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Structure and functions of Mer,
an innate immune checkpoint

Eric Ubil* and Kashif Rafiq Zahid

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
Immunotherapy is a promising therapeutic tool that promotes the elimination of

cancerous cells by a patient’s own immune system. However, in the clinical

setting, the number of cancer patients benefitting from immunotherapy is

limited. Identification and targeting of other immune subsets, such as tumor-

associated macrophages, and alternative immune checkpoints, like Mer, may

further limit tumor progression and therapy resistance. In this review, we

highlight the key roles of macrophage Mer signaling in immune suppression.

We also summarize the role of pro-inflammatory (M1) and anti-inflammatory

(M2) phenotypes in tumor onset and progression and how Mer structure and

activation can be targeted therapeutically to alter activation state. Preclinical and

clinical studies focusing on Mer kinase inhibition have demonstrated the

potential of targeting this innate immune checkpoint, leading to improved

anti-tumor responses and patient outcomes.
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Introduction

Over the last 50 years, the 5-year survival rates of patients with most forms of cancer

have improved by more than 15%. However, cancer remains the second leading cause of

death in the United States and a leading cause of death worldwide (1). While improvements

in diagnosis and treatment have driven increased patient survival, it is clear that further

advances are necessary. In recent years, immunotherapies, such as those targeting the

adaptive immune response, have improved survival for patients with some forms of cancer

(2). Unfortunately, checkpoint blockade has limited efficacy for the treatment of several

solid tumors (3, 4) with the success of therapy correlated with overall tumor mutational

burden (5). Despite current limits of efficacy, approximately 44% of cancer patients in the

United States are eligible for, or have received, immune checkpoint blockade (ICB) therapy.

However only 13% of all cancer patients will respond (6). The reasons for the low response

rates are still under investigation, but clinical data demonstrates the therapeutic potential of

targeting immune checkpoints.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244170/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244170/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1244170&domain=pdf&date_stamp=2023-10-23
mailto:ericubil@uab.edu
https://doi.org/10.3389/fimmu.2023.1244170
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1244170
https://www.frontiersin.org/journals/immunology


Ubil and Zahid 10.3389/fimmu.2023.1244170
The role of macrophages in
cancer progression

Though innate immune cell targeted therapies lag behind

adaptive immunotherapies in the clinic (7), there are well

established roles for cells like macrophages in tumor progression.

Often one of the most populous intra-tumoral immune cell subsets

(8), macrophages are known to adopt pro-inflammatory (M1) or

pro-wound healing (M2) phenotypes in the tumor environment.

Single cell RNA sequencing has shown that the classical either/or

polarization paradigm is not necessarily reflective of the complexity

of intra-tumoral polarization states of macrophages, particularly in

regard to plasticity and local context. However, an increased

presence of M2 macrophages in the tumor environment has been

associated with more rapid tumor progression, worse patient

outcomes, and increased resistance to adaptive immunotherapy

(9). This is problematic because in human malignancies, tumor

associated macrophages (TAMs) typically adopt M2 phenotypes

and promote cancer progression and metastasis (10).

Mechanistically, this can be because M2 TAMs facilitate immune

suppression [e.g., through secretions like IL-4, IL-13, CSF-1 and

TGF-b (11, 12)] or promote angiogenesis (13). M2 macrophages are

also known to remodel the extracellular matrix (ECM) to allow

increased tumor growth and metastasis (14). In addition, they have

been implicated in reducing the efficacy of adaptive immunotherapy

by altering properties of the ECM that allow immune cell

infiltration (15, 16). In contrast, M1 macrophages are known to

directly limit tumor growth through production of reactive oxygen

species or by coordinating the anti-tumor immune response via

secretion of inflammatory cytokines (e.g., TNF-a and IFN-g) (17).
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Mer is an innate immune checkpoint

Macrophages are being actively targeted therapeutically because

of their role in orchestrating anti-tumor immune responses (18, 19).

