloma cells showed a significantly

higher tumor initiating capacity in NOD-Rag1null mice compared

to CD24- fractions (55).

While the concept of MM founder clones – defined as early

mutation harboring clones that initiate myelomagenesis - is widely

accepted and supported by numerous research studies - no unified

characterization and terminology of MM CSCs – that maintain and

propagate the disease - have been reached (27, 56, 57). In this

regard, high cancer cell plasticity with dynamic expression profiles

of stem-cell related markers – in parts driven by environmental

conditions - might be a fundamental challenge in defining and

eventually targeting MM CSCs.

Genetic and epigenetic instability
drives the clonal evolution starting
from early founder clones

The clonal evolution of MM occurs through a series of genetic

alterations, including chromosomal abnormalities, somatic

mutations, and epigenetic modifications. Early genetic events are

divided in two groups. (1) Translocations involving the IGH locus

on chromosome 14 such as t(11;14), t(4;14), t(14;16) leading to the

overexpression of the oncogenic drivers CCND1, MMSET/FGFR3

or cMAF, respectively. Overexpression of the MMSET/FGFR3

fusion gene is caused by the translocation t(4;14), one of the most

important chromosomal abnormalities in MM (58–64). (2)

Hyperdiploidy of the odd-numbered chromosomes 3, 5, 7, 9, 11,

15 or 19 might also trigger myelomagenesis (58, 65). Moreover,

single-cell RNA-sequencing and single-molecule long-read
Frontiers in Immunology 03
sequencing revealed early IFITM2 and ANK1 alterations in clonal

plasma cells (66). Multiple evolutionary branches emerge from a

single abnormal postgerminal center B-/plasma cell during MM

development, driven in part by TME-related interactions (67). In

this regard, the clonal evolution of abnormal plasma cells is thought

being initiated by genetic mutations occurring in postgerminal

center B cells in the course of somatic hypermutation and isotype

class switching. After homing to the BM, these mutation-harboring

B-cells become so called founder clones that start the clonal

evolution process (56, 57). Interestingly, the number of founder

clones and the patterns of clonal evolution differs in-between

patients. Whole exome sequencing of paired biopsies at diagnosis

and progression revealed that in most cases two founder clones are

present at disease onset (range one to three founder clones) (67, 68).

After disease initiation, the clonal evolution most often follows a

branching pattern, where multiple heterogeneous clones develop

independently and distinct mutations are lost or gained in the

course of MM progression. Less frequently, the clonal structure

persists between early and late disease stages, referred as a stable

evolutionary pattern (69, 70). Notably, clonal heterogeneity can be

found throughout all steps of myeloma progression starting from

MGUS (71, 72). CyTOF analyses of distinct markers involved in B

cell regulation (e.g. MMSET or sXBP1), stemness (e.g. SOX2) and

abnormal plasma cell differentiation (e.g. CD56) revealed different

clusters among the B cell/plasma cell compartment and

heterogeneous expression profiles within these defined clusters,

in-between patients and among MGUS, SMM, MM or relapsed

MM stages (72). Longitudinal whole-exome sequencing analyses of

plasma cells from paired MGUS/SMM and MM patients revealed

intraclonal heterogeneity at the early MGUS/SMM stages

characterized by the detection of multiple co-existing clonal

subsets each harboring a distinct set of driver gene mutations

(71). Further, Dutta et al. described a subclonal stability between

MGUS/SMM and MM stages – meaning that the subclonal

architecture and heterogeneity found at advanced disease stages is

often already present at MGUS/SMM (71). After disease onset with

MM manifestation, the further clonal evolution of malignant

plasma cell subsets is driven by late stage (or secondary) somatic

mutations involving KRAS, NRAS, BRAF, TP53, and DIS3 that are

among the most frequent mutated genes in MM. These mutations

have an impact on key signaling pathways that control cell survival,

proliferation, and drug resistance, including MAPK/ERK, PI3K/

AKT, and NF-ҡB (67, 73). In addition, copy number gains/

amplifications or deletions of distinct chromosomal regions are

acquired in the course of myeloma progression and further promote

the clonal evolution of malignant plasma cells. In this regard,

alterations in RAS or TP53 genes, as well as the 1q21

chromosomal amplification, are important drivers in the clonal

selection process and are detected more frequently after MM

treatment (67, 73). Patients treated with high-dose melphalan had

the highest rate of tumor mutations (73). Clonal evolution analysis

of matched samples from time of diagnosis and MM relapse

revealed that clonal selection was detected in relapsed stages of all

patients that had undergone high-dose melphalan treatment (74).

Aside from drug-induced genomic alterations, the genomic

instability is also influenced by external or environmental factors.
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In this regard, focal lesions (FLs) are seen as clonally heterogeneous

and spatially distributed tumor foci that can be found in up to 84%

of MM patients at time of diagnosis. The presence of FLs is linked to

myeloma dissemination, disease relapse and adverse outcomes (75).

