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Objectives: Epidemiological studies suggested a potential connection between

education and autoimmune disorders. This study investigated the possible

cause-and-effect relationship using a Mendelian randomization approach.

Methods: We explored the causality between four education traits (n =

257,841~1,131,881) and 22 autoimmune diseases. The mediating role of

smoking (632,802 individuals), BMI (681,275 individuals), alcohol (335,394

individuals), and income (397,751 individuals) was also investigated.

Transcriptome-wide association study (TWAS) and enriched signaling pathways

analysis were used to investigate the underlying biological mechanisms.

Results: Especially, higher cognitive performance was protective for psoriasis

(odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.60-0.79, p = 6.12×10-8),

rheumatoid arthritis (RA) (OR = 0.75, 95% CI = 0.67-0.83, p = 4.62×10-6), and

hypothyroidism (OR = 0.83, 95% CI = 0.77-0.90, p = 9.82×10-6). Higher levels of

educational attainment decreased risks of psoriasis (OR = 0.61, 95% CI = 0.52-

0.72, p = 1.12×10-9), RA (OR = 0.68, 95% CI = 0.59-0.79, p = 1.56×10-7), and

hypothyroidism (OR = 0.80, 95% CI = 0.72-0.88, p = 5.00×10-6). The completion

of highest-level math class genetically downregulates the incidence of psoriasis

(OR = 0.66, 95% CI = 0.58-0.76, p = 2.47×10-9), RA (OR = 0.71, 95% CI = 0.63-

0.81, p = 5.28×10-8), and hypothyroidism (OR = 0.85, 95% CI = 0.79-0.92, p =

8.88×10-5). Higher self-reported math ability showed protective effects on

Crohn’s disease (CD) (OR = 0.67, 95% CI = 0.55-0.81, p = 4.96×10-5), RA

(OR = 0.76, 95% CI = 0.67-0.87, p = 5.21×10-5), and psoriasis (OR = 0.76, 95%

CI = 0.65-0.88, p = 4.08×10-4). Protein modification and localization, response

to arsenic-containing substances may participate in the genetic association of
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cognitive performance on UC, RA, psoriasis, and hypothyroidism. According to

mediation analyses, BMI, smoking, and income served as significant mediators in

the causal connection between educational traits and autoimmune diseases.

Conclusion: Higher levels of education-related factors have a protective effect

on the risk of several autoimmune disorders. Reducing smoking and BMI and

promoting income equality can mitigate health risks associated with low

education levels.
KEYWORDS

Mendelian randomization, education, autoimmune diseases, causal relationship,
Transcriptome-wide association study
Introduction

Autoimmune diseases are a breach of immune tolerance that

cannot differentiate self from non-self, affect 3-5% of the population,

and have more than 100 different types (1). Some have lesions that are

localized to specific organs, such as primary sclerosing cholangitis

(PSC), while others involve multiple organs and systems, such as

systemic lupus erythematosus (SLE) (2). The exact cause of

autoimmune diseases remains uncertain and may be influenced by

a combination of genetic factors and epigenetic changes caused by

environmental factors (3), lifestyle (4), and intestinal microbiota (5).

However, it’s worth noting that observational studies don’t always

prove causality because of confounding factors and reverse causal

effects. More advanced tools are required to investigate the potential

etiologies of autoimmune disorders.

Mendelian Randomization (MR) is a research method that

enables the investigation of the causal relationship between the

factors of interest and outcomes using instrumental variables (IVs)

(6). When performing an MR study, genetic variants highly linked

to exposure and fulfill specific criteria are utilized as instrumental

variables (IVs) to probe the cause-and-effect relationship with an

outcome. Proper execution of MR can help mitigate bias caused by

confounding environmental factors, as these variants are randomly

allocated during conception. Thus, the design of MR closely

resembles that of a randomized controlled trial (RCT). When

selecting exposures and outcomes, the sample size is crucial as it

can lead to weak instrumental variable bias (7).

One of the main focus areas in the summary level of GWAS

data is education, which includes cognitive ability, educational

achievement, highest-level math class taken, and self-reported

math proficiency. The risk factors associated with education,

including biological (such as BMI), behavioral (such as smoking

and alcohol use), and psychosocial factors (such as income), have

been extensively studied in relation to cardiovascular disease (8, 9)

psychiatric disorders (10), and neurodegenerative diseases (11, 12).

Some observational studies also suggested that higher education has

a protective effect on psoriasis (13), RA (14), and SLE (15).

To obtain the causal relationship between education on

autoimmune diseases and potential mediator factors, we applied a
02
two-sample and a two-step MR using cognitive ability, educational

achievement, highest-level math class taken, and self-reported math

proficiency as exposures, 22 traits of autoimmune disorders [asthma

and allergy (AA), systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), psoriasis (PsO), hypothyroidism, hyperthyroidism,

interstitial lung disease (ILD) related to systemic autoimmune

disease, other autoimmune hemolytic anemias (AIHA), scleroderma,

sicca syndrome (SS), ankylosing spondylitis (AS), amyotrophic lateral

sclerosis (ALS), asthma, Crohn’s disease (CD), ulcerative colitis (UC),

celiac disease (CeD), irritable bowel syndrome (IBS), multiple sclerosis

(MS), primary biliary cholangitis (PBC), primary sclerosing cholangitis

(PSC), and type 1 diabetes (T1D)] as outcomes, and BMI, alcohol use,

and income as potential mediators. We also performed TWAS and

GO: BP enrichment analyses to explore potential transcriptomic and

biological process basis for the genetic associations.
Materials and methods

Mendelian randomization

To conduct an MR study, the genetic variants (single nucleotide

polymorphisms, SNPs) must meet several essential requirements to

be used as IVs. Firstly, they should be strongly connected with the

exposure of being studied (relevance assumption). Secondly, they

are not associated with confounders of the risk factor-outcome

association (independence assumption). Finally, it is crucial that the

SNPs only impact the outcomes through the exposures (restriction

assumption) (16).

