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The respiratory system exposed to microorganisms continuously, and the

pathogenicity of these microbes not only contingent on their virulence factors,

but also the host’s immunity. A multifaceted innate immune mechanism exists in

the respiratory tract to cope with microbial infections and to decrease tissue

damage. The key cell types of the innate immune response are macrophages,

neutrophils, dendritic cells, epithelial cells, and endothelial cells. Both the

myeloid and structural cells of the respiratory system sense invading

microorganisms through binding or activation of pathogen-associated

molecular patterns (PAMPs) to pattern recognition receptors (PRRs), including

Toll-like receptors (TLRs) and NOD-like receptors (NLRs). The recognition of

microbes and subsequent activation of PRRs triggers a signaling cascade that

leads to the activation of transcription factors, induction of cytokines/

5chemokines, upregulation of cell adhesion molecules, recruitment of

immune cells, and subsequent microbe clearance. Since numerous microbes

resist antimicrobial agents and escape innate immune defenses, in the future, a

comprehensive strategy consisting of newer vaccines and novel antimicrobials

will be required to control microbial infections. This review summarizes key

findings in the area of innate immune defense in response to acute microbial

infections in the lung. Understanding the innate immune mechanisms is critical

to design host-targeted immunotherapies to mitigate excessive inflammation

while controlling microbial burden in tissues following lung infection.

KEYWORDS

TLR - toll-like receptor, NOD (nucleotide binding and oligomerization domain) and
leucine rich repeat containing receptor (NLR), lung, Neutrophil, cytokine
Introduction

Respiratory diseases constitutemajor health and financial burdens worldwide. In fact, five

major respiratory diseases represent the most common causes of severe illness and death in

humans (1). Of these five diseases, acute lower respiratory tract infections cause anmore than

4 million deaths per year and are the leading cause of mortality in children 5 years or under
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1249098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1249098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1249098/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1249098&domain=pdf&date_stamp=2023-08-16
mailto:jey@lsu.edu
https://doi.org/10.3389/fimmu.2023.1249098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1249098
https://www.frontiersin.org/journals/immunology


Le et al. 10.3389/fimmu.2023.1249098
(1). Pneumonia is an important clinical issue in both healthy and

immunocompromised individuals and accounts for more than

800,000 hospitalizations in the United States annually (1–3).

Furthermore, pneumonia is the predominant cause of mortality in

children under 5 years of age (1). When respiratory infections

overpower the host’s immunity, pneumonia is associated with

widespread lung pathology by inducing excessive oxidative stress in

the alveolar-capillary compartment (4). Pulmonary bacterial, viral,

and fungal infections are major causes of infectious death in all age

groups and are a key risk factor for Acute Lung Injury (ALI)/Acute

Respiratory Distress Syndrome (ARDS), for which there are currently

no therapies available (5–7). The innate immune response is

consequential in effective host defense against and clearance of

invading pathogens (5, 8). Lung epithelial cells are the first to

encounter the pathogen in the lung during pneumonia and other

lung infections, which is followed by an influx of neutrophils and

macrophages to clear the pathogen (9). This is initiated in the

mammalian immune system by pattern recognition receptors

(PRR) that sense pathogen-associated molecular patterns (PAMPs)

in order to produce proinflammatory responses (9).

PRRs can be categorized as membrane bound PRRs and

cytoplasmic PRRs according to their cellular location. The first

category comprises Toll-like receptors (TLRs) and C-type lectin

receptors that survey the extracellular and endosomal locations for

the presence of PAMPs, and the second category of PRRs contains

nucleotide-oligomerization domain (NOD)-like receptors (NLRs)