For this reason, FLs are considered as mutational “hot spots” in

MM, consistent with the regional outgrowth of advanced tumor

clones (13, 75, 76). The increased acquisition of mutations within

FLs might generate subclones with enhanced capacities for immune

evasion, drug resistance and dissemination thus driving disease

progression. Hypoxic tension within the tumor microenvironment

and (epi-) genetic changes are associated with MM resistance and

both factors are highly induced within FLs (77–79). In line with

these findings, multi-region sequencing of matched and

synchronously taken iliac crest and FLs biopsies from MM

patients revealed spatial clonal heterogeneity in MM. Somatic

aberrations such as the deletion del(17p) or MYC translocations –

alterations that are frequently found in advanced MM stages - were

exclusively present at one biopsy site only. In contrast, early genetic

alterations such as t(4;14) were uniformly detected at both sites

suggesting spatio-temporal evolution from a common subclone (13,

14, 80). Moreover, the longitudinal analyses of FLs and matched

samples at later onset of MM relapse showed a high similarity in the

clonal composition between both manifestations further supporting

the role of FLs as mutational “hotspots” and origins of clonal

evolution (14).

Aside from genetic alterations, the clonal evolution process is

regulated by epigenetic changes such as DNA methylation and

histone modifications. DNA hypermethylation can result in the

downregulation/loss of important tumor suppressor genes such as

CDH1 or SHP1 or alter the expression of genes that influence the

sensitivity towards anti-myeloma drugs (81–84). The translocation t

(4;14) leads to Nuclear Receptor Binding SET Domain Protein 2

(NSD2) overexpression with subsequent NSD2-driven epigenetic

downregulation of specific genes that desensitize affected cells for

bortezomib therapy (85, 86). Epigenetic alterations can not only

affect myeloma cells but also occur in the cellular components of the

TME, especially in bone marrow stromal cells (BMSCs) (87, 88). Direct

co-culture of BMSCs from healthy individuals together with the

myeloma cell line MM.1S has been reported to induce DNA

methylation changes in BMSCs. These epigenetic modifications in

BMSCs were predominantly located in osteogenic gene loci, regulating

the differentiation process of BMSCs to osteoblasts. Thus, myeloma

cells might inhibit the formation of new bone-forming osteoblasts that

have been proposed to keepmyeloma cells in quiescent states or induce

their apoptosis (16, 89, 90). In this regard, separated transwell-based

cultures of BMSCs and myeloma cells resulted in similar epigenetic

alterations in BMSCs as direct co-culture experiments suggesting that

soluble factors induce epigenetic changes in surrounding stromal cells

thus creating a tumor-supportive microenvironment stimulating

myeloma cell growth and survival (90). As a consequence, targeting

of enzymes that are involved in DNA methylation (i.e. DNA

methyltransferases or histone methyltransferase G9a) led to

significantly lower tumor burden and reduction of bone lysis in

immunodeficient mice injected with MM cell lines (90). The

genomic instability and multistep molecular pathogenesis involved in

MM clonal evolution and expansion are illustrated in Figure 1.
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Autocrine signaling pathways involved
in the clonal expansion of malignant
plasma cells

The growth and survival of malignant plasma cells is highly

dependent on the abundance of defined cytokines and growth-

promoting factors that are primarily provided by the BM

microenvironment. However, myeloma cells can also produce

some of these soluble factors by themselves thus stimulating their

proliferation or preventing spontaneous and stress-induced

apoptosis. In this regard, autocrine signaling may emerge from

the release of cytokines and the simultaneous expression of the

cytokine-specific receptor on the same cell. Furthermore, the co-

expression of growth-stimulatory ligand-receptor pairs may

promote the activation of autonomous signaling (91). Clonal

subsets that co-express a growth-promoting ligand with its

corresponding receptor might harbor a crucial selection

advantage. Exemplary, amplification of the chromosomal region

1q21 - frequently detected in advanced disease stages - is often

accompanied by the expression of the IL-6 receptor (whose

encoding gene is located on the 1q21 region) (92). IL-6 receptor

(IL-6R) expression is reportedly associated with a poor prognosis in

MM (93). Moreover, myeloma cell lines that express the IL-6R

respond positively to induction of IL-6R signaling, with increased

proliferation and reduced apoptosis (94, 95). The expression levels

of microRNAs such as miR-197-3p and miR-451 influence

bortezomib resistance by inhibiting the IL-6/IL-6R signaling

pathway (94, 96). In addition, the availability of IL-6 is crucial for

the survival and treatment sensitivity of malignant plasma cells (97).

Multiple studies have shown that malignant plasma cells can

generate and secrete IL-6 hence promoting their own survival

(98–100). IL-6 enhances pro-survival signaling and decreases

bortezomib sensitivity because it activates STAT3, which acts as a

transcription factor for the anti-apoptotic proteins Bcl-2 and Bcl-xL

(97, 101). Taken together, IL-6R expressing subclones might

undergo a positive selection process based on their enhanced

responsiveness to IL-6 that is provided by the TME or secreted by

themselves subsequently preventing spontaneous or stress-induced

cell apoptosis. In line, Ryu et al. reported frequent IL6/IL-6R co-

expression in extramedullary MM that no longer require IL-6

provided by the BM niche (102). Approaches to target the IL-6/

IL-6R signaling pathway have been tested in a cohort of transplant-

eligible newly diagnosed MM patients using the anti-IL6 antibody

siltuximab in combination with lenalidomide, bortezomib and

dexamethasone (Table 1). Complete remission or very good

partial remission were achieved in 2/11 (18%) and 2/11 (18%) of

patients, respectively (103).