Data sources for exposures
The available GWAS summary statistics correlated with

cognitive performance (n= 257,841), educational attainment (n=

1,131,881), highest-level math class completion (n= 430,445), and

self-reported math ability (n= 564,698) was derived from the

GWAS meta-analysis of European ancestry of the Social Science

Genetic Association Consortium (SSGAC) (17). This MR study

used a meta-analysis of cognitive performance based on published

data from the Cognitive Genomics Consortium (COGENT) and
frontiersin.org
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new analyses of the United Kingdom Biobank (UKB) of European

ancestry (18). The study collected data on educational attainment

from 766,345 participants of European ancestry who were over 30

years old, and one standard deviation represents an increase of 4.2

years of education completion (17). Detailed information of data

sources for exposures is in Supplementary Table 1.

Data sources for outcomes
The GWAS data of 22 traits of autoimmune diseases including

asthma and allergy (AA) (n= 197,963), systemic lupus

erythematosus (SLE) (n= 257,998), rheumatoid arthritis (RA) (n=

232,501), psoriasis (n= 339,050), hypothyroidism (n= 287,247),

hyperthyroidism (n= 257,552), interstitial lung disease (ILD)

related to systemic autoimmune disease (n= 341,986), other

autoimmune hemolytic anemias (AIHA) (n= 341,986),

scleroderma (n= 322,208), sicca syndrome (SS) (n= 334,362),

ankylosing spondylitis (AS) (n= 251,394), and autoimmune

diseases (n= 342,499) are from the FINNGEN dataset (19),

amyotrophic lateral sclerosis (ALS) (n= 138,086) (20), asthma (n=

408,422) (21), Crohn’s disease (CD) (n= 40,266) (22), celiac disease

(CeD) (n= 456,348) (23), irritable bowel syndrome (IBS) (n=

486,601), multiple sclerosis (MS) (n= 115,803) (24), primary

biliary cholangitis (PBC) (n= 24,510) (25), primary sclerosing

cholangitis (PSC) (n= 14,890) (26), type 1 diabetes (T1D)

(n= 24,840) (27), ulcerative colitis (UC) (n= 45,975) (26).

Detailed information of data sources for outcomes is in

Supplementary Table 1.

Data sources for mediators
The summary-level GWAS data correlated with smoking (n=

632,802) and alcohol use (n= 335,394) were derived from a meta-

analysis of European participants conducted by Mengzhen Liu et al.

(28). The summary-level GWAS data correlated with BMI (n=

681,275, each SD =4.8 kg/m2) was gathered through a meta-analysis

of individuals from Europe conducted by Loic Yengo et al. (29) The

GWAS data related to average total household income before tax

(n= 397,751; GWAS ID: ukb-b-7408) was derived from the UK

Biobank (http://www.nealelab.is/uk-biobank/) (30) of European

ancestry, conducted through an open-ended questionnaire.

Detailed information of data sources for mediators is in

Supplementary Table 1.

Instrumental variable selection and
data harmonization

To choose the appropriate genetic tools for each of the four

exposures (including cognitive performance, educational

attainment, highest-level math class completed, and self-

reported math ability), we used the default settings in the R

package TwoSampleMR (31, 32) to identify significant genetic

variations, we extracted SNPs with a P-value less than 5.0×10-8.

We used standard clumping criteria to identify distinct SNPs.

Specifically, we set the clumping window to 10,000 kb and applied

an LD r2 threshold of 0.001. We then calculated the R2 and

F-statistics to determine the strength of the identified genetic

variations in explaining the proportion of exposure variance (33).
Frontiers in Immunology 03
(F = R2=K
(1−R2)=(N−K−1), K= n SNPs and N= n sample, the F-number

should be greater than 10). Detailed information on instrumental

SNPs for exposures and mediators is in Supplementary

Tables 2–9.

Two-sample Mendelian randomization analyses
To account for variant heterogeneity and the pleiotropy effect,

we employed three distinct techniques in MR analysis: Random-

effect inverse-variance weighted (IVW), MR Egger, and weighted

median (32). We also removed any SNPs related to 22 traits of

autoimmune diseases mentioned above and outliers identified with

MRPRESSO. We then utilized MR-Egger and weighted median in

conjunction with the primary outcome of IVW. These approaches

are recognized for producing more reliable results in various

situations, albeit with slightly broader confidence intervals. MR-

Egger considers the possibility of pleiotropic effects in all genetic

variants, but it is essential that these effects do not influence the

variant-exposure association (34). To conduct a test on a global

scale, a significant two-sided P-value of 0.05 was established. For

regional-level analyses utilizing 88 MR estimates, a Bonferroni-

corrected P-value of 0.05/88 (5.68×10-4) was used, while any p<0.05

was set as nominally significant.
Two-step Mendelian randomization analyses
To investigate the extent to which education affects

autoimmune diseases via mediators (including BMI, income,

smoking, and alcohol use), a 2-step MR by the product of the

coefficient method was performed using public GWAS summary

statistics (35, 36). The first step involved estimating the impact

between education and BMI, alcohol consumption, smoking habits,

and income. Following this, we investigated the genetic

predisposition of these mediators on autoimmune disorders. The

overall effect of education was divided into a direct effect (the

genetic predisposition between education and autoimmune

disorders independent of the mediator) and an indirect effect (the

genetic predisposition between education and autoimmune

disorders by the mediator). The mediating effect from the

exposure to the outcome was calculated using the product of

coefficients method, which involved converting ORs for binary

outcomes to log ORs. We then analyzed the data and calculated

the proportion of the effect. Standard errors were calculated by the

Delta method.
Transcriptome-wide association study and
enriched signaling pathways analysis

