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Oxidation is an underappreciated
post-translational modification in
the regulation of immune
responses associated with
changes in phosphorylation

Isabel Karkossa1, Sabine Fürst1, Henning Großkopf1†,
Martin von Bergen1,2,3 and Kristin Schubert1*

1Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ,
Leipzig, Germany, 2Institute of Biochemistry, Leipzig University, Leipzig, Germany, 3German Centre
for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Although macrophages are known to be affected by their redox status, oxidation

is not yet a well-recognized post-translational modification (PTM) in regulating

macrophages and immune cells in general. While it has been described that the

redox status of single cysteines in specific proteins is relevant for macrophage

functions, global oxidation information is scarce. Hence, we globally assessed

the impact of oxidation on macrophage activation using untargeted proteomics

and PTM-omics. We exposed THP-1 macrophages to lipopolysaccharide (LPS)

for 4 h and 24 h and applied a sequential iodoTMT labeling approach to get

information on overall oxidation as well as reversible oxidation of cysteines. Thus,

we identified 10452 oxidation sites, which were integratively analyzed with 5057

proteins and 7148 phosphorylation sites to investigate their co-occurance with

other omics layers. Based on this integrative analysis, we found significant

upregulation of several immune-related pathways, e.g. toll-like receptor 4

(TLR4) signaling, for which 19 proteins, 7 phosphorylation sites, and 39

oxidation sites were significantly affected, highlighting the relevance of

oxidations in TLR4-induced macrophage activation. Co-regulation of oxidation

and phosphorylation was observed, as evidenced by multiply modified proteins

related to inflammatory pathways. Additionally, we observed time-dependent

effects, with differences in the dynamics of oxidation sites compared to proteins

and phosphorylation sites. Overall, this study highlights the importance of

oxidation in regulating inflammatory processes and provides a method that

can be readily applied to study the cellular redoxome globally.
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1 Background

Innate immune cells, such as macrophages, build the first

barrier in the defense against foreign substances and pathogens.

Complex molecular signaling cascades are triggered upon contact of

macrophages with these stimuli. A very prominent example is the

pathogen-associated molecular pattern (PAMP) lipopolysaccharide

(LPS) from gram-negative bacteria, which is known to induce toll-

like receptor 4 (TLR4) signaling (1) with subsequent metabolic

reprogramming from oxidative phosphorylation to aerobic

glycolysis (2, 3), similar to the Warburg effect in tumors (4).

The involvement of post-translational modifications (PTMs),

such as phosphorylation and ubiquitination in innate immunity in

general (5) and LPS-induced signaling in macrophages in particular

(6), have been described in the past. However, the role of protein

oxidation in the regulation of these processes has received only little

attention so far, even though it is known that oxidative stress can

induce inflammation and vice versa, mediated by the ubiquitous

redox-active peroxiredoxin 2 (PRDX2) (7). Furthermore, LPS

stimulation of immune cells can induce an oxidative burst,

depending on the presence of TLR4, which can be blocked

by antioxidants (8). Additionally, the reducing agent glutathione

has been shown to affect the production of LPS-induced

cytokines (9), highlighting the relevance of the redox status for

inflammatory processes.

While almost no global information on redox-regulated

proteins is available, referred to as redoxome, several proteins are

known to be affected by oxidants and antioxidants modifying

specific sites. For example, the oxidation states of cysteines on the

ectodomain of TLR2 and TLR4 are critical for LPS-induced

signaling (10). For the downstream nuclear factor kappa-light-

chain-enhancer of activated B cells (NFkB) it has been described

that oxidants enhance its nuclear translocation, while a cysteine in

the DNA binding region of its p50 subunit (NFKB1_C62) must be

reduced for proper DNA binding once in the nucleus (11–13).