Several other autonomous and autocrine signaling pathways

play a key role in the expansion of clonal plasma cells (Figure 2A).

Expression of the insulin-like growth factor 1 receptor (IGF1R) was

described in the majority of patients with extramedullary disease

manifestation and positive expression profiles were associated with

the occurrence of the high-risk cytogenetic alterations t(4;14), t

(14;16) and were linked to reduced overall survival suggesting a

potential selection advantage of IGF1R positive clones in the course
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of MM progression (113). Indeed, IGF1R and IGF1 are frequently

co-expressed in myeloma cells and Chiron et al. discovered that

blocking IGF1R signaling inhibits the self-renewal of myeloma cells

in vitro. In addition, inhibition of self-renewal and colony

formation in certain myeloma cell lines after treatment with a c-

KIT receptor antagonist indicates the presence of a SCF/c-KIT

autocrine signaling loop (114). Myeloma expansion is further

regulated by the Wnt/b-catenin signaling pathway that is often

over-activated in MM, partially driven by the autocrine release of

Wnt ligands and/or by the (over-) expression of distinct molecules

such as Syndecan-1 (CD138) or Leucine Rich Repeat Containing G

Protein-Coupled Receptor 4 (LGR4) on cancer cells (44–46, 115).
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Wnt-ligands can directly bind to heparan sulfate side chains of

Syndecan-1 thus mediating abnormal Wnt-signaling activity in

MM. Indeed, CRISPR/Cas9-mediated deletion of Syndecan-1

heparan sulfate side chains inhibits Wnt-signaling activity and

reduces the growth of MM cell lines suggesting autonomous

Wnt-signaling stimulation via the autocrine release of Wnts (45).

Malignant plasma cell clones may prevent both spontaneous and

stress/drug-induced apoptosis by autocrine secretion of various

pro-survival factors such as TNF-a, MIP-1, sonic hedgehog or

GAS6 (116–119). Autocrine TNF-a/MCP-1/TNF-R2 signaling

further enhances trans-endothelial migration of MM cell lines

and primary myeloma samples (120, 121). B-cell activating factor
FIGURE 1

Genetic abnormalities in myeloma initiation and clonal evolution. Primary and secondary genetic processes involved in the development and
progression of MGUS and SMM to MM and ultimately to plasma cell leukemia and extramedullary myeloma. Chromosomal translocations are seen at
the early steps of the malignant transformation process. The development of MGUS to MM is frequently related with c-MYC overexpression, RAS
mutations, and chromosome 13 deletion. The final step, PCL/EMM manifestation, is accompanied by NF-ҡB pathway activating mutations,
chromosomal translocation involving the c-MYC gene, 1q gain, loss of 1p and deletion of 17p where the TP53 gene is situated, BRAF mutations, and
epigenetic alterations. EMM, extramedullary myeloma; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; PCL,
plasma cell leukemia; SMM, smoldering multiple myeloma.
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(BAFF) and a proliferation inducing ligand (APRIL) are essential

survival factors for myeloma cells (122). While these cytokines are

primarily produced by cells of the BM microenvironment, previous

research has revealed that malignant plasma cells may express and

release BAFF and APRIL in an autocrine manner (116, 122). The

translocation event t(4;14) (p16.3;q32) results in the overexpression

of the fibroblast-growth factor receptor 3 (FGFR3) and can be

detected in about 15% of all myeloma patients (61, 123). Different

studies demonstrated that myeloma cells produce FGF and that

autocrine FGF/FGFR signaling prevents oxidative stress-induced

apoptosis (124, 125). In line, t(4;14) is seen as a high-risk

cytogenetic alteration that occurs in advanced MM stages and

FGFR expression might promote the positive selection of t(4;14)
Frontiers in Immunology 06
carrying subclones. Therapeutically, tyrosine kinase inhibitor-

mediated FGF/FGFR signaling disruption abrogated growth and

dissemination of MM cell lines in vivo (125). In addition, treatment

approaches targeting FGF/FGFR signaling have been tested in phase

3 clinical trials using the tyrosine kinase inhibitor masitinib. Other

monoclonal antibodies or small molecules targeting autocrine

signaling pathways or MM-promoting components of the TME

are currently tested in phase 1 and 2 clinical trials.

In summary, genomic instability with the acquisition of specific

secondary mutations might lead to the expression of distinct ligand-

receptor pairs in myeloma subclones inducing cell proliferation or

protecting from spontaneous and/or drug-induced apoptosis thus

favoring the expansion of the latter.
TABLE 1 Overview clinical studies that target MM autocrine and TME-mediated signaling pathways.