We used the FUSION (37) method to transform GWAS into

TWAS. This was done by utilizing a linear model of expression

quantitative trait loci (eQTL) to estimate gene expression from

European Blood RNA-seq Genotype-Tissue Expression version 8

(GTEx v8) (38). We then used the TWAS method to identify

homozygous gene clusters linked to education measures and

autoimmune disease traits. After analyzing the genes involved, we

proceeded to conduct GO enrichment analyses (39) to better
frontiersin.org

http://www.nealelab.is/uk-biobank/
https://doi.org/10.3389/fimmu.2023.1249017
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1249017
comprehend the biological processes that link education and

autoimmune diseases. We used R packages such as clusterProfiler

(40), enrichplot, and DOSE (41) to perform the analyses based on

the Gene Ontology database (42, 43). The P-value was calculated

using Fisher’s Combined P-value (FCP) method. As we only

obtained cognitive performance data from the exposure, we

performed TWAS and GO:BP enrichment analyses solely on

positive cognitive performance results. The experimental design

flow chart of MR and TWAS is shown in Figure 1.
Sensitivity analyses

To obtain accurate estimates, we thoroughly evaluated

horizontal pleiotropy through MR-Egger intercept testing and

leave-one-out analyses. We also utilized Cochran’s Q tests to

detect heterogeneity (44) and funnel plots to assess the possible

presence of pleiotropy.
Ethics approval

The study solely relied upon publicly available information,

resulting in the waiver of ethical approval. Each of the studies that
Frontiers in Immunology 04
contributed to the GWAS has information on ethical approval and

participant consent in their original publications. No specific ethical

approval is required in this study.
Results

Effects of education on autoimmune
diseases

Four different measures of education (cognitive performance,

educational attainment, highest-level math class completed, and

self-reported math ability) affect different autoimmune diseases to

varying degrees. The complete results of the inverse variance-

weighted (IVW) method are shown in Figure 2.

Higher cognitive performance can downregulate risks of

autoimmune disorders, including autoimmune diseases, psoriasis,

RA, hypothyroidism, and UC, with the OR of 95% CI of 0.84 (0.80,

0.90), 0.69 (0.60, 0.79), 0.75 (0.67, 0.83), 0.83 (0.77, 0.90), and 0.76

(0.64, 0.88), respectively. The P-values of each trait were 1.06×10-9,

6.12×10-8, 4.62×10-6, 9.82×10-6, and 4.72×10-4, respectively; an

increase of completion of 4.2 years of education was protective

for autoimmune diseases, psoriasis, RA, hypothyroidism, asthma,

CD, and IBS, and the ORs with 95% CI were 0.82 (0.76, 0.87), 0.61
B

C

D

A

FIGURE 1

(A) Four steps of two-sample and two-step MR analysis of cause-effect of education-related factors on autoimmune diseases. The first step is to
obtain the summary-level GWAS statistics of exposures, outcomes, and mediators. The second step is to select the qualified instrumental variables
(SNPs), the third step is to perform the two-sample and two-step MR, and the last step is to conduct sensitivity analysis. (B) Design of the two-
sample Mendelian randomization study. Three core assumptions were as follows: 1) the SNPs should be strongly associated with education-related
factors; 2) the SNPs should not be related to confounders; 3) the SNPs should not be directly associated with autoimmune diseases. (C) The total
effect (b0) was decomposed into the cause-effect of education-related factors on mediators (b1) and the cause-effect of mediators on autoimmune
diseases (b2). The indirect effect equals b0-b1×b2. (D) The process of TWAS and GO: BP enrichment analyses. The first step is to identify the common
genes between education and autoimmune diseases. The second step was to perform an enrichment analysis of biological processes targeting the
transcriptome corresponding to the genes. The figure was built by BioRender.
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(0.52, 0.72), 0.68 (0.59, 0.79), 0.80 (0.72, 0.88), 0.84 (0.77, 0.90), 0.62

(0.50, 0.77), and 0.73 (0.62, 0.85) with the P-values for each disease

of 1.44×10-9, 1.12×10-9, 1.56×10-7, 5.00×10-6, 6.63×10-6, 1.28×10-5,

and 9.95×10-5, respectively; highest-level math class completed is

related to decreased incidence of autoimmune diseases, psoriasis,

RA, IBS, hypothyroidism, PBC, and CD. The ORs with 95% CI were

0.86 (0.81, 0.91), 0.66 (0.58, 0.76), 0.71 (0.63, 0.81), 0.73 (0.63, 0.83),

0.85 (0.79, 0.92), 0.53 (0.38, 0.74), and 0.71 (0.59, 0.85), with P-

values of 1.05×10-7, 2.47×10-9, 5.28×10-8, 5.25×10-6, 8.88×10-5,

1.54×10-4, and 2.31×10-4, respectively. Higher self-reported math

ability shows protective effects against autoimmune diseases, CD,

RA, IBS, and psoriasis. The OR with 95% CI for each trait was 0.87

(0.82, 0.92), 0.67 (0.55, 0.81), 0.76 (0.67, 0.87), 0.75 (0.65, 0.88), 0.76

(0.65, 0.88) with P-values of 1.25×10-5, 4.96×10-5, 5.21×10-5,

2.44×10-4, 4.08×10-4. Scatter plots displaying the significant

outcomes of MR effect regarding the impact of cognitive

performance (Figure 3), self-reported ability (Figure 4),

educational attainment (Figure 5), and completion of highest-
Frontiers in Immunology 05
level math class (Figure 6) on autoimmune disorders, separately.

Detailed results are shown in Table 1 and Supplementary Table 10.
Effects of education on mediators

Higher cognitive performance is associated with higher

personal pretax income and reduced smoking behavior; the

ORs with 95% CI were 1.51 (1.47, 1.55), 0.81 (0.76, 0.85), and

the P-values were 2.34×10-185, and 5.82×10-15, respectively.