One area of intense research is identification of other immune

checkpoints. We and others have described Mer (MerTK) (20, 21)

as an innate immune checkpoint in macrophages that can be

targeted by cancer cells to limit the anti-tumor immune response.

However, there are several Mer structure function relationships that

have not been fully elucidated. This review describes structural

features of Mer, data supporting its roles as an innate immune

checkpoint, and pharmacologic therapeutics targeting Mer in the

treatment of cancer.
Structural features of Mer

Mer belongs to the Tyro3/Axl/Mer family of receptor tyrosine

kinases (RTKs) and is structurally related to the other receptors.

Beginning at the amino terminus, Mer is comprised of 2

immunoglobin-like domains, 2 fibronectin type III domains, and

a transmembrane domain followed by cytoplasmic kinase domain

(22) (Figure 1). Between the second fibronectin type III domain and

the transmembrane domain is a cleavage site (Figure 1). Cleavage at

this site yields a soluble domain capable of acting as a decoy

receptor through binding to Mer ligands (23). Elements of Mer

are also capable of translocating to the nucleus to perform functions

that are still unclear (24). Lastly, Mer has an adapter binding site

between the kinase domain and the carboxy terminus (Figure 1).

While some reports indicate kinase-dependent adapter protein
FIGURE 1

Schematic of murine Mer functional domains and known binding and phosphorylation sites, and downstream signaling pathways. Beginning at the
amino terminus, Mer contains 2 immunoglobin-like domains (IgL1,2), 2 fibronectin type III domains (FB1,2), and a transmembrane domain followed
by a cytoplasmic kinase region. The Mer cleavage site is found between the second fibronectin type III domain and the transmembrane domain. The
Mer adapter binding site is between the kinase domain and the carboxy terminus. Amino acid positions for each functional area are shown above
the diagram. Mer activation promotes various cellular processes and immune suppression using the downstream pathways shown. Mer signaling
mediated by adapter binding protein binding also promotes a macrophage M2 phenotype.
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recruitment (25), others demonstrate a potentially kinase-

independent role for this protein domain (26). In the following

sections, findings related to each Mer domain and their prospective

roles in contributing to an innate immune checkpoint are described.
Activation and effects of the Mer
kinase domain

MER binding with known ligands, including Growth arrest

specific 6 (Gas6) (27), Protein S (Pros1) (28), Tubby (Tub1) (29),

Tubby-like protein 1 (Tulp1) (30), and Galectin 3 (Gal3) (31) can

induce autophosphorylation of the tyrosine residues within the

activation loop of the kinase domain (Tyr749/53/54, Human) (32).

Kinase activation initiates the process of efferocytosis, the

engulfment of apoptotic material, through coordinated

cytoskeletal rearrangement (33). While ligand binding to

apoptotic material promotes efferocytosis, engulfment can still be

induced by ligands alone, but efficiency is reduced (34). Studies have

also shown that efferocytosis can limit NF-kB signaling in

macrophages to reduce inflammatory cytokine expression and

limit pro-inflammatory (M1) polarization (35).

Alternatively, efferocytosis has been shown to promote a

macrophage pro-wound healing (M2) phenotype, including

increased secretion of immune suppressive cytokines (e.g., IL-4/10

and TGF-b).This can downregulate the local and systemic immune

responses and allow for tumor immune escape (36). Mer-mediated

efferocytosis can also increase immune suppression by causing

macrophage upregulation of programmed death-ligand 1 (PD-

L1) (37).

Through clearance of apoptotic material, Mer reduces the

presence of Damage Associated Molecular Patterns (DAMPs),

such as extracellular ATP, endogenous nucleic acids, and

transcription factors like HMGB-1 (38), which could potentially

activate the M1 response (39, 40). Clearance of tumor cell debris

may further deprive macrophages and other antigen presenting cells

of tumor antigenic peptides which would otherwise be presented to

T cells, either through Major Histocompatibility Complex II

(MHCII) to CD4+ T cells, or through cross-presentation to CD8+

T cells (41, 42). That process may limit potential T cell effector

functions and diminish the overall anti-tumor response.