Signaling
Pathway

Drug Mechanism
of Action

Clinical
Phase

Disease Status Outcome: CR/
VGPR/PR Case/

cohort (%)

NCT
Number

Ref

A
ut
o
cr
in
e 
S
ig
na

lin
g

IL-6/IL-6R Siltuximab
(CNTO 328)

Anti-IL-6 Phase I/II NDMM Completed 2/11 (18%)
2/11 (18%)
6/11(55%)

NCT01531998 (103)

Toclizizumab Anti-IL-6R Phase I RRM Recruiting - NCT05391750 -

IGF-1/
IGF-1R

AVE1642 Anti-IGF-1R Phase I RRM Completed 1/11 (9%)
0/11 (0%)
1/11(9%)

NCT01233895 (104)

ASP7487(OSI-
906)

Phase I/II RRM Terminated 1/18 (sCR) (6%)
3/18 (17%)
7/18 (39%)

NCT01672736 -

FGF/FGFR AZD4547 FGFR TKI Phase II RRM & other
cancer types with
FGFR aberrations

Completed 0/48 (0%)
0/48 (0%)
4/48 (8%)

NCT04439240 (105)

Masitinib
(AB1010)

FGFR TKI Phase III RRM with t(4;14) Terminated – NCT01470131 –

Wnt/b-
catenin

DKN-01 Anti-DKK1 Phase I MM/Advanced solid
tumors

Completed – NCT01457417 (106,
107)

BAFF Tabalumab
(LY2127399)

Anti-BAFF Phase II RRM Completed Cohort: 300mg
4/74 (5%)
16/74 (22%)
23/74 (31%)

NCT01602224 (108)

APRIL BION-1301 Anti-APRIL Phase I/II RRM Terminated No objective response NCT03340883 (109)

Phase I/II IgA Nephropathy Active - NCT03945318 (110)

T
M
E

VEGF Bevacizumab Anti-VEGF Phase II RRM Completed 1/49 (2%)
8/49 (16%)
16/49 (33%)

NCT00473590 (111)

VLA-4/
VCAM-1

BG00002
(Natalizumab)

Anti-VLA-4 Phase I/II RRM Terminated - NCT00675428 –

ICAM-1 BI-505 Anti-ICAM-1 Phase I RRM Completed No objective response NCT01025206 (112)
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Impact of the tumor
microenvironment on clonal
expansion and dissemination

Malignant plasma cells are surrounded by a variety of cell types

and extracellular matrix in the BM. These elements work together to

form a cytokine-rich and growth-promoting micromilieu or “niche”

known as the tumor microenvironment. The TME is composed of

the cellular fractions (e.g., fibroblasts, endothelial cells, osteoblasts,

osteoclasts, hematopoietic cells, immune cells and neuronal cells).

In addition, the extracellular matrix and its liquid milieu (cytokines,

chemokines, and growth factors) are also essential components (16,

126–128). The TME promotes the survival and expansion of

myeloma cells via different mechanisms. Furthermore, it has a

crucial impact on the genomic instability in MM (129). In

general, the BM environment is characterized by low oxygen

levels (130). Due to the rapid expansion of malignant plasma cells

within the BM during MM progression and the generation of

abnormal neo-vessels, the oxidative stress within the TME

increases. The latter may lead to the accumulation of reactive

oxygen species (ROS), which can cause DNA damage. During the

anti-tumor response, activated immune cells of the TME

additionally release ROS, further exacerbating genomic instability

in cancer cells and generating possible selection advantages (131,

132). In addition, hypoxia has been shown to induce myeloma cell

dissemination and impair treatment sensitivity (77, 78, 133, 134).

Hypoxia-inducible factors (HIFs) can alter the transcription of key
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regulators involved in cancer stemness, cell proliferation, drug

resistance and/or cell survival (37, 77, 135). Moreover, increased

HIF1A gene expression was detected in end-stage extramedullary

MM cases (102). Taken together, areas with low oxygen levels might

be “hotspots” for the generation of new clonal subpopulations that

are prone to disseminate to distant BM sites and lead to

MM progression.

While subcutaneously injected MM cell lines do not enter the

blood circulation or disseminate in immunodeficient mice,

myeloma cells that are grown in subcutaneously implanted bone

chips maintain their capacities to disseminate and re-engraft at

distant BM sites, indicating that the interactions with specific

compartments of the BM TME play a fundamental role in MM

spread and progression, as previously shown by Shen et al. (12).

Here, they found that the clonal selection of myeloma cells occurs

primarily in distant BM sites by using an implanted bone chip

xenograft model combined with a fluorescence-based tracking

system of clonal subsets enabling the simultaneous assessment of

myeloma cell dissemination and clonal heterogeneity. While the

primary tumor site showed a high degree of clonal heterogeneity

with the co-occurrence of multiple clonal subsets, distant BM

metastases displayed a markedly reduced heterogeneity with

predominance of a single clonal population. Compared to

myeloma cells from the primary site, disseminated clusters were

characterized by an enrichment of genes that are linked to MM

progression, suggesting that only a small number of plasma cell

clones harbor the capacities to leave the primary tumor and

disseminate to distant BM sites (12). In this regard, various direct
BA

FIGURE 2

(A) Autocrine signaling and (B) TME related mechanisms. Both autocrine signaling cascades and interactions with the TME promote the outgrowth of
clonal subsets that (co-)express growth promoting ligands/receptors on the cell surface. APRIL, a proliferation-inducing ligand; BAFF, B-cell
activating factor; BCMA, B cell maturation antigen; BM, bone marrow; c-Kit, receptor tyrosine kinase; FGF, fibroblast growth factor, FGFR, fibroblast
growth factor receptor; ICAM-1, intercellular adhesion molecule 1; IGF-1, insulin-like growth factor 1; IGF1R, insulin-like growth factor 1 receptor, IL-
6, Interleukin-6; IL-6R, Interleukin-6 receptor; IL-10, Interleukin-10; LFA-1, lymphocyte function-associated antigen 1; MM, multiple myeloma; PD-1,
programmed Cell Death 1; PD-L1, programmed Cell Death Ligand 1; SCF, stem cell factor; SDC1, Syndecan 1, SIRPa, signal regulatory protein a;
SDF-1, stromal cell-derived factor 1; TAM, tumor-associated macrophage; TLR-4, toll-like receptor 4; TME, tumor microenvironment; TNF-a, tumor
necrosis factor alpha. VCAM-1, vascular cell adhesion protein 1; VEGF, vascular endothelial growth factor; VLA-4, very-late antigen-4.
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and indirect interactions with the TME might promote the