Every increase of one standard deviation in educational

attainment, equivalent to 4.2 years of schooling, has a positive

effect on the average total household income before tax and has a

protective effect against smoking and BMI. The ORs with 95% CI

for each trait were 1.90 (1.85, 1.96), 0.63 (0.60, 0.67), and 0.86

(0.82, 0.91); the values were less than 2.34×10-185, 3.18×10-58,

and 8.57×10-8, respectively. Highest-level math class completed

can also increase average total household income before tax and
FIGURE 2

IVW estimates from cognitive performance, educational attainment, highest-level math class completed, and self-reported math ability on 22 traits
of autoimmune diseases. The color of each block represents the IVW-derived P-values of every MR analysis. P-values of< 0.05 were shown in
orange and set as nominal significant, and P-values of > 0.05 were shown in yellow and set as non-significant. P value< 5.68×10-4 is set as
significant and shown in red.
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reduce exposure of smoking as well as BM; the ORs with 95% CI

for each mediator were 1.64 (1.59, 1.68), 0.70 (0.66, 0.73), and

0.91 (0.87, 0.96). P-values were 6.65×10-266, 1.14×10-49, and

1.75×10-4, respectively. Higher self-reported math ability is

related to higher average total household income before tax
Frontiers in Immunology 06
and decreased smoking behavior. The ORs with 95% CI for

these two mediators were 1.43 (1.38, 1.48) and 0.80 (0.75, 0.85),

and the P-values were 2.90×10-95 and 1.13×10-13. There is no

significant genetic predisposition of these four education-related

exposures to alcohol use (drinks per week).
FIGURE 3

Scatter plots displaying the significant outcomes of MR effect regarding the impact of cognitive performance on autoimmune disorders. The x-axis
represents the genetic association with cognitive performance risk; the y-axis represents the genetic association with the risk of autoimmune
diseases, UC, hypothyroidism, psoriasis, and RA.
FIGURE 4

Scatter plots displaying the significant outcomes of MR effect regarding the impact of self-reported ability on autoimmune disorders. The x-axis
represents the genetic association with self-reported ability risk; the y-axis represents the genetic association with the risk of autoimmune diseases,
CD, RA, psoriasis, and IBS.
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Effects of income, smoking, and BMI on
autoimmune diseases

Higher average total household income before tax has a

protective effect against three traits of autoimmune disorders,

including psoriasis, autoimmune diseases, and hypothyroidism;

the 95% confidence interval dominance ratios were 0.55 (0.41,

0.74), 0.78 (0.68, 0.89), and 0.77 (0.64, 0.92) with the P-values of

5.73×10-5, 2.92×10-4, and 5.71×10-3, respectively. Smoking can raise

the incidence of asthma and RA while reducing PSC, the 95% CI

dominance ORs were 1.13 (1.03, 1.24), 1.22 (1.05, 1.43), and 0.63

(0.39, 0.99), and P-values were 7.45×10-3, 1.13×10-2, and 4.82×10-2,

respectively; higher BMI increases the risk of autoimmune diseases,

psoriasis, asthma, hypothyroidism, multiple sclerosis, RA, asthma

and allergy and PBC. The ORs with 95% CI for the above traits were

1.18 (1.13, 1.24), 1.49 (1.33, 1.67), 1.20 (1.14, 1.27), 1.24 (1.15, 1.33),

1.36 (1.20, 1.55), 1.27 (1.15, 1.41), 1.29 (1.09, 1.52), and 1.30 (1.09,

1.54), respectively. The P-values of these autoimmune disorders
Frontiers in Immunology 07
were 5.89×10-13, 2.75×10-12, 2.74×10-11, 2.43×10-9, 2.91×10-6,

4.09×10-6, 2.60×10-3, and 3.40×10-3, respectively.
Mediation of income, smoking, and BMI

As for the genetic predisposition of self-reported math ability

on autoimmune disorders, average total household income before

tax mediated 78% (95% CI: 20% to 135%) on psoriasis, 63% (95%

CI: 18% to 107%) on autoimmune diseases, and 67% (95% CI: 2% to

131%) on hypothyroidism; smoking mediated 164% (95% CI:

-516% to 844%) on asthma, 17% (95% CI: 1% to 33%) on RA,

and 53% (95% CI: -53% to 160%) on primary sclerosing cholangitis.

Regarding the cause-effect of cognitive performance and

autoimmune disorders, it was found that the average total

household income before tax acted as a mediator, accounting for

66% (95% CI: 26% to 106%) of the effect, 58% (95% CI: 21% to 96%)

on autoimmune diseases, and 60% (95% CI: 10% to 110%) on
FIGURE 5

Scatter plots displaying the significant outcomes of the MR effect regarding the impact of educational attainment on autoimmune disorders.
The x-axis represents the genetic association with educational attainment risk; the y-axis represents the genetic association with the risk of
hypothyroidism, IBS, psoriasis, RA, asthma, autoimmune diseases, and CD.
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hypothyroidism; smoking mediated 38% (95% CI: -6% to 81%) on

asthma, and 15% (95% CI: 1% to 29%) on RA, and 84% (95% CI:

-94% to 235%) on primary sclerosing cholangitis.

In regards to autoimmune disorders and educational

attainment, income was found to have a mediating effect of 78%

(95% CI: 32% to 124%), specifically on psoriasis, 78% (95% CI: 29%

to 128%) on autoimmune diseases, and 75% (95% CI: 13% to 138%)

on hypothyroidism while smoking mediated 33% (95% CI: 4% to

61%) on asthma, 24% (95% CI: 3% to 46%) on RA, 47% (95% CI:

-13% to 107%) on primary sclerosing cholangitis. BMI mediated

12% (95% CI: 5% to 19%) on autoimmune diseases, 12% (95% CI:

5% to 18%) on psoriasis, 15% (95% CI: 5% to 24%) on asthma, 14%

(95% CI: 5% to 22%) on hypothyroidism, 46% (95% CI: -53% to

145%) on multiple sclerosis, 9% (95% CI: 3% to 15%) on RA, 27%

(95% CI: -24% to 78%) on asthma and allergy, and 12% (95% CI:

-3% to 27%) on primary biliary cholangitis.