As an example of how both features contribute to immune

escape, a recent study shows that Mer-mediated efferocytosis leads

to tumor progression and immune tolerance in osteosarcoma by

increasing M2 polarization and PD-L1 expression (43).
Mer can be cleaved to yield a soluble form
of the protein

Macrophage membrane-bound Mer can be cleaved at Pro485-

Ser486 in murine macrophages (44) by the metalloproteases

ADAM10/17 to yield a soluble version of Mer (sMER) (23, 44).

Subsequently, cleaved Mer contributes to defective efferocytosis in

leukemia (23). After cleavage, sMer can act as a competitive Mer

inhibitor and serve as a decoy for its ligand Gas6 (23). Alternatively,
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sMer can be localized to multiple intra-cellular compartments,

including the cytoplasm, the nucleus, and the proteasome (45).

While the role of Mer cleavage is not fully understood in the cancer

context, the presence of soluble Mer has the potential to add further

nuances to TAM signaling.
Mer can be localized in the nucleus

Mer is generally thought to be maintained at the cell membrane

or in endosomes, though some studies have found that Mer can be

translocated into nucleus. While not described in macrophages,

Borgman et al. showed ligand dependent translocation of MER into

the nucleus of human dendritic cells (DCs). Further, the authors

found that MER acts as a transcription factor and that the amount

of MER in the nucleus is associated with the differentiation state of

DCs. Interestingly, the process was also regulated by the

transmembrane receptor LRP-1 (46). A similar nuclear

translocation phenomenon was observed in cancer cells, though

nuclear translocation was determined to be regulated by the

phosphorylation of deglycosylated MER, fueling the proliferation

and transformation of hepatocellular carcinoma cells (HCC) (47).

Similarly, Mer nuclear translocation was observed in leukemic

cells (48).
The adapter binding site can
modulate downstream signaling
and cytoskeletal rearrangement

More than 20 years ago, Georgescu et al. (49) developed a fusion

protein with a CD8 extracellular domain coupled to the Mer

intracellular domain in Ba/F3 cells. Point mutations of known

Mer phosphorylation sites (i.e., amino acids 544, 614, 825, 867,

and 924) were generated within the fusion protein to determine

their respective roles in constitutively activated Mer. The study

showed that genetic loss of Mer, or mutations of Y867F or Y924F,

reduced survival in IL-3 dependent cells cultured in the absence of

IL-3. Further analysis identified position 867 as a binding site for the

adapter protein Grb2, which is known to mediate Fak, Rac, and

PI3K signaling (50). Georegescu and colleagues also determined

that Mer 867 was essential for NF-kB activation (48). A later study

by Tibrewal et al. (51) conflicted with Georgescu et al. in that NF-kB

was not found to be regulated by Mer 867 in Mer mutant

transfected RAW264 macrophages. Instead, Tibrewal et al.

showed that Gas6 activated Mer 867 mediates PLCg and Fak

signaling and modulated p130 activation (50). Further studies

have shown that other SH2 adapter proteins can interact with the

intracellular domain of Mer to facilitate cytoskeletal remodeling.