outgrowth and dissemination of single plasma cell clones

(Figure 2B). The growth promoting cytokines IL-6 and APRIL are

provided by different sources of the TME including bone marrow

stromal cells (BMSCs), perivascular cells, eosinophils, mast cells and

megakaryocytes (128, 136–140). Apart from IL-6, BMSCs

additionally produce VEGF, IGF1 or SDF-1, soluble factors that

have been shown to directly or indirectly affect myeloma growth,

migration and invasion (141–144). Induction of the Toll-like

receptor-4 (TLR-4) that has been found overexpressed on MM-

BMSCs leads to the release of IL-6 by BMSCs, which promotes cell

growth and survival in MM cells. Targeting these pathways has been

demonstrated to offer therapeutic potential for the management of

multiple myeloma. In this regard, selective blockade of TLR-4

reduced myeloma progression in murine myeloma models (145).

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is

produced by macrophages and lymphocytes (146, 147). In newly

diagnosed MM patients, elevated IL-10 serum levels negatively

correlated with both, therapy response and overall survival

suggesting an apoptosis preventing function of IL-10 (147). M2

polarized tumor-associated macrophages (TAMs) promote

myeloma progression via the release of multiple soluble factors

and cytokines that directly influence cell growth (148). Clodronate-

based depletion of M2 TAMs in xenograft-bearing nude mice

resulted in significantly decreased tumor growth and reduced

microvessel density. VEGFA serum levels were significantly lower

in M2 depleted mice (148). Moreover, release of IL-6 and TNF-a by

TAMs increases the vascular leakiness of newly formed tumor

vessels in Vk*MYC myeloma mice thus facilitating the entrance

of single plasma cell clones into the blood circulation (149). TNF-a
has been shown to not only affect the vessel wall permeability but

also directly enhances trans-endothelial myeloma cell

migration (121).

Aside from cytokine or growth-factor driven mechanisms, direct

cell-cell and cell-matrix interactions mediated through surface

molecules and adhesion receptors play a critical role in MM

expansion and dissemination. In advanced MM, platelets are highly

activated and have been reported to enhance myeloma proliferation

and engraftment through an IL-1b dependent mechanism (150).

Myeloma cell adhesion to BMSCs or extracellular matrix

components by expression of adhesion molecules such as Syndecan-

1, intercellular adhesionmolecule 1 (ICAM-1) or vascular cell adhesion

protein 1 (VCAM-1) prevent apoptosis, resulting in cell-adhesion

driven drug resistance (151–156). Myeloma cells express high levels

of very late antigen-4 (VLA-4)/integrin a4b1 that binds to its receptor
ICAM-1 expressed on endothelial cells. The VLA-4/ICAM-1

interaction enables myeloma cell adhesion to the vessel wall followed

by trans-endothelial migration and engraftment (157, 158). Therapy

concepts that prevent the vicious circle of myeloma cell dissemination

and re-engraftment are currently tested in pre-clinical studies. Injection

of VLA-4 deficient 5TGM1 murine myeloma cells into syngeneic

recipients leads to higher extra-and reduced intramedullary disease

burden with improved survival (158). Targeting VLA-4 with

nanoparticles overcomes cell adhesion mediated drug resistance in

myeloma cell lines and enhances chemotherapy response in 5TGM1

myeloma bearing mice (159).
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Mechanisms of immune evasion
favoring MM clonal selection
Cancer cells are targeted by immune cells and thus have