Completing the highest-level math class also genetically decreases

the risks of autoimmune disorders. Specifically, there is a 71%
Frontiers in Immunology 08
mediation effect (with a 95% confidence interval of 29% to 113%) of

the average total household income before the tax on psoriasis, 78%

(95% CI: 27% to 130%) on autoimmune diseases, 82% (95% CI: 11% to

153%) on hypothyroidism. In comparison, smoking mediated 44%

(95% CI: 1% to 87%) on asthma, 22% (95% CI: 3% to 40%) on RA, and

38% (95% CI: -9% to 85%) on PSC. The proportion of the indirect

effect of BMI on autoimmune disorders was 9% (95% CI: 3% to 15%)

on psoriasis, 10% (95% CI: 3% to 17%) on autoimmune diseases, 16%

(95% CI: 2% to 31%) on asthma, 12% (95% CI: 2% to 22%) on

hypothyroidism, 25% (95% CI: -17% to 67%) on multiple sclerosis, 7%

(95% CI: 2% to 12%) on RA, 17% (95% CI: -10% to 44%) on asthma

and allergy, 4% (95% CI: 0% to 8%) on PBC. However, it is important

to note that not all exposures and outcomes have a significant causal

relationship. Therefore, the results of somemediation analyses may not

be credible, including the genetic links of self-reported math ability on

asthma and PSC; cognitive performance on PSC; and educational

attainment on asthma and allergy and PBC. Table 2 and

Supplementary Table 13 provide comprehensive results.
FIGURE 6

Scatter plots displaying the significant outcomes of MR effect regarding the impact of the completion of highest-level math class on autoimmune
disorders. The x-axis represents the genetic association with the completion of the highest-level math class risk; the y-axis represents the genetic
association with the risk of autoimmune diseases, CD, hypothyroidism, IBS, PBC, psoriasis, and RA.
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TWAS and GO biological process
enrichment analyses

Using the TWAS method, we identified the commonly

differentially expressed genes in education and autoimmune

diseases. Afterward, we investigated the biological processes

enrichment of these differentially expressed genes on the Gene

Ontology database. A variety of biological processes were found to

be enriched in the genetic predisposition of autoimmune diseases

and education, providing MR studies with a potential biological and

functional basis for transcriptomics. For the connection of cognitive

performance on UC, biological processes including response to

arsenic-containing substance (p = 7.39×10-4), cellular response to

arsenic-containing substance (p = 2.96×10-4) were highly enriched;

as for the association cognitive performance of RA, biological

processes including positive regulation of protein targeting to
Frontiers in Immunology 09
membrane (p = 1.24×10-3) and regulation of protein targeting to

membrane (p = 1.82×10-3) were significantly enriched; positive

regulation of cold-induced thermogenesis (p = 3.67×10-4) fatty acid

oxidation (p = 4.62×10-4), and lipid oxidation (p = 5.42×10-4) may

participate in the development of psoriasis; protein polymerization

(p = 6.27×10-5) and actin polymerization or depolymerization (p =

1.35×10-4) were highly enriched in the genetic association of

cognitive performance on hypothyrodism; meiosis-related cell

cycle signaling pathways including meiosis I (p = 4.57×10-4),

meiosis I cell cycle process (p = 5.42×10-4), and chromosome

organization involved in meiotic cell cycle (p = 1.35×10-3)may

participate in the occurrence of autoimmune disorders related to

the cognitive performance. The detailed results of GO: BP

enrichment analyses are in Supplementary Tables 14–18.

Visualization of enrichment analysis results is shown in

Supplementary Figures 9–13.
TABLE 1 Results of two-sample MR analysis between education and risk of autoimmune diseases.

Exposure Outcome
N

SNPs

Inverse variance weighted

beta se OR LCI UCI pval

cognitive performance

Autoimmune 271 -0.172682878 0.028304843 0.841404 0.795996596 0.889402503 1.05523E-09

Psoriasis 271 -0.373941102 0.069055281 0.688017 0.600922411 0.787735621 6.12552E-08

Rheumatoid arthritis 271 -0.284183799 0.062031243 0.752628 0.666466745 0.849928915 4.62092E-06

Hypothyroidism 270 -0.182584505 0.041299132 0.833114 0.768333954 0.903356321 9.82337E-06

Ulcerative colitis 242 -0.281009777 0.080378319 0.755021 0.644970124 0.883849684 0.000472131

educational attainment

Psoriasis 428 -0.494513057 0.081186747 0.609868 0.520149463 0.71506128 1.12168E-09

Autoimmune 427 -0.20212243 0.033402482 0.816995 0.765220467 0.872272359 1.43842E-09

Rheumatoid arthritis 429 -0.378116951 0.07208655 0.68515 0.594873448 0.789127549 1.56012E-07

Hypothyroidism 429 -0.226873575 0.049699192 0.797022 0.723044875 0.878566955 4.99649E-06

Asthma 439 -0.177764568 0.039456558 0.837139 0.774839459 0.904448679 6.62718E-06

Crohn’s disease 367 -0.476275652 0.109140415 0.621092 0.501480345 0.769233712 1.27776E-05

Irritable bowel syndrome 430 -0.320118938 0.082255832 0.726063 0.61795455 0.853083789 9.95247E-05

highest-level math class
completed

Psoriasis 404 -0.413976226 0.069417995 0.661017 0.576929331 0.757359713 2.47E-09

Rheumatoid arthritis 403 -0.336537501 0.061843631 0.714239 0.632704989 0.806280175 5.28E-08

Autoimmune 402 -0.154453283 0.029044706 0.856884 0.809465677 0.907079067 1.05E-07

Irritable bowel syndrome 404 -0.319238965 0.070095273 0.726702 0.633417383 0.833724532 5.25E-06