Recently, one preprint and one original article investigated the

redoxome of macrophages during activation with LPS. Yan et al.,

2023 (14) studied murine immortalized bone marrow-derived

macrophages (iBMDM) treated with LPS and Interferon-g (INFg)
for 24 h and evaluated protein localization-dependent oxidative

modifications, focusing on the totality of cysteine oxidation by

labeling and quantification of all reduced cysteines. However, they

did not consider that cysteine oxidation can occur reversibly or

irreversibly, although this is essential information since reversible

and irreversible protein oxidation can have different effects. While

reversible oxidation is critical for the dynamic regulation of protein

structure and activity, irreversible oxidation, mainly occurring

under oxidative stress, is most likely associated with a loss of

function (15–17). In contrast, the second study, conducted by

Hariri et al., 2023 (18), investigated reversible cysteine oxidation

after 4 h LPS stimulation of human THP-1 macrophages and found

that oxidations are highly important to allow macrophages to

respond and adapt to redox and inflammatory challenges efficiently.

Combining the best of both studies, we investigated the effects

of LPS on the redoxome of human THP-1 macrophages after 4 h
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and 24 h. Starting with 20 µg protein in contrast to the previously

used ≥500 µg protein, we quantified overall and reversible protein

oxidation, applying a sequential iodoTMT labeling approach. By

integrating the data with phosphoproteomics data, we aimed to

unravel potential co-regulation of these two PTMs. The

corresponding full proteome was not only used to correct the

changes in PTMs for changes on protein level, which was not

done in the previous studies, but was also included in the integrative

analysis, revealing detailed insights into the molecular mechanisms

induced by LPS in THP-1 macrophages, with the contribution of

protein abundance, oxidation, and phosphorylation.
2 Methods

The applied experimental setup is visualized in Figure 1.
2.1 Cell culture and treatment

Cell culture and treatment were performed as described before

(19). In brief, per sample, 1.5x106 cells of the human monocytic

leukemia cell line THP-1 were cultured at 5% CO2, 37°C, and 95%

humidity in a growth medium consisting of RPMI 1640 medium

(GibcoTM, Thermo Fisher Scientific, Waltham, MA, USA), containing

10% fetal bovine serum (FBS, Biowest, Nuaillé, France) and 1%

penicillin/streptomycin (Sigma Aldrich, Darmstadt, Germany). They

were differentiated to pro-inflammatory macrophages by treatment

with 100 ng/ml phorbol-12-myristate-13-acetate (PMA, Sigma

Aldrich) for 48 h, followed by 24 h resting in growth medium

without PMA. Afterwards, they were exposed to 100 ng/ml

lipopolysaccharide (LPS) for 4 h or 24 h. Not LPS-treated cells from

the two time points served as controls. After these incubations, cells

were washed, harvested and lysed using 150 mM NaCl, 1% Triton X-

100, 50 mM Tris HCl pH 7.4, 0.5% sodium deoxycholate, and 0.1%

sodium dodecyl sulfate in water, supplemented with protease inhibitor

(cOmplete, Roche, Sigma Aldrich) and phosphatase inhibitor (Thermo

Scientific™ Halt™ Protease and Phosphatase Inhibitor Cocktail).

Lysates were incubated for 60 min on ice and centrifuged for 15 min

at 4°C and 16,000 g. According to the manufacturer’s instructions,

protein concentrations were determined using the DC protein assay

(Bio-Rad, Feldkirchen, Germany).

Three runs of four replicates each were performed, resulting in

12 replicates that were processed equally. Proteome, redoxome, and

phosphoproteome were created from the same samples.
2.2 Proteome

20 µg protein per sample were prepared for untargeted

proteomics using a paramagnetic bead approach (20–22) in

combination with enzymatic cleavage using trypsin and tandem

mass tag (TMT, TMT-6plex, Thermo Scientific, USA) labeling (see

Supplementary Methods) as described before (23). The only

difference was that the samples were not acidified before loading
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on the beads for protein clean-up. After labeling, the samples were

combined replicate-wise, leading to mixes containing one sample

per condition (4 h -LPS, 4 h +LPS, 24 h -LPS, 24 h +LPS). After

peptide clean-up, peptides were eluted in two steps, first with 87%

ACN in 10 mM ammonium formate (pH 10, Sigma Aldrich), then
Frontiers in Immunology 03
with 2% dimethylsulfoxide (DMSO, Sigma Aldrich), resulting in