One such study showed that Gas6 can induce the release of

constitutively bound Vav1 from Mer, to facilitate cellular

reorganization for phagocytosis (52). Shelby and colleagues later

utilized a screening strategy to identify Mer downstream adapter

proteins. Primarily through the study of retinal pigment epithelium,

they confirmed that Mer interacts with Grb2, but also with Vav1/3,

PIK3R1 and Src to facilitate cellular remodeling (53). Taken
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together, these studies indicate that, in addition to the Mer kinase

domain, there are additional molecular features important to

downstream signaling.
Pharmacologically targeting Mer to
improve outcomes

Because of its various roles in tumor immune progression, Mer

is actively being targeted to increase cancer patient survival. As

described in the following sections, Mer-directed therapeutics are in

various stages of development, with some already in clinical trials.
Mer kinase inhibition promotes better
outcomes in preclinical models

Several groups have shown that by pharmacologically targeting

Mer kinase activity, efferocytosis and other immune suppressive

processes may be reduced and lead to better outcomes in preclinical

models. Mer-targeted compounds, such as UNC2250 (54),

UNC9253 (55), SA4488 (56), and UNC2025 (57), have been

investigated to inhibit Mer kinase activity in different murine

tumor models like melanoma, prostate, pancreatic, and breast

cancer (26). Zhou et al. have also reported that blockade of

efferocytosis in TME mediates a switch from apoptosis/

efferocytosis to immunogenic cell death of tumor cells (58).

Hsu et al. investigated the effect of the Mer kinase inhibitor

XL092 in various human xenograft murine models. They found that

XL092 monotherapy alone or in combination with immune

checkpoint inhibitors (ICIs) significantly inhibited tumor growth.

XL092 treatment led to decreased tumor cell proliferation and

angiogenesis and fostered a less immune-permissive TME,

including macrophage reprogramming from M2 to M1

polarization and suppression of efferocytosis (59).

BMS794833, a potent Mer inhibitor, was also found to be very

effective in suppressing Mer activation and Mer-induced

efferocytosis in an animal model (60). Further, in a preclinical

model of glioblastoma, the Mer inhibitor UNC2025 results in

induction of an inflammatory macrophage phenotype and

reduced the fraction of TAMs expressing the anti-inflammatory

marker CD206 in the tumor microenvironment (TME) (61). In

addition to TAMs, Mer also regulates other immune cells such as T

cells, natural killer cells (NKs), and myeloid derived suppressor cells

(MDSCs) (62, 63). In most of these immune cells, Mer plays an

immunosuppressive function.

Mer expression has been linked to leukemogenesis and therapy

resistance in leukemia models (54, 64). These findings led to the use

of Mer inhibitors in the treatment of preclinical leukemia models

(65). For example, Mer kinase inhibition using MRX2843 prevented

efferocytosis in a model of acute myeloid leukemia (AML). Results

showed tha t Mer b lockade d imin i shed macrophage

immunosuppressive traits by reducing expression of M2 markers,

including TIM-3, PD-L1, Arginase-1, and CD163, and promoting

macrophage polarization toward an antitumor (M1) phenotype by

limiting STAT6 phosphorylation. In addition, Mer inhibition
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increased the production of cytokines involved in T cell

activation, such as IFN-b, IL-1b, and IL-18 via NF-kB activation

and prolonged leukemia-free survival (66). Taken together, these

findings support the potential of Mer kinase inhibition as a means

of increasing the anti-tumor immune response.
Antibody-based approaches to
targeting Mer

Multiples groups have targeted the Mer kinase domain using

small molecules, whereas other researchers have developed specific

Mer-targeted monoclonal antibodies (mAbs) which have been

tested in preclinical models (67, 68). Davara et al. investigated the

effect of mAbs in a murine breast cancer model to block Mer

function and found that mice treated with Mer neutralizing mAb

displayed decreased tumor growth and metastasis. Mechanistically,

Mer blockade with mAb or Mer knockout led to suppressed

efferocytosis, reduced M2 macrophages, and enhanced infiltration

of CD8+ T cells into tumors, indicating an anti-Mer mAb can foster

host antitumor immunity (69). In breast and colon tumor murine

models, antibody mediated blockade of Mer phagocytic engulfment

of apoptotic cells also results in dramatic induction of Type 1 IFN

response and increased antitumor T cells immunity, as well as

enhanced efficacy of ICI therapy (58). Anti-Mer-antibody has

significantly inhibited tumor growth either as single agent or

along with anti-PD-1 (58). In a murine lung cancer model,

combination radiotherapy, anti-PD-1 and anti-Mer, led to

suppressed tumor growth, enhanced survival rates, and an overall

decrease in metastasis by enhancing the population of CD8+

CD103+ TRM cells at distal tumor sites. Triple therapy also

reprogrammed macrophage to the M1 phenotype and stimulated

activation of CD8+ T cells and NK cells at metastatic sites (70).