Hypothyroidism 404 -0.159461896 0.040686424 0.852602 0.787251679 0.923378082 8.88E-05

Primary biliary
cholangitis

148 -0.633260865 0.167368488 0.530858 0.382394262 0.736962237 0.000154556

Crohn’s disease 346 -0.342438696 0.092997844 0.710037 0.591724295 0.852004968 0.00023121

self-reported math ability

Autoimmune 311 -0.140528496 0.032171725 0.868899 0.815800795 0.925453016 1.25E-05

Crohn’s disease 268 -0.401083587 0.098848452 0.669594 0.551658241 0.812742766 4.96E-05

Rheumatoid arthritis 313 -0.268734777 0.066417063 0.764346 0.671049602 0.870613335 5.21E-05

Irritable bowel syndrome 313 -0.281723693 0.076787961 0.754482 0.649061311 0.877025432 0.000243642

Psoriasis 312 -0.275794282 0.078016505 0.758969 0.651350987 0.884368072 0.000407658
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TABLE 2 Causal effect of education on mediators and of mediators on autoimmune diseases in two-step Mendelian randomization analyses.

s on out- Proportion of mediary effect

CI P Proportion SE LCI UCI

.735808 5.73E-05 0.656785 0.204617 0.255736 1.057835

.893232 0.000292 0.585029 0.188915 0.214756 0.955302

.925849 0.005712 0.595681 0.255003 0.095874 1.095487

.735808 5.73E-05 0.779967 0.233094 0.323103 1.236831

.893232 0.000292 0.784945 0.253283 0.288512 1.281379

.925849 0.005712 0.752872 0.31896 0.127711 1.378033

.735808 5.73E-05 0.710681 0.214047 0.291149 1.130213

.893232 0.000292 0.783525 0.262694 0.268645 1.298405

.925849 0.005712 0.817041 0.362489 0.106563 1.527519

.735808 5.73E-05 0.776418 0.294756 0.198697 1.354139

.893232 0.000292 0.626781 0.226825 0.182204 1.071359

.925849 0.005712 0.667055 0.329806 0.020635 1.313476

.243018 0.007455 0.375113 0.221763 -0.05954 0.809769

.429333 0.011349 0.151738 0.071181 0.012223 0.291252

.996232 0.048161 0.706859 0.840457 -0.94044 2.354155

.243018 0.007455 0.326285 0.143267 0.045481 0.607088

.429333 0.011349 0.245963 0.108954 0.032413 0.459514

.996232 0.048161 0.471151 0.304755 -0.12617 1.068472

.243018 0.007455 0.439509 0.220147 0.008021 0.870998

.429333 0.011349 0.217621 0.095935 0.029588 0.405653

.996232 0.048161 0.382288 0.240743 -0.08957 0.854144

.243018 0.007455 1.635822 3.469853 -5.16509 8.436733

.429333 0.011349 0.169548 0.082232 0.008373 0.330724

(Continued)
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Exposure Mediator

Effect of exposures on mediators

Outcomes

Effect of mediator
comes

OR LCI UCI P OR LCI

cognitive performance

income

1.50769 1.466478 1.550061 2.34E-185 Psoriasis 0.549813 0.410833

1.50769 1.466478 1.550061 2.34E-185 Autoimmune 0.78188 0.68441

1.50769 1.466478 1.550061 2.34E-185 Hypothyroidism 0.767283 0.635874

educational attainment

1.905603 1.848091 1.964905 0.00E+00 Psoriasis 0.549813 0.410833

1.905603 1.848091 1.964905 0.00E+00 Autoimmune 0.78188 0.68441

1.905603 1.848091 1.964905 0.00E+00 Hypothyroidism 0.767283 0.635874

highest-level math class
completed

1.635315 1.590684 1.681199 6.65E-266 Psoriasis 0.549813 0.410833

1.635315 1.590684 1.681199 6.65E-266 Autoimmune 0.78188 0.68441

1.635315 1.590684 1.681199 6.65E-266 Hypothyroidism 0.767283 0.635874

self-reported math ability

1.430427 1.382775 1.479722 2.90E-95 Psoriasis 0.549813 0.410833

1.430427 1.382775 1.479722 2.90E-95 Autoimmune 0.78188 0.68441

1.430427 1.382775 1.479722 2.90E-95 Hypothyroidism 0.767283 0.635874

cognitive performance

smoking

0.807208 0.764956 0.851795 5.82E-15 Asthma 1.13379 1.034161

0.807208 0.764956 0.851795 5.82E-15 Rheumatoid arthritis 1.223039 1.046519

0.807208 0.764956 0.851795 5.82E-15 Primary sclerosing
cholangitis

0.626455 0.39393

educational attainment

0.630071 0.595589 0.666549 3.18E-58 Asthma 1.13379 1.034161

0.630071 0.595589 0.666549 3.18E-58 Rheumatoid arthritis 1.223039 1.046519

0.630071 0.595589 0.666549 3.18E-58 Primary sclerosing
cholangitis

0.626455 0.39393

highest-level math class
completed

0.695063 0.66241 0.729325 1.14E-49 Asthma 1.13379 1.034161

0.695063 0.66241 0.729325 1.14E-49 Rheumatoid arthritis 1.223039 1.046519

0.695063 0.66241 0.729325 1.14E-49 Primary sclerosing
cholangitis

0.626455 0.39393

self-reported math ability
0.797476 0.75123 0.846569 1.13E-13 Asthma 1.13379 1.034161

0.797476 0.75123 0.846569 1.13E-13 Rheumatoid arthritis 1.223039 1.046519
U

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0
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1