and retinoic acid-inducible gene-like receptors (RIG-I) that survey

intracellular compartments for PAMPs (10). TLRs are expressed by a

wide variety of immune cells, including macrophages, neutrophils,

natural killer cells and dendritic cells, and are responsible for

triggering a signaling cascade of proinflammatory responses against

invading microbes (11). These receptors play a critical role in

detecting and responding to the presence of microbes in the body

(12). TLRs are activated by PAMPs that are unique to bacterial cell

walls, such as lipopolysaccharides (LPS) present in Gram-negative

bacteria, and peptidoglycans found in Gram-positive bacteria. Upon

activation, TLRs trigger a signaling cascade that leads to the activation

of numerous transcription factors, including NF-kB, which induce

the upregulation of pro-inflammatory cytokines and chemokines, as

well as other antimicrobial proteins (13, 14). So far, 23 NLRs have

been identified in humans whereas 34 have been discovered in mice

(15, 16). NLRs are multi-domain protein complexes comprising of a

middle NOD (NOD or NACHT) domain flanked by C-terminal

leucine-rich repeats (LRRs) that recognize PAMPs along with a

variable N-terminal region containing either baculovirus inhibitor

repeats (BIR) or a caspase activation and recruitment domain

(CARD), a pyrin domain (PYD) (16). While NLRs are

predominately expressed in cells of the innate immune system,

such as neutrophils, macrophages, dendritic cells and endothelial

cells, they can also be found in cells of the adaptive immune system

(17). NLRs are unique because, unlike other classes of receptors,

many NLRs can form supramolecular complexes, known as

inflammasomes, by recruiting apoptosis-associated speck-like

protein (ASC) and caspase-1 or -11 after recognition of certain

PAMPs (18, 19). The formation of the inflammasome leads to the

cleavage and activation of the caspase, and the activated caspase can
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then convert interleukin-1b (IL-1b) and IL-18 into their active forms

to initiate inflammatory signaling (20). This review focuses on innate

immune cascades involved in host defense against microbes,

including bacterial, viral, and fungal pathogens (Figure 1).
Pulmonary bacterial infection

While antibiotics have reduced the overall morbidity caused by

bacterial pneumonia, the mortality rate among hospitalized

patients remains significantly high, especially in elderly and

immunocompromised populations (21, 22). In addition, the

overuse of antibiotics to control pneumonia and other bacterial

infections has resulted in the emergence of multiple antibiotic-

resistant bacterial pathogens. Methicillin-Resistant Staphylococcus

aureus (MRSA) is a Gram-positive bacterium that causes serious

public health threats. USA300 is the most common MRSA strain and

causes severe infections in children and adults (23, 24). Other

common bacterial pathogens that are known to cause severe lung

diseases include Streptococcus pneumoniae and Klebsiella

pneumoniae. Streptococcus pneumoniae, a Gram-positive bacterium,

is a significant human pathogen that causes a wide range of diseases

including pneumonia, meningitis, and septicemia (25). Though

pneumococcal diseases caused by pneumococcal serotype 2 strains

are associated with lower mortality, pneumonia caused by

pneumococcal serotype 3 strains is the most common and is

associated with a higher risk of death in adults (25). Klebsiella

pneumoniae, a Gram-negative bacterium, causes severe pneumonia

with extensive parenchymal damage in the lungs. The spread of

carbapenem-resistant K. pneumoniae strains is of particular concern,

causing ≥50% mortality especially in patients with diabetes and in

heavy alcohol consumers (26, 27). The emergence of these multidrug-

resistant bacterial strains increases the necessity for alternative

therapeutic options. The initial phase of bacterial infection in the

lung is characterized by neutrophil-dependent inflammation (1, 4).