two fractions, which were analyzed using liquid chromatography

(LC) coupled to a mass spectrometer (MS). In detail, the peptides

were separated on a nano-UPLC system (Ultimate 3000, Dionex,

USA) with a trapping column (flow rate 5 µl/min, Acclaim PepMap
FIGURE 1

Experimental design. Monocytic THP-1 cells were differentiated to THP-1 macrophages by incubation with PMA for 48 h, followed by a resting
period of 24 h. Afterwards, cells were exposed to LPS for 4 h or 24 h, respectively. Cells not treated with LPS served as controls. Proteome,
redoxome, and phosphoproteome were created from proteins of the same samples. For the redoxome, a sequential iodoTMT labeling approach was
applied to quantify overall (all) and reversible (rev) cysteine oxidation. For the identification of phosphorylated peptides, a two-step enrichment was
performed. Intensities obtained for oxidation and phosphorylation sites were normalized to changes in protein level. Finally, changes in protein
abundances, oxidation sites, and phosphorylation sites were evaluated integratively to unravel the relevance of the redoxome in macrophage
activation and its co-regulation with proteins and phosphorylation sites. Created with BioRender.com.
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100 C18, 3 µm, nanoViper, 75 µm × 5 cm, Thermo Fisher,

Germany) and an analytical column (flow rate 0.3 µl/min,

Acclaim PepMap 100 C18, 3 µm, nanoViper, 75 µm × 25 cm,

Thermo Fisher, Germany) using a 160 min non-linear gradient. The

nano-UPLC system was coupled to the MS (QExactive HF, Thermo

Scientific, USA) via a chip-based ESI source (Nanomate, Advion,

USA). According to the previously described workflow (23)

precursors between 350 m/z and 1550 m/z were detected at a

resolution of 120K. MS1 AGC target was set to 3e6, with a

maximum injection time of 120 ms. The top 15 precursors were

isolated using a window of 0.7 Th, with MS2 AGC target 2e5 and a

maximum injection time of 120 ms. NCE was 34, fixed first mass

120 m/z, and MS2 resolution 60K. A dynamic exclusion of 45 s was

used. Further details are provided in the Supplementary Methods.

The obtained raw data were processed against the UniProtKB

(24) reference proteome of Homo sapiens (4 March 2022), using

Proteome Discoverer 2.5 and the following parameters: up to 2

missed cleavages, carbamidomethylation (C) and TMT (K) as fixed

modifications, oxidation (M), acetylation of the protein N-

terminus, and TMT labeling of the peptide N-terminus as

variable modifications, correction of reporter ion intensities

according to the correction factors provided by the manufacturer.

Further details are provided in the Supplementary Methods. This

workflow resulted in information on 5057 proteins.
2.3 Redoxome

20 µg protein per samples were used for sequential iodoTMT

labeling (iodoTMT-6plex, Thermo Scientific, USA). Protein sample

volumes were adjusted to 50 µl using 100 mM tetraethylammonium

tetrahydroborate (TEAB, Sigma Aldrich, USA). For initial labeling

of free thiols (TMT1, reflecting overall oxidation, short: all), two of

the available six iodoTMT labels were dissolved in 85 µl methanol

each, and 10 µl of the dissolved label was added to the samples,

followed by incubation for 1 h protected from light with shaking at

37°C. Afterwards, acetone precipitation was performed by adding

six volumes of acetone to the samples and incubating them

overnight at -20°C. The next day, samples were centrifuged at

10,000 g and 4°C for 10 min, supernatants were discarded, and air-

dried pellets were dissolved in 50 µl 100 mM TEAB. Next, oxidized

cysteines were reduced using 5 µl of 50 mM tris(2-carboxyethyl)