1

https://doi.org/10.3389/fimmu.2023.1249017
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Continued

es

Effect of mediators on out-
comes

Proportion of mediary effect

OR LCI UCI P Proportion SE LCI UCI

y sclerosing
langitis

0.626455 0.39393 0.996232 0.048161 0.533246 0.544619 -0.53421 1.600699

immune 1.185114 1.13159 1.24117 5.89E-13 0.121294 0.034619 0.053441 0.189147

oriasis 1.493734 1.334771 1.671628 2.75E-12 0.117134 0.033603 0.051273 0.182995

sthma 1.201392 1.138239 1.26805 2.74E-11 0.148991 0.048665 0.053607 0.244376

thyroidism 1.23817 1.154254 1.328188 2.43E-09 0.135926 0.045277 0.047183 0.224669

le sclerosis 1.362429 1.196811 1.550965 2.91E-06 0.46253 0.506158 -0.52954 1.4546

toid arthritis 1.274386 1.149473 1.412873 4.09E-06 0.092563 0.031843 0.030151 0.154975

and allergy 1.286871 1.092069 1.516421 0.002598 0.273891 0.260531 -0.23675 0.784532

liary cholangitis 1.295683 1.089482 1.540911 0.0034 0.118392 0.078001 -0.03449 0.271273

immune 1.185114 1.13159 1.24117 5.89E-13 0.103029 0.036519 0.031452 0.174606

oriasis 1.493734 1.334771 1.671628 2.75E-12 0.090822 0.031407 0.029264 0.15238

sthma 1.201392 1.138239 1.26805 2.74E-11 0.165425 0.074021 0.020345 0.310505

thyroidism 1.23817 1.154254 1.328188 2.43E-09 0.125527 0.050864 0.025833 0.22522

le sclerosis 1.362429 1.196811 1.550965 2.91E-06 0.249999 0.216378 -0.1741 0.674099

toid arthritis 1.274386 1.149473 1.412873 4.09E-06 0.067505 0.026309 0.01594 0.11907

and allergy 1.286871 1.092069 1.516421 0.002598 0.169121 0.138208 -0.10177 0.440008

liary cholangitis 1.295683 1.089482 1.540911 0.0034 0.038327 0.019445 0.000214 0.076439
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Exposure Mediator

Effect of exposures on mediators

Outcom

OR LCI UCI P

0.797476 0.75123 0.846569 1.13E-13 Primar
cho

educational attainment

BMI

0.865585 0.821038 0.912549 8.57E-08 Auto

0.865585 0.821038 0.912549 8.57E-08 Ps

0.865585 0.821038 0.912549 8.57E-08 A

0.865585 0.821038 0.912549 8.57E-08 Hypo

0.865585 0.821038 0.912549 8.57E-08 Multip

0.865585 0.821038 0.912549 8.57E-08 Rheuma

0.865585 0.821038 0.912549 8.57E-08 Asthma

0.865585 0.821038 0.912549 8.57E-08 Primary bi

highest-level math class
completed

0.91056 0.867076 0.956224 0.0001748 Auto

0.91056 0.867076 0.956224 0.0001748 Ps

0.91056 0.867076 0.956224 0.0001748 A

0.91056 0.867076 0.956224 0.0001748 Hypo

0.91056 0.867076 0.956224 0.0001748 Multip

0.91056 0.867076 0.956224 0.0001748 Rheuma

0.91056 0.867076 0.956224 0.0001748 Asthma

0.91056 0.867076 0.956224 0.0001748 Primary bi
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Sensitivity analyses

MR sensitivity methods include MR-Egger intercept testing,

leave-one-out analyses, and Cochran’s Q test, which can ensure the

results’ stability. The MR-Egger intercept (Supplementary Table 11)

testing showed no horizontal pleiotropy in the significant results of

education-related factors on the autoimmune disorders. The funnel

plot (Supplementary Figures 1–4) also proved the absence of

pleiotropy. Cochran’s Q test (Supplementary Table 12) showed

heterogeneity. However, it does not affect the results of IVW, and

our conclusion is still reliable. Leave-one-out analyses

(Supplementary Figures 5–8) showed that when a single SNP was

gradually removed for analyses, error lines were all on the left side

of zero, indicating that a single SNP does not significantly affect the

overall outcome.
Discussion

As far as we know, this is the first extensive analysis using MR

that thoroughly investigates the genetic predisposition of cognitive

performance, educational attainment, highest-level math class

completion, and self-reported math ability on 22 traits of

autoimmune disorders (AA, SLE RA, psoriasis, hypothyroidism,

hyperthyroidism, ILD, AIHA, SS, scleroderma, AS, autoimmune

diseases, asthma, ALS, CD, CeD, IBS, PBC, PSC, MS, T1D, and

UC), and the potential mediating effect of BMI, income, smoking

and alcohol use. The GWAS dataset used in this study is sizeable

and can potentially mitigate the weak instrument bias in the MR

study. In the present MR analysis, we determined that the genetic

predisposition of higher levels of education-related factors led to

lower relative odds (OR) of several autoimmune diseases, including

psoriasis, hypothyroidism, asthma, RA, CD, UC, and IBS to

different degrees. The influence of education-related factors on

autoimmune diseases seems partially explained by smoking,

income, and BMI, accounting for 10% to 80% of the effects.

A growing body of research has determined that social

determinants of health (SDH), especially education-related factors,

have an increasingly close relationship to a variety of diseases,

including neoplastic diseases (45), cardiovascular diseases (46, 47),

autoimmune diseases, etc. Several cross-section and cohort studies

have demonstrated that higher education-related factors can protect

the occurrence and progression of autoimmune diseases. For

instance, a study conducted in Denmark that analyzed 61,153

children discovered that those who had atopic dermatitis (AD) had

a higher likelihood of not achieving lower secondary education and

upper secondary education (48). E Portaccio et al. (49) investigated

115 adult-onset MS and 111 pediatric-onset MS patients and found

that cognitive performance and educational attainment have a

protective effect on socio-professional outcomes, and lower

education levels also increase the inflammatory activity in MS (50).

However, autoimmune diseases are an extremely large

spectrum of diseases, and research on the genetic predisposition

of educational factors on many autoimmune diseases is still lacking.