Preclinical studies reinforce the idea that Mer-blockade, either by

targeting the kinase domain or by using mAbs, can improve

outcomes, particularly when combined with other therapies like

radiation or checkpoint blockade to shift the immunosuppressive

TME into a more immunogenic state, thereby inducing the adaptive

immune response for long lasting anti-tumor immunity.
MER is a biomarker of therapy resistance

Likely due to its various roles in suppressing the anti-tumor

response, MER has been associated with resistance to anti-cancer

therapies. For instance, MER overexpression has been detected in

patients receiving chemotherapy or targeted therapy as first-line

treatment. In colorectal tumors, MER is a predictive biomarker

against MEK1/2 inhibitors resistance (71). For melanoma patients,

MER upregulation is associated with resistance to MEK and BRAF

inhibitors (72). Osimertinib has been proposed as a front-line

targeted therapy for NSCLC patients with either T790M

mutations or activating mutations because of superior efficacy

and enhanced overall survival compared with earlier generation

EGFR tyrosine kinase inhibitors (TKIs), such as erlotinib or

gefitinib (73). Unfortunately, osimertinib is facing clinical
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1244170
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ubil and Zahid 10.3389/fimmu.2023.1244170
challenges similar to first generation inhibitors, as only 3% of

NSCLC patients showed complete response with osimertinib

treatment while most of the patients exhibited residual tumor

(74). A recent study has identified MER as a driver of osimertinib

resistance and residual tumor growth in EGFRMT NSCLC patients.

These findings showed that MER and its ligand GAS6 are

upregulated in EGFRMT tumors following osimertinib treatment

in both the NSCLC patients samples and xenograft models (75).
Utilizing MER kinase inhibition to treat
cancer patients

Supported by preclinical findings, both MER specific and multi-

kinase targeted therapies that also target MER are currently in

clinical trials for the treatment of cancer. Clinical trials using MER

selective inhibitors such as INCB081776 (NCT03522142) (76),

ONO-7475 (NCT03176277) (77), and MRX-2843 (NCT0351

0104) (78) are being conducted for the treatment of different

cancers. The selective inhibitor ONO-7475, which targets MER,

AXL, and FLT3, is in Phase I clinical trials for advanced solid

tumors and acute leukemia after suppressing progression of both

forms of cancer in preclinical models (79). INCB081776 is a potent

inhibitor of AXL and MER which is being tested along with

nivolumab in advanced solid tumors (NCT03522142) (80).

While targeting of MER using small molecular inhibitors has

shown clinical promise, issues with drug toxicity and off-target

effects have limited their clinical application. Cabozantinib is a

multi-kinase inhibitor that has also shows potent activity against

AXL and MET (81). Cabozantinib treatment was found to increase

hemoglobin levels in ovarian and prostate cancer patients (82, 83).

Some patient deaths were also associated with cabozantinib

treatment (84).

He et al. conducted the Phase I clinical trial (NCT01285037) of

multi-kinase inhibitor merestinib (LY2801653), which also targets

MER, to investigate the therapeutic effect and safety of this novel

agent in advanced tumor patients. In this study, the authors tested

the combination therapy of merestinib along with other therapeutic

agents, including cisplatin, gemcitabine, and cetuximab. Results

showed that 32% of tumor patients responded to this therapeutic

agent and a 120 mg daily dose of merestinib demonstrated a

tolerable safety profile and significant antitumor activity (85).