phosphine hydrochloride (TCEP, Sigma-Aldrich, USA) in 100 mM

TEAB and incubation for 1 h with shaking at 50°C. To label the

subsequently reduced thiols (TMT2, reflecting reversible oxidation,

short: rev), two of the remaining labels were dissolved in 43 µl

methanol each, and 5 µl of the dissolved label was added to the

samples. After incubation for 1 h protected from light and shaking

at 37°C, 2.5 µl 500 mM dithiothreitol (DTT, Sigma Aldrich, USA) in

100 mM TEAB was added to quench the labeling. Samples were

combined time point-wise (4 h/24 h: TMT1 -LPS, TMT2 -LPS,

TMT1 +LPS, TMT2 +LPS), and another acetone precipitation was

performed for 4 h. For proteolytic cleavage of the labeled proteins,

0.4 µg trypsin in 10 µl 100 mM TEAB was added and incubated

overnight at 37°C. Desalting was performed using the peptide clean-

up on paramagnetic beads as described before (23). For details, see
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Supplementary Methods. In brief, 3 µl beads per sample were

prepared by washing them three times with 300 µl water. 250 µl

acetonitrile (ACN) was added to the samples before transfer to the

beads. After incubation for 8 min at room temperature off the

magnetic rack and 2 min incubation on the magnet, supernatants

were discarded, and samples were washed with 200 µl 100% ACN.

Peptide elution was performed as described for the proteome,

resulting in two fractions, which were analyzed on the same LC-

MS/MS system as the proteomics samples , using the

same parameters.

The obtained raw data were processed against the same

UniProtKB (24) reference proteome as the proteome, using

Proteome Discoverer 2.5 and the following parameters: up to 2

missed cleavages, iodoTMT as fixed modification (C), oxidation

(M) and acetylation of the protein N-terminus as variable

modifications, correction of reporter ion intensities according to

the correction factors provided by the manufacturer. Further details

are provided in the Supplementary Methods. This workflow

resulted in information on 6576 proteins and 76310 peptide

isoforms. Corrected reporter ion intensities of peptide isoforms

were translated to site intensities summing the intensities of the

peptide isoforms containing the site. The identified peptide

isoforms referred to 10452 oxidation sites.
2.4 Phosphoproteome

For the phosphoproteome, 70-100 µg protein were used,

followed by protein clean-up, proteolytic cleavage with trypsin,

TMT labeling (TMTpro-16plex, Thermo Scientific, USA), the

combination of all samples from one run (4 times -LPS and +LPS

after 4 h and 24 h, all having the same protein amount) and peptide

clean-up as described for the proteome. Only the elution after the

peptide clean-up was done differently than for proteome and

redoxome, not in two fractions but only with water. Afterwards, a

two-step enrichment using a workflow based on the HighSelect™

TiO2 Phosphopeptide Enrichment Kit (Thermo Scientific, USA)

and the High-Select™ Fe-NTA Phosphopeptide Enrichment Kit

(Thermo Scientific, USA) was performed as described before (25).

Obtained samples were analyzed on the same LC-MS/MS

system as the proteome and the redoxome, also using a 160 min

non-linear gradient but different MS parameters: precursors

between 350 m/z and 1550 m/z were detected at a resolution of

120K. MS1 AGC target was set to 3e6, with a maximum injection

time of 150 ms. The top 15 precursors were isolated using a window

of 0.7 Th, with MS2 AGC target 2e5 and a maximum injection time

150 ms. NCE was 34, fixed first mass 120 m/z, and MS2 resolution

60K. A dynamic exclusion of 45 s was used. For details, see

Supplementary Methods.

The obtained raw data were processed against the same

UniProtKB (24) reference proteome as the proteome and the

redoxome, using Proteome Discoverer 2.5 and the following

parameters: up to 2 missed cleavages, carbamidomethylation (C)

and TMT (K) as fixed modifications, phosphorylation (S/T/Y),

oxidation (M), acetylation of the protein N-terminus, and TMT

labeling of the peptide N-terminus as variable modifications,
frontiersin.org
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correction of reporter ion intensities according to the correction

factors provided by the manufacturer. Further details are provided

in the Supplementary Methods. This workflow resulted in

information on 5040 proteins and 42159 peptide isoforms.