developed strategies to evade the host’s immune response. Both,

direct mechanisms - such as upregulation of immune checkpoints

on cancer cells – and indirect mechanisms (e.g. an overall

immunosuppressive tumor microenvironment) are involved in

cancer cell immune evasion. As direct mechanisms, upregulation

of the immune checkpoints PD-L1 (CD274) and CD276 have been

reported in MM patients (160–162). In addition, PD-1, an

activation and exhaustion marker, is present on CD8+ T cells

invading myeloma foci (163). In advanced MM stages, activating

mutations in MYC oncogenes are frequently detected (164). In

genetically engineered MM mouse models, early transgenic

activation of the MYC oncogene was associated with enhanced

numbers of MM infiltrating PD-1+ TIGIT+ LAG3+ CD8+ T cells,

whereas late MYC activation was linked to significantly decreased

numbers of activated/exhausted CD8+ T cells (165). Accordingly,

anti-PD-1 therapies significantly reduced MM burden in mice with

early transgenic MYC activation but had no effect on disease burden

in mice with late oncogenic MYC activation. Moreover,

pharmacological inhibition of MYC resulted in a downregulation

of PD-L1 expression in malignant plasma cell clones upon early

transgenic MYC activation, indicating that early myeloma

subclones with alterations in the MYC oncogene may express

PD-L1 thus preventing their elimination by PD-1+ CD8+

cytotoxic T cells (165). Further, HIF1a has been found to induce

PD-L1 in cancer cells and might thus provide an advantage to

myeloma subclones that are exposed to hypoxic tension in the BM

or at extramedullary sites (102). In addition, the expression of IL-

32g by myeloma cells has been reported to induce the PD-L1

expression on tumor-associated macrophages, which suppresses

CD8+ effector T cells. Increased IL-32g expression levels were

predominantly observed in relapsed MM stages, indicating that

IL-32g may be upregulated in clonal populations during the

progression of MM and provide a selective advantage based on its

immunosuppressive effect on infiltrating immune cells (166).

Moreover, myeloma cell clones may directly prevent phagocytosis

by TAMs via upregulation of the “don’t eat me” molecule CD47,

which binds to the inhibitory receptor SIRPa expressed on

macrophages (167). In preclinical studies, CD47 blockade resulted

in increased phagocytosis and reduced growth of CD47 expressing

myeloma cell lines both in vitro and in vivo (167). Clinical trials are

currently conducted to test the efficacy of the anti-CD47

monoclonal antibody magrolimab in combination with other

anti-myeloma drugs in relapsed and therapy refractory MM

patients (168). In addition, natural killer (NK) cells were found to

be deficient in perforin, CCLA5, and granzyme B and myeloma cells

have been shown to directly induce inhibitory molecules in NK cells

(e.g. by the expression of leukocyte immunoglobulin-like family

proteins) (66, 102).

Aside from mechanisms that are mediated by myeloma cells to

directly inhibit effector cell functions, an immunosuppressive tumor

microenvironment – in parts induced by cancer cells themselves -
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may further promote MM immune evasion. Malignant plasma cells

can promote the expression of CD84 on cells of the TME by

releasing macrophage migration inhibitory factor (MIF). CD84

upregulation induces the differentiation and expansion of

myeloid-derived suppressor cells (MDSCs), which inhibit T cell

activity (169). IL-10 and TGFb, primarily released by cells of the

TME, have been shown to inhibit T cell mediated immunity (170–

172). However, malignant plasma cells also secrete TGFb by

themselves thus creating an immunosuppressive environment

facilitating immune evasion and expansion (173). Autocrine and/

or paracrine IL-6 secretion induces IL-10 production, further

suppressing T cell function, hence promoting myeloma clonal

expansion (174–176). IL-10 may also affect TAM polarization

towards an immunosuppressive M2 phenotype (176). The

production of IL-10 and TGFb by regulatory T cells (Tregs) has

been shown to mediate their immunosuppressive activity on T

effector cells in MM (177–179). MDSC numbers in MM patients’

BM are significantly higher and they have been shown to induce

Treg differentiation and promote myeloma clonal selection and

progression (128, 180–182). Furthermore, Leone et al. reported that

dendritic cells accumulate in the BM of myeloma patients, where

they promote cancer cell immune evasion by downregulating

proteasome subunits (183). Therefore, understanding how

immunosurveillance influences clonal selection in MM is crucial.

By unraveling the dynamic interactions between the TME, immune

system and malignant plasma cells, we can gain insights into the

mechanisms underlying the immunosurveillance- related clonal

evolution in MM.
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Clonal selection by MM therapy

Therapy resistance is a fundamental challenge in the

management of MM. Although the majority of MM patients

responds well to first-line therapies, almost all patients eventually

experience MM recurrence and therapy-refractory disease states

(184). Based on the acquisition of cytogenetic alterations or distinct

mutations, a small proportion of malignant plasma cell clones

might become resistant to standard MM therapies such as

proteasome inhibitors (PIs), immunomodulatory imide drugs

(IMiDs), glucocorticoids, and monoclonal antibodies and

subsequently outcompete drug-sensitive populations (Figure 3).

Misund et al. performed whole exome and RNA sequencing

analyses for purified CD138+ cells from paired MM patients

before and after therapy with different anti-myeloma drugs to

compare genomic and transcriptomic changes as well as clonal

evolution under treatment pressure. Changes in the clonal

composition occurred in 82% of patients under therapy and

alterations were primarily detected among RAS, 1q21 and TP53

(73). Ryu et al. detected overexpression of proteasome components

in clonal subpopulations from relapsed and therapy refractory MM

patients that had received bortezomib-containing combination

therapies indicating selection and outgrowth of PI-resistant

subclones under therapy (102). Corre et al. investigated the clonal

heterogeneity among patients that had undergone a homogeneous

treatment regimen of VTD (bortezomib, thalidomide and

dexamethasone) followed by melphalan. Here, the frequencies of

KRAS, NRAS and TP53 mutations were increased in relapsed MM
FIGURE 3

Selection and expansion of drug-resistant subclones under anti-MM therapy. Genetic instability increases the repertoire of drug-resistant subclones
in the course of MM progression. Anti-myeloma therapies result in a selection of therapy-refractory and more aggressive clonal subsets that
ultimately result in MM recurrence. IMiD, immunomodulatory imide drug; MM, multiple myeloma; PI, proteasome inhibitor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1243997
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Forster et al. 10.3389/fimmu.2023.1243997
patients compared to initial manifestations suggesting an induction