CT053PTSA is a multi-kinase inhibitor being tested in a Phase I

clinical trial (NCT04577703) in advanced solid tumor patients.

Research findings of the trial suggested that CT053PTSA is well

tolerated and safe for patients. This Phase I clinical trial has some

limitations in that it was performed at a single center and that all the

participants were Chinese, which might affect the generalizability of

research findings to a broader population (86). Sitravantinib is a

multi-kinase novel inhibitor which potentiates ICI therapy by

modulating innate and adaptive immune cell changes in TME,

thereby significantly improving efficacy of ICI therapy (87).

Sitravantinib works partly by reprogramming M2 macrophages to

the M1 phenotype (88). A Phase II clinical trial (NCT02954991) of

sitravatinib with the immune checkpoint inhibitor nivolumab was

conducted in nonsquamous NSCLC patients who experienced
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disease progression following ICI therapy or chemotherapy (89).

Combination therapy of sitravatinib with nivolumab showed a

tolerable safety profile and significant antitumor activity and also

improved the survival of ICI therapy experienced NSCLC patients.

This study has some limitation because it is based on single arm-

design, which precluded tumor patients’ randomization to standard

or care.

MER inhibitors possess complex and pleotropic action in human

tumors and their therapeutic potential depends on local immune

microenvironment, mutation burden, tumor type, and drug

resistance. For example, a Phase 1/1b clinical trial of sitravatinib

monotherapy demonstrated modest clinical outcomes in advanced

NSCLC patients (NCT02219711) (90). Alternatively, the Phase 1

SNOW window-of-opportunity clinical trial of combining

sitravatinib with nivolumab for treatment of oral cavity squamous

cell carcinoma tumor patients demonstrated a tolerable safety profile

and meaningful clinical and pathological outcomes (NCT03575598)

(91). Importantly, combining sitravatinib with nivolumab resulted in

a decreased immunosuppressive TME and led to macrophage

reprogramming toward an M1 phenotype in tumor patients who

responded to combination therapy (92).

A summary of ongoing clinical trials is presented in Table 1.
Potential challenges and alternative
benefits of MER kinase inhibitors

MER inhibition has the possibility of on-target off-tumor effects

because of the receptor’s role in tissue repair, platelet aggregation,

and innate immune regulation. A previous study reported that Mer

inhibition by using small molecule inhibitor UNC-569 causes ultra-

structural changes in the mouse retina (93). Moreover, MER

mutations are associated with human retinitis pigmentosa in

various family cohorts (94), suggesting that kinase inhibition may

have an effect on vision as well as cancer.

As described previously, MER kinase inhibitors can also have

effects on other targets including FLT3, AXL, and MET (Table 1). In

some instances, these secondary targets can lead to increased drug

efficacy as they affect other clinically relevant features of cancerous

cells. For instance, FLT3 is often mutated in hematologic

malignancies like acute myeloid leukemia (95) and is a drug

target in its own right (96). Similarly, AXL has been shown to

confer selective advantage to cancerous cells in tumor progression

(97) and simultaneously targeting AXL and MER could show

increased benefit for patients. Because of structural similarities

between MER, AXL, and TYRO3, it can be challenging to develop

selective MER inhibitors (98). While relatively less is known about

the role of TYRO3 in cancer, targeting MER and AXL may

be advantageous.
Conclusion

With multiple known ligands, structural similarity to Tyro3 and

Axl, and several functional domains that can modify downstream

functions, Mer signaling is rich in complexity. However, preclinical
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and clinical studies focusing primarily on MER kinase inhibition

have demonstrated the potential to target MER as an innate

immune checkpoint, thereby improving the anti-tumor response

and patient outcomes. While it is difficult to fully disaggregate the

effects of Mer inhibition in immune cells from those taking place

concurrently in tumor cells, reviewed elsewhere (99), Mer remains a

promising therapeutic target for anti-cancer therapy alone, or in

combination with other immunotherapies.
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