A significant advantage of this study is that MR can evaluate both

causal and mediating effects. This not only minimizes the
Frontiers in Immunology 12
confounding errors that arise in observational experiments but

also eliminates the ethical and economic issues associated with

randomized controlled trials. In our MR study, we found that a

higher level of education can genetically decrease the incidence of

various autoimmune disorders; we then investigated the potential

mediators of the genetic predisposition between education and

autoimmune disorders.

To obtain possible mediating effects, we utilized a two-step MR

analysis for potential mediators and their proportion mediating

effect of the total genetic cause-effect of the education-related

factors on autoimmune diseases. According to a multivariable

two-sample MR analysis conducted by Davis NM et al. (51),

obtaining a higher level of education has been found to have a

positive impact on income and alcohol consumption while showing

negative effects on smoking, BMI, and sedentary behavior.

Therefore, we chose BMI, average total household income before

tax, smoking, and alcohol use as mediators. The results of the two-

step MR analysis suggested that income, smoking, and BMI

mediated different cause-effect of exposures and outcomes to

different degrees, which was similar to the former MR study

conducted by Ferguson LD (52), which demonstrated that the

central adiposity is related to psoriasis and RA. The result of the

mediating effect of BMI and smoking on educational attainment on

RA also agreed with Zhao SS et al. (53). In contrast, the mediating

effect of alcohol use was insignificant, which corresponded with

what Bae SC et al. (54) and Wei J et al. (55) did before. Smoking has

been demonstrated to increase the risks of MS (56), RA (57), and

other autoimmune disorders (58). Higher BMI is also related to

higher incidence and poorer treatment response of RA, SLE, IBD,

and psoriasis (59). The biological mechanism of mediating the effect

of BMI may relate to the pro-inflammatory processes of adipose

tissue, which can decrease Bregs and Tregs, promote the activation

of Th17 and Th1 cells (60), and generate dysregulated intestinal

flora metabolites (61). Smoking can cause oxidative stress and

produce ROS and other free radicals, generating autoreactive pro-

inflammatory T cells, autoantibodies, and pro-inflammatory

cytokines (58).

We then conducted TWAS and GO: BP enrichment analyses to

explore the biological mechanisms that may explain the genetic link

between education and autoimmune diseases. Because of the

integrity of the GWAS database, we only studied the relationship

of cognitive performance on UC, RA, psoriasis, hypothyroidism,

and autoimmune disease. According to our enrichment analyses,

biological processes, including response to arsenic-containing

substance and protein transcription, may participate in the

occurrence of UC. Trivalent arsenic [As(III)] has recently been

found to be an immunomodulatory agent (62), and the organic

arsenic derivative acetarsol has been studied for mesalazine-

refractory UC and showed some curative effects (63). The

exposure to As can influence the induction and modulation of

regulatory T cells, thereby decreasing immune surveillance and

increasing autoimmune disease risk (64). Biological processes, such

as protein localization, play a role in the genetic association of

cognitive performance on RA, including regulating protein

targeting to the membrane. The distinct expressions of the

regulators of protein trafficking and the membrane adapter
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protein are essential indicators of metabolically reprogrammed T

cells. Naive CD4 T cells can turn into pro-inflammatory helper T

cells through protein targeting process, which contributes to the

development of RA (65). Fatty acid oxidation and lipid oxidation

participate in the development of psoriasis. The oxidative stress in

psoriasis increases the production of lipid mediators, particularly

eicosanoids. These are vital for the differentiation of Th1 and Th17

cells and the modulation of cellular immunity in psoriasis patients

(66). Abnormal lipid metabolism can lead to ferroptosis, and

inhibiting keratinocyte ferroptosis can suppress psoriatic

inflammation by reducing cytokine production (67). Actin

polymerization or depolymerization may partially explain the

relationship between cognitive performance and hypothyroidism.

An animal study found that defects in AFAP1L2 can affect cellular

polarity and cytoskeletal structure, resulting in epithelial function

disorders like congenital hypothyroidism (68). Targeting this

process in the future could be an effective method for regulating

immune cells and controlling autoimmune diseases.

This study has several limitations. First, although some cohort

studies suggest that autoimmune diseases may impede academic

development in patients (69–72), we were unable to conduct a

reverse MR study due to the incomplete summary-level GWAS

statistics of the exposure. Second, compared to other observational

designs, MR is less prone to confounding as genetic variants are

predetermined; the population stratification can still be a potential

confounder at the sample level. This occurs when there is a

correlation resulting from sub-populations that have varying

distributions of genetic variants and exposure/outcome (73, 74).

For example, the summary level of GWAS data for this MR

analysis was limited to those of Europeans, and the incidence of

autoimmune diseases varies among different races, ethnicities, and

regions (75). Additionally, we identified smoking, alcohol

consumption, BMI, and income as potential factors that could help

explain the link between education and autoimmune diseases based

on previous research. However, it’s important to note that other

factors, such as external environment, self-induced stress, and dietary

habits, may also play a role but were not taken into consideration in

this study. Last, MRmay not accurately capture changes in exposures

over time, and a single BMI measurement may not provide a

complete picture of BMI throughout one’s life (76).

In conclusion, our two-sample and two-step MR showed a

protective effect of higher levels of education-related factors

(including cognitive performance, educational attainment,

highest-level math class completed, and self-reported math

ability) on particular autoimmune diseases (including psoriasis,

hypothyroidism, asthma, RA, CD, UC, and IBS); encouraging

population-level interventions to decrease smoking, manage

excess weight, and promote income equality could effectively

mitigate the increased risks. However, the impact of education on

autoimmune diseases is still largely uncertain, but it’s certain that

enhancing access to education and controlling modifiable factors,

including BMI and smoking, are vital measures for lower risk of

autoimmune diseases and better health outcomes. Moreover, it’s

imperative to conduct more studies on environmental risk factors

that can be altered to reduce the elevated morbidity of autoimmune

diseases caused by a lower level of education.
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