Corrected reporter ion intensities of peptide isoforms were

translated to site intensities summing the intensities of the

peptide isoforms containing the site. The identified peptide

isoforms referred to 7148 phosphorylation sites, including 5976

on serine, 1127 on threonine, and 45 on tyrosine.
2.5 Identification of significantly affected
proteins/sites and enrichment analysis

TMT labeling was applied to yield data on all three omics layers.

Using this approach, LPS-treated samples (+LPS) of one replicate

always became part of one TMT mix with the corresponding not

LPS-treated samples (-LPS) from the same biological replicate.

Accordingly, TMT mix-internal fold changes (FCs) of +LPS vs

-LPS were calculated, resulting in FC data for 12 replicates, which

were used for further analyses. This procedure was applied time-

point-wise (4 h +LPS vs 4 h -LPS, 24 h +LPS vs 24 h -LPS).

Next, data were filtered for those identified at least in triplicate,

resulting in a subset of reliably identified proteins and sites,

followed by log2-transformation and median-normalization.

Average Log2(FCs) were calculated, and significantly affected

proteins and sites were determined using a Student’s t-test based

on the replicate Log2(FCs) against 0. Obtained p-values were

adjusted for multiple testing, according to Benjamini & Hochberg.

Proteins and sites were considered significantly affected with

FDR ≤ 0.05.

For the redoxome, the reporter ion intensities referring to

overall oxidation (TMT1) reflected reduction levels so far, while

the intensities referring to reversible oxidation (TMT2) reflected

oxidation. To achieve comparability of the two data sets, Log2(FCs)

obtained for the overall oxidation data set (TMT1) were inverted,

resulting in positive Log2(FCs) reflecting increased oxidation.

The average Log2(FCs) and FDRs for both time points and all

omics layers are summarized in the Additional file.

Enrichment analyses were conducted with significantly affected

(FDR ≤ 0.05) proteins/sites using the Reactome (26) gene sets of the

MSigDB (27, 28). Enrichment p-values were adjusted for multiple

testing, according to Benjamini & Hochberg. Pathways were

considered significantly enriched with FDR ≤ 0.05. Direction of

regulation was determined based on the median Log2(FC) of all

proteins and sites assigned to the pathway. All enriched terms are

summarized in the Additional file. Compartments were mapped

using the Gene Ontology gene sets of cellular components (29, 30)

of the MSigDB (27, 28).

These analyses and the related visualizations were performed in

R-3.6.1, using the packages plyr (31), reshape2 (32), xlsx (33),

calibrate (34), readxl (35), qpcR (36), splitstackshape (37), tidyr

(38), Tmisc (39), ggplot2 (40), circlize (41), ggsci (42), dendsort

(43), dendextend (44), biomaRt (45), and msigdbr (46).

Proteins with significantly altered (FDR ≤ 0.05) oxidation and

phosphorylation sites after 24 h LPS treatment were uploaded to the
Frontiers in Immunology 05
STRING-db (47) and visualized using Cytoscape v3.7.2 (48) as well

as Cytoscape’s StringApp (49).
3 Results

To evaluate the role of cysteine oxidation in macrophage

activation and potential co-regulation of protein abundance and

phosphorylation, we exposed human THP-1 macrophages to LPS

for 4 h and 24 h (Figure 1). For the redoxome, a sequential

iodoTMT labeling approach was applied to obtain information on

overall and reversible cysteine oxidation. The phosphoproteome

was generated using a two-step enrichment of phosphopeptides

(25). Obtained oxidation and phosphorylation site intensities were

normalized to changes on the protein level, which was only possible

for modified proteins also part of the proteome (Figure S1). This

workflow revealed reliable quantification data for 4428 proteins,

4657 overall oxidations, 4355 reversible oxidations, and 2482

phosphorylation sites showing good reproducibility (Figure S2)

and being assigned to different compartments (Figure S3).

Significant changes were assessed for all these reliably quantified

proteins/sites relative to control samples not treated with LPS.