of mutations by the treatment itself or increased resistance of

mutation harboring subclones against VTD (185). Deletion of the

chromosomal region 17p (del17p) is considered a high-risk

cytogenetic alteration and is associated with mono-allelic loss of

TP53 and shorter overall survival rates (186, 187). Co-occurrence of

del17p with a TP53 mutation on the second allele – detected in

around 6-8% of MM patients at the time of diagnosis - results in a

bi-allelic inactivation and complete loss of p53 that is reportedly

accompanied with worse outcomes compared to mono-allelic

inactivations (187, 188). In line, AMO-1 MM cell line derived

clones with bi-allelic TP53 inactivation out-competed AMO-1

clones with mono-allelic TP53 aberrations in comparative in vitro

studies indicating a selection advantage of TP53 double-hit

myeloma cell clones (187, 189). Walker et al. characterized newly

diagnosed MM patients with bi-allelic TP53 aberrations as a distinct

high-risk subgroup with rapid disease progression and extremely

aggressive behavior despite the use of combination treatments of

PIs, IMiDs, glucocorticoids and cyclophosphamide (190). These

findings highlight the need to adapt MM risk-stratification criteria

and the therapy of choice in accordance to the constellation of both

cytogenetic and somatic alterations. However, so far, no specific

treatment options are available for high-risk MM patients with

TP53 aberrations (191). For this reason, clinical trials are urgently

needed to investigate whether high-risk patients with TP53

mutations may profit from early intensified therapy regimens

involving novel immunotherapies such as bispecific T-cell

engagers or chimeric antigen receptor T cells. In addition, further

preclinical studies need to be conducted to test the potential of

drugs inducing p53-dependent synthetic lethality in MM. In this

regard, recent research has shown that myeloma cells with p53

deficiency are more vulnerable to Chk1 inhibition compared to p53

proficient cancer cells (192).

Various tumor-related mechanisms that promote anti-

myeloma drug resistance have been described. Thalidomide has

been shown to inhibit tumor angiogenesis and dampen

inflammation thus counteracting the release of cytokines such as

TNF-a that are essential for myeloma cell growth (193). In

addition, IMiDs also directly affect myeloma cell survival by

binding to Cereblon (CRBN) – a component of the CRL4CRBN E3

ubiquitin ligase complex (CUL4–ROC1–DDB1–CRBN).

Subsequent ubiquitination and degradation of the transcription

factors Ikaros (IKZF1) and Aiolos (IKZF3), which control

myeloma survival and proliferation genes (e.g., MYC or IRF4),

result in growth limitation and death (194–198). Changes in the

structure, expression or function of CRL4CRBN E3 may generate

IMiD resistant clonal plasma cell populations. Overall, IMiD

resistance affects 10-20% of relapsed myeloma patients (196, 198–

200). CRBN and CUL4 mutations prevent IMiDs from binding to

CRL4CRBN, reducing IMiD efficiency (201). Lenalidomide-

refractory MM patients had a higher incidence of COP9

signalosome gene loss, whose products are essential for CUL4-

ROC1-DDB1-CRBN E3 ubiquitin ligase maintenance and activity.

Approximately, 16% of IMiD patients lost the COP9 signalosome

gene region on chromosome 2q37 while none of the patients in the

control arm developed a 2q37 chromosomal aberration (202). MM
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patients receiving IMiD-based therapy had a greater prevalence of

IKZF1 mutations (196). Ng et al. showed that overexpression of

CDK6 in MM cell lines increases lenalidomide and pomalidomide

resistance. Inhibition of CDK6 kinase functions, on the other hand,

increases IMiD sensitivity. In addition, relapsed MM bone marrow

samples from lenalidomide-pretreated individuals showed CDK6

upregulation. Therapeutically, the combination of pomalidomide

with palbociclip (a CDK4/6 inhibitor) increased the overall survival

of MM.1S tumor-bearing mice (198).

Glucocorticoids are a fundamental pillar in most MM therapy

regimens (203). Glucocorticoids have been shown to trigger

apoptosis in myeloma cells by suppressing anti-apoptotic

genes such Bcl-xL and nuclear factor kappa B (NF-ҡB) (203,

204). However, malignant plasma cell clones may develop

resistance to glucocorticoids like dexamethasone and prednisone.

Dexamethasone and prednisone’s pro-apoptotic and anti-

proliferative effects are blocked by genetic anomalies and/or

mutations occurring in the glucocorticoid receptor NR3C1 in

relapsed multiple myeloma patients. Genetic alterations in NR3C1

undermine the NF-ҡB mediated pro-apoptotic and anti-

proliferative actions of dexamethasone and prednisone thus

favoring NR3C1-mutation harboring clones (201, 204).

Overexpression of MDR1 and Survivin (BIRC5), as well as

downregulation of the apoptosis activator BIM (BCL2L11) were

found in established dexamethasone-resistant MM cell lines. MDR1

inhibition or Survivin knockdown re-sensitized myeloma cells for

dexamethasone (205).