While neutrophil-mediated inflammation helps in the elimination of

bacteria, it also causes bystander parenchymal injury, and when

excessive, this injury may lead to clinical ARDS (1, 4). Therefore, it

is necessary to discover the molecular and cellular mechanisms that

trigger lower respiratory tract infection and ALI/ARDS to create new

therapeutic methods to improve host immunemechanisms to control

microbial growth and multiplication while attenuating microbe-

mediated parenchymal injury.
TLRs

Microbial components engage with Toll-like receptors (TLRs)

to initiate downstream signaling pathways and induce genes

involved in host defense (Table 1). TLRs play a crucial role in the

recognition and clearance of bacterial infections. TLR1 recognizes

bacterial lipoproteins and is associated with the recognition of other

Gram-positive bacteria (83, 84). TLR2 is not only essential for the

recognition of peptidoglycan on the surface of Gram-positive

bacteria, such as S. pneumoniae, but also recognizes bacterial

lipoproteins, lipoteichoic acid and fungal cell wall components
frontiersin.org
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(33, 83, 85). TLR2 can also work in conjunction with TLR1 or TLR6

to recognize diacylated or triacylated bacterial lipoproteins,

respectively (83, 86). Researchers have shown TLR2 recognizes

the lipopolysaccharides of Legionella pneumophila and induces

chemokine-dependent cellular migration that is crucial for the

host innate response in L. pneumophila-induced pneumonia (30,

31). A recent study has shown the outer membrane vesicles (OMVs)

released by Acinetobacter baumannii, a Gram-negative bacterium,

trigger the activation of TLR2 and TLR4 and lead to the release of

several proinflammatory chemokines and cytokines in the lungs of

mice (28). However, a previous study has shown that TLR2

activation during A. baumannii infection decreases survival

associated with lower neutrophil recruitment in the deficient mice

than the wild-type (WT) controls (29). Though TLR3 is associated

with double-stranded RNA (dsRNA) from viral infections, a recent

study has shown TLR3 activation results in increased susceptibility

and mortality in K. pneumoniae-induced pneumonic mice (36).

TLR4 recognizes lipopolysaccharide (LPS), a component of the
Frontiers in Immunology 03
outer membrane of Gram-negative bacteria, such as A. baumannii

(28), Haemophilus influenzae (39), K. pneumoniae (40), and

Pseudomonas aeruginosa (32). A recent study has shown that

TLR4 uses the MyD88 signaling axis to regulate monocyte

differentiation and neutrophil infiltration to increase survival and

decrease bacterial burden in the lungs of mice infected with S.

pneumoniae (41). TLR5 is a surface receptor that recognizes the

bacterial flagellin protein (87). Researchers have shown TLR5 is

involved in the induction of pulmonary defenses during infection

with P. aeruginosa and L. pneumophila (42, 43). TLR9 recognizes

unmethylated DNA with cytosine-phosphate-guanosine (CpG)

motifs that are found in bacterial and viral DNA (88, 89) and

regulates responses during common pulmonary bacterial infections

such L pneumophila (49), S. pneumoniae (50), and K. pneumoniae

(48). The function of TLR10 is not yet fully understood, but it may

play a role in modulating the immune response (83).

In general, TLRs are associated with five separate adaptor

molecules (TRIF, MyD88, TIRAP, SARM, and TRAM), which are
FIGURE 1

Microbes are recognized by membrane bound and cytoplasmic pattern recognition receptors. Plasma membrane-bound TLRs (TLR2, TLR4 and TLR5)
and endosome membrane-bound TLRs (TLR3, TLR7, TLR8 and TLR9) recognize bacterial, viral, and fungal lung pathogens and/or PAMPs. TLR4, TLR5,
TLR6, TLR7 and TLR9 recruit MyD88 directly to the TIR domain while TLR2 and TLR4 requires TIRAP for the recruitment of MyD88 to the TIR domain.
TLR3 recruits TRIF to the TIR domain. Through the MyD88-independent pathway, TLR4 requires TRAM for the recruitment of TRIF. The binding of
pathogens and/or PAMPs to TLRs leads to complex downstream signaling cascades that result in transcription of pro-inflammatory mediators and
activation of MAP kinases. Cytosolic NOD1 and NOD2 recognize bacterial, viral, and fungal pathogens in the lung and mediate signaling by RIP2. The
NLRP3, NLRP6, NLRP12 senses PAMPs using the LRR domain and uses ASC to recruit caspase-1 and induce the downstream signaling cascade, which
result in transcription of pro-inflammatory mediators and activation of MAP kinases. The HIN200 domain of AIM2 binds cytoplasmic DNA and recruits
ASC and caspase-1 to induce the downstream signaling cascade. NLRC4 does not require ASC to recruit caspase-1. These pro-inflammatory mediators,
including chemokines, lead to the regulation of immune cell infiltration to the lung and the induction of inflammation. Created with Biorender.com.
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recruited to the cytoplasmic TIR domain of the TLRs (84, 90) (Table