While all omics layers revealed significantly (FDR ≤ 0.05)

altered proteins/sites (Figure 2A), most effects were observed for

the redoxome, which showed effects on overall (all) and reversible

(rev) oxidation, with a higher number of affected sites reflecting

overall oxidation (Figure S4). Next, we compared proteins bearing

significantly affected oxidations with proteins known to be modified

on cysteine according to the UniProtKB. Thus, we found proteins

known to be modified on cysteine and proteins not described to be

oxidized on cysteine so far (Figure S5). Examples of significantly

altered candidates with known cysteine modification, relevant for

inflammatory processes and related redox regulation, are

thioredoxin (TXN), glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), and Ras-related C3 botulinum toxin substrate 1

(RAC1). Furthermore, the analysis of the Log2(FC) distributions

of the significantly affected proteins/sites revealed compartment-

dependent trends, which were also time-dependent. For example,

many nuclear proteins significantly decreased after 4 h but

increased after 24 h. In contrast, the redoxome did not indicate

time-dependent modification of nuclear proteins but of proteins

from the cytoplasmic region, with significantly increased oxidation

mainly after 24 h, accompanied by significant decreases in

phosphorylation (Figure S6).

To evaluate how the different omics layers are regulated over

time, we compared changes after 4 h and 24 h (Figure 2B) and

found a significant positive correlation for the proteome and the

phosphoproteome. In contrast, the redoxome showed the opposite

correlation, suggesting a different dynamic of the redoxome.

Next, all significantly altered proteins/sites were subjected to

Reactome pathway enrichment to evaluate effects of the PTMs on

signaling pathways. Assessment of the top 5 significantly enriched

(FDR ≤ 0.05) pathways revealed no significant enrichment of

pathways after 4 h based on the proteome (Figure S7). In

contrast, the PTM layers showed significant enrichment after 4 h

and 24 h (Figure S7), in line with the observation that PTMs are
frontiersin.org
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regulated rather quickly (50). After 24 h, TLR4 signaling, which is

known to be induced by LPS (1), was significantly enriched based

on significantly altered proteins, oxidation sites (overall and

reversible together), and the integrative enrichment using the

combination of all omics layers investigated here (Figure 2C).

Further immune-relevant pathways found significantly
Frontiers in Immunology 06
upregulated after 24 h based on the integrative analysis were

NLRP3 inflammasome, TNF signaling, interferon signaling, and

interleukin 1 signaling (Figure 2C). In contrast, interleukin 12

signaling and integrin signaling were downregulated. Also,

metabolic pathways such as glycolysis, respiratory electron

transport, and the detoxification of reactive oxygen species were
A

B

C

FIGURE 2

Affected proteins and modification sites. Shown are significantly (FDR ≤ 0.05) altered proteins, phosphorylation sites and oxidation sites after LPS
treatment of THP-1 macrophages for 4 h or 24 h, respectively. Log2(FCs) and -Log10(FDRs) are depicted, highlighting the numbers of significantly
increased (FDR ≤ 0.05, Log2(FC)>0) or decreased (FDR ≤ 0.05, Log2(FC)<0) proteins/sites in the corners (A). Furthermore, changes in protein/site
Log2(FCs) were compared between 4 h and 24 h, distinguishing not affected proteins/sites (empty circles) and significantly altered proteins/sites
(filled circles). Pearson correlation coefficients and corresponding significances of correlation (***p-value ≤ 0.001) were determined to get
information on the trend of the dynamics within the omics layers. Trendlines reflecting correlation values were added, distinguishing not affected
proteins/sites (dashed) and significantly altered proteins/sites (solid) (B). Significantly altered proteins/sites were subjected to an integrative pathway
enrichment using the Reactome gene sets provided by the MSigDB. Selected Reactome pathways found significantly (FDR ≤ 0.05) enriched are
shown (C). The significance of enrichment is provided with asterisks: *FDR ≤ 0.05, **FDR ≤ 0.01, ***FDR ≤ 0.001. Color reflects the median Log2(FC)
of proteins/sites assigned to the pathway.
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affected (Figure 2C). Comparing the regulation direction after 4 h

and 24 h based on the integrative enrichment analysis (Figure 2C),

we found opposite trends for several pathways, indicating again

considerable differences in the regulation at the two time points

investigated here.