PIs target the proteasome 20S subunit beta 5 (PSMB5). Point

mutations affecting PSMB5 or other components of the proteasome

complex play a central role in MM drug resistance (206). Aside

from that, other resistance mechanisms to PIs (e.g., bortezomib and

carfilzomib) have been described. PI resistance is frequently

associated with chromosome 1q21 gain or amplification occurring

in advanced MM stages. Various genes that are located at the 1q21

chromosomal region reportedly influence bortezomib sensitivity

such as PSMD4 (207–209). Overexpression of interferon-stimulated

20 kD exonuclease-like 2 (ISG20L2) on chromosome 1q is

associated with poor response owing to its high affinity in binding

bortezomib (BTZ) and inhibiting the proteasome complex (210). In

addition, carfilzomib sensitivity in MM cell lines is reduced by

increased 1q21 S100 family overexpression localized within the

1q21 region (211). Overexpression of SRC-3 causes BTZ resistance

via interacting with NSD2. SI-2 disrupted NSD2-induced SRC-3

stability to overcome BTZ resistance in t(4;14)-positive MM cell

lines (212). Hypoxia has been reported to induce SENP1, which

increases SRC-3 stability and thereby enhances PI resistance (134).

Immunotherapies and targeted treatments are being developed

to overcome therapy resistance and improve the prognosis for

patients with relapsed or refractory MM. CD38 has multiple

functions in MM cells and immune cells such as promoting

tumor cell proliferation, cell adhesion, and survival (213). In MM

patients, monoclonal antibodies (mAbs) targeting CD38 (e.g.,

daratumumab), bi-specific mAbs or chimeric antigen receptor T

(CAR-T) cells against the B cell maturation antigen (BCMA) or G

protein–coupled receptor, class C, group 5, member D (GPRC5D)

have been proven beneficial, particularly in advanced disease stages
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Immunotherapies in MM targeting plasma cell surface molecules. ADCC, antibody-dependent cell-mediated cyto
chimeric antigen receptor T; Dara, daratumumab; Dex, dexamethasone; GPRC5D; G protein–coupled receptor,
thalidomide.
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(Table 2) (3, 4, 224). While normal non-lymphoid tissues

lack SLAMF7 expression, normal and malignant plasma cells

uniformly express high levels of SLAMF7 making it a promising

target for immunotherapies (225). SLAMF7 belongs to the group of

the signaling lymphocytic activation molecule (SLAM)

transmembrane receptors and has been functionally linked to

promoting myeloma cell expansion (226, 227). Elotuzumab – an

antibody-dependent cellular cytotoxicity (ADCC) anti-SLAMF7

mAb – has been approved for MM treatment (228). In addition,

the efficacy of SLAMF7-CAR-T cells has been tested in preclinical

studies resulting in the initiation of currently running Phase I/II

clinical trials (226, 229).

However, most MM patients eventually progress after

immunotherapies. In this regard, protein structural changes,

immune checkpoint inhibitor overexpression, and/or an

immunosuppressive environment may all exert an influence on

the patients’ response to immunotherapy treatments (5).

Exemplary , BCMA downregulat ion was ident ified in

approximately 70% of MM patients undergoing BCMA CAR T

cell therapy treatment suggesting that specific mutations can result

in the loss of BCMA expression on malignant plasma cell clones

that are then selected under therapy (5, 230, 231). Indeed,

homozygous deletion of TNFRSF17 - encoding BCMA - results in

a complete loss of BCMA expression and has been described in MM

patients after BCMA CAR T cell therapy (232). GPRC5D

downregulation or loss was found in six patients with progressive

disease after initial response to GPRC5D -targeted CAR T cells

suggesting a positive selection of GPRC5D non-expressing

subclones (4). CD38 expression on malignant plasma cells

reportedly decreases upon anti-CD38 daratumumab treatment

(233). Moreover, the efficacy of the ADCC - antibody

daratumumab is highly dependent on patients’ NK cell

functionality. Verkleij et al. recently showed that non-responding

MM patients have higher frequencies of TIM-3+ HLA-DR+

activated/exhausted NK cells and that NK cells are rapidly

depleted upon daratumumab treatment initiation (233).

Overall, different tumor-and non-tumor related mechanisms or

their respective interactions, promote drug resistance in clonal plasma

cells. Those clones with survival advantages such as point mutations

that affect drug binding sites or complete downregulation/loss of

surface targets eventually outcompete their drug-sensitive

counterparts and become the dominant clonal population.
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Conclusion

In conclusion, MM is characterized by an extensive intratumor

heterogeneity starting in the earliest phases of the disease. The (epi-)

genetic aberrations are the primary driver of the considerable

intratumor heterogeneity and clonal evolution seen in MM.

However, the TME crucially contributes to the clonal evolution of

specific clones that depend on soluble factors such as chemokines or

growth factors or cell-cell interactions provided by BM resident

cells. The selection process is further supported by IMiDs,

proteasome inhibitors and glucocorticoids. Although, the TME in

MM is composed of various immune cells, the immune response is

often dysfunctional or suppressed. In contrast, immunotherapy

with mAbs, bispecific Abs or CAR-T cells select for resistant

clones often characterized as antigen-loss variants. The high

intratumor heterogeneity that evolves during disease progression

and treatment is responsible for the fact that although many very

efficacious treatments have been developed recently, MM still

remains an incurable disease.
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