1). MyD88 is essential for TLR2, TLR4, TLR5, TLR6, TLR7, and

TLR9 and is recruited to the TIR domain (90). For TLR2 and TLR4,

TIRAP is required for the recruitment of MyD88 and subsequent

signaling (90). TLR3 and TLR4 signaling includes the MyD88-
Frontiers in Immunology 04
independent pathway, where TRIF plays an important role (91).

TRAM is an important adaptor in TLR4 associated TRIF-mediated

but MyD88-independent signaling (84, 90). The recruitment of

MyD88 enables the association of IL-1R-associated kinases

(IRAKs), IRAK4, and IRAK1 to the TLR complex (90).
TABLE 1 The role of innate immune molecules during acute microbial infections in the lung.

Phenotype Infection Survival
Neutrophil

influx
Bacterial, viral, or fungal

burden
Bacterial viral, or

fungal dissemination

TLRs

TLR2 A. baumannii (28, 29) ND ↑ ↓ ND

L. pneumophila (30, 31) ↓ ↓ ↑ NS

P. aeruginosa (32) ND NS ↓ early ND

S. pneumoniae (33) ↑ ↓ NS NS

Respiratory syncytial
virus (34) ND ↓ ND ND

A. fumigatus (35) NS ND ↓ ND

TLR3 K. pneumoniae (36) ↑ ↑ ↓ ↓

Influenza A virus (37) ↑ ↑ ↓ ↓

Respiratory syncytial
virus (38) ND ND ND ND

TLR4 A. baumannii (29) ND ↓ ↓ ND

H. influenzae (39) ND ↓ ↑ ND

K. pneumoniae (40) ↓ ND ↑ ND

P. aeruginosa (32) N ↓ late NS ND

S. pneumoniae (41) ↓ ↓ ↑ ND

A. fumigatus (35) NS ND ↑ ND

TLR5 L. pneumophila (42) ND ↓ early NS ND

P. aeruginosa (43) ↓ ↓ ↑ ↑

TLR7 Influenza A virus (44) ↑ ↑ NS ND

Respiratory syncytial
virus (45) ND ND ND

ND

TLR8 Influenza A virus (46) ND ND ND ND

Respiratory syncytial
virus (47) ND ND ND

ND

TLR9 K. pneumoniae (48) ↓ ND ↑ ↑

L. pneumophila (49) ↓ NS ↑ ND

S. pneumoniae (50) ↓ NS ↑ ↑

TLR adaptors

MyD88 E. coli (51) ↓ ↓ ND ND

H. influenzae (39) ND ND ↑ ND

K. pneumoniae (52) ↓ ↓ ↑ ↑

L. pneumophila (31) ND ↓ ↑ ↑

P. aeruginosa (53) ND ↓ ↑ ↑

(Continued)
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TABLE 1 Continued