Focusing on TLR4 signaling as a benchmark pathway (Figure 3)

known to be induced by LPS treatment of macrophages (1), we

found 19 proteins, 7 phosphorylation sites, and 39 oxidation sites

(overall, reversible, or both) related to this pathway significantly

affected after 4 h or 24 h, highlighting the importance of oxidation

in the regulation downstream of TLR4. Notably, more proteins/sites

were significantly altered after 24 h, suggesting the involvement of

PTMs also at later time points. Furthermore, opposite changes were

induced for many modification sites after 4 h and 24 h.

For the affected TLR4 signaling-related oxidation sites identified

here, cysteines involved in disulfide bonds were identified using the

UniProtKB (Figure 3A), revealing most of those not known to be

modified so far.
Frontiers in Immunology 07
To evaluate the extent to which oxidation and phosphorylation

regulate inflammatory processes, proteins with significantly altered

oxidation or phosphorylation sites after 4 h (Figure 4A) or 24 h

(Figure 4B) LPS stimulation were determined. Thus, we found more

proteins to be multiply modified after 24 h, which were subjected to

the STRING-db (47), and proteins related to inflammatory

processes were identified using Cytoscape’s StringApp (49).

Enrichment analysis revealed that several of these multiply

modified proteins are related to inflammatory processes

(Figure 4C), highlighting the importance of oxidation and

phosphorylation in regulating inflammatory processes in THP-

1 macrophages.
4 Discussion

Since global information on the impact of cysteine oxidations in

inflammatory processes is scarce, we assessed overall and reversible
A B

FIGURE 3

TLR4 signaling. Shown are proteins, phosphorylation sites and oxidation sites assigned to Reactome’s TLR4 signaling after 24 h Significant (FDR ≤

0.05) changes are depicted in bold. The color reflects the direction of regulation (red: Log2(FC)>0, blue: Log2(FC)<0). Oxidation sites involved in
disulfide bonds (according to the UniProtKB) are connected (A). Furthermore, changes in proteins and modification sites assigned to Reactome’s
TLR4 signaling were compared after 4 h and 24 h, where the color reflects the direction of the change and the significance is provided with
asterisks: *FDR ≤ 0.05, **FDR ≤ 0.01, ***FDR ≤ 0.001 (B).
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cysteine oxidation and investigated whether it co-occurs with

phosphorylation, being one of the most extensively studied PTMs.

To quantify cysteine oxidation, we applied an optimized

sequential iodoTMT labeling approach, starting with only 20 µg

protein, which is less than used before in macrophages using

different techniques (14, 18) or in other contexts using iodoTMT

(51, 52). This approach resulted in 10452 oxidation sites,

comparable to or more than identified in these previous studies.

Comparing those to proteins already described to be oxidized

on cysteine and showing significant effects on cysteine modification

here, we found TXN, GAPDH, and RAC1, for instance. TXN is

responsible for the de-nitrosylation of proteins, thus influencing

inflammatory processes (53). According to the UniProtKB, TXN

has a redox-reactive disulfide bond (C32-C35) and three S-

nitrosocysteines (C62, C69, C73) (54). Notably, we identified all
Frontiers in Immunology 08
these modification sites, and the peptide containing C62 and C69

showed significantly decreased reversible oxidation, which was not

observed in overall oxidation. GAPDH is also involved in the

processes induced by macrophage activation, where its S-

nitrosylation supports the induction of apoptosis (55). According

to the UniProtKB, its cysteines C152 (predicted by similarity) and

C247 (56) are known for their potential to be modified.

Additionally, we got information on C156 with the approach

described here. However, this site was on the same peptide as

C152. Thus, the significant increase of this peptide could occur due

to either of the two cysteines. RAC1, which has been described to be

induced by LPS in macrophages, subsequently leading to ROS

formation and NFkB-dependent production of pro-inflammatory

cytokines (57), can be modified on C189 (58) according to the

UniProtKB. While we were not able to get information on this site,
A B

C

FIGURE 4

Multiply modified proteins. Proteins showing significant (FDR ≤ 0.05) changes in protein level, phosphorylation sites, or oxidation sites after 4 h (A) or 24 h (B) of
LPS treatment were compared. Proteins with significantly affected phosphorylation and oxidation sites were subjected to the String-db, where an enrichment
analysis revealed significant enrichment (FDR ≤ 0.05) of Reactome’s inflammatory processes, for which all assigned proteins weremarked bold (C).
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we got quantitation data on the sites C6, C105, C157, and C178, of

which C105, C157, and C178 were found to be significantly affected,

either based on overall oxidation or reversible oxidation, confirming

the importance of assessing overall as well as reversible oxidation.

Based on all significantly altered oxidation sites, identified

proteins, and phosphorylation sites, we found regulation of

typical LPS-induced pathways like TLR4 signaling. Having a

closer look at the proteins and sites assigned to this pathway, we

discovered that oxidation was regulating this pathway to a higher

extent than phosphorylation, although it must be noted that a two-

step enrichment with TiO2 and Fe-NTA columns was used to

examine changes in phosphorylation sites. Unfortunately, this

approach is ineffective in enriching phosphorylated tyrosine, a

main driver of TLR signaling (59), requiring implementing

antibody-based tyrosin phosphorylation strategies in future studies.

For LPS-activated macrophages, metabolic reprogramming

from oxidative phosphorylation to glycolysis is described (2, 3).

While studies are available noticing this also in THP-1 macrophages

(60), this reprogramming may differ between humans and mice

(61). Here, we observed a time-dependent regulation of glycolysis

and respiratory electron transport chain, mainly driven by cysteine

oxidation, highlighting the importance of this PTM.

It is known that different combinations of PTMs can induce

different processes, even though the biological outcomes are only

beginning to be understood (62). For example, the NLRP3

inflammasome is regulated by phosphorylation, ubiquitination,

sumolyation, and S-nitrosylation (63, 64). Thus, we investigated

proteins bearing significantly affected phosphorylated and oxidized

sites in more detail. We found that many proteins involved in

inflammatory processes are regulated by phosphorylation and

oxidation, which highlights the importance of considering PTMs

when investigating modes of action, of which certainly

phosphorylation and oxidation are highly relevant.

Besides the role of protein oxidation in inflammatory processes,

this modification is also very relevant for several diseases (65), e.g.

cancer, which can be accompanied by the excessive production of

ROS (66). In recent years, targeting of disease-related proteins with

covalent inhibitors emerged (67), which is using a ligand containing

an electrophilic “warhead” that forms a covalent adduct with a

nucleophilic residue like cysteine on the protein, ideally with

minimal influence on key non-covalent interactions (68, 69).

Alternatively, nucleophilic fragments can directly target cysteines

oxidized to sulfenic acid, leading to changes in the cellular redox

status (70). This approach has been applied to target kinases, for

instance, due to their role in various diseases (71, 72). Furthermore,

a nucleophilic ligand preferably targeting tyrosine phosphatases has

been identified (73), which are known to be regulated by cysteine

oxidation (74), further highlighting the relevance of the interplay of

oxidation and phosphorylation. Therefore, the approach presented

here, identifying relevant oxidation sites and investigating the

interplay between cysteine oxidation and phosphorylation, can

provide valuable information for drug discovery, potentially

revolutionizing the therapy of diseases. In addition, it should be

noted that it might be beneficial to complement data on protein
Frontiers in Immunology 09
oxidation, which can be easily assessed using the approach

described here, with information on RNA oxidation, which is also

highly relevant in diseases and pathological conditions and has the

potential to mediate inflammatory responses (75).

Based on the data presented here, functional analyses should be

conducted next to validate the obtained results. However, this study

provides comprehensive data underpinning the importance of

oxidations in inflammatory processes in general and LPS-driven

macrophage activation in particular. Consequently, the redoxome

should receive more attention in future. Due to the pronounced time-

dependent effects and differences in the dynamics of the investigated

omics layers observed here, we recommend generating time-resolved

data also in future, which will allow deep mechanistic insights.
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