Phenotype Infection Survival
Neutrophil

influx
Bacterial, viral, or fungal

burden
Bacterial viral, or

fungal dissemination

S. aureus (53) ND ↓ NS NS

S. pneumoniae (54) ↓ ↓ ↑ ↑

A. fumigatus (35) NS ND ↓ ND

TIRAP K. pneumoniae (55) ↓ ↓ ↑ ↑

E. coli (56) ND ↓ ↑ ND

TRIF E. coli (51) ↓ ↓ ↑ ↑

P. aeruginosa (57) ND ↓ ↑ ND

K. pneumoniae (52) ↓ ↓ ↑ ↑

NODs

NOD1 A. baumannii (58) ND ↓ ↑ ND

C. pneumoniae (59) ↓ ↓ ↑ ND

L. pneumophila (60) ND ↑ ↑ ND

S. pneumoniae (61, 62) ND ND ↓ ND

NOD2 A. baumannii (58) ND ↓ ↑ ND

S. aureus (63) ↓ NS ↑ ↑

C. pneumoniae (59) ↓ ↓ ↑ ND

S. pneumoniae (64) ND NS ↑ early ND

L. pneumophila (60) ND ↑ NS ND

NOD Adaptors

RIP2 C. pneumoniae (59) ↓ ↓ early ↑ ND

L. pneumophila (65) ND ↓ ↑ ND

E. coli (56) ND ↓ ↑ ND

NLRs

NLRP3 S. aureus (66) ↓ ↓ NS ND

S. pneumoniae (67) ↓ NS NS ↑

K. pneumoniae (68) ↓ ↓ ND ND

Influenza virus (69) ND ↓ ND ND

Respiratory syncytial
virus (34) ND ↓ ND ND

Rhinovirus (70) ND ↓ ND ND

A. fumigatus (71) ↓ ND ND ND

C. neoformans (72) ND ↓ ↑ ND

NLRC4/IPAF P. aeruginosa (73) ↓ NS ↑ ↑

K. pneumoniae (74) ↓ ↓ ↑ ↑

NLRP6 S. aureus (75) ↑ ↑ ↓ ND

S. pneumoniae (76) ↑ ↑ ↓ ND

K. pneumoniae (77) ↓ ↓ ↑ ↑

NLRP12 K. pneumoniae (78) ↓ ↓ ↑ ↑

(Continued)
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Subsequently, IRAK4 and IRAK1 become activated and facilitate

the interaction of TRAF6 with the complex (90). This molecular

complex then interacts with another complex comprised of TAK1,

TAB1 and TAB2, which activates IKK and eventually NF-kB (84,

90). TAK1 activation leads to activates mitogen-associated protein

kinase (MAPK) and Janus kinase (JNK), resulting in the

upregulation of growth factors, cytokines, chemokines, and cell

adhesion molecules (84, 90). Four distinct IRAKs (IRAK-1, IRAK-2,

IRAK-M, and IRAK-4) have been identified both in humans and

mice (90). Intriguingly, recent reports have documented that IRAK-

M functions as a negative regulator of TLR signaling, and IRAK-M

knockout mice show an augmented inflammation in numerous

organs (92). Numerous studies have investigated the roles of

adaptor proteins involved in TLR pathways, including the

MyD88-dependent cascade (MyD88 and TIRAP) and the

MyD88-independent cascade (TRIF and TRAM) in bacterial

infections (84). MyD88 is important for host defense against

several bacterial infections, including S. pneumoniae (54), E. coli

(51), K. pneumoniae (52), H. influenzae (39), P. aeruginosa (53), S.

aureus (53), and L. pneumophila (31). However, TIRAP, a molecule

upstream of MyD88, is also essential for pulmonary host defense

against E. coli (56) and K. pneumoniae (55). While TRIF plays an

essential role in host defense against E. coli (51) and P. aeruginosa

(57) challenge, it has shown MyD88 plays a more dominant role

than TRIF during host defense against K. pneumoniae (52). This

suggests that pathogens can activate both MyD88-dependent and

MyD88-independent signaling cascades through distinct

bacterial components.

The activation of TLRs and the subsequent cell signaling lead to

the production of pro-inflammatory cytokines, including

interleukin-6 (IL-6), interleukin-1 (IL-1), and tumor necrosis

factor-alpha (TNF-a), which recruit immune cells to the site of

infection (93). In addition, TLR activation also leads to the

upregulation of numerous cell surface receptors, such as Fcg
receptors, which are responsible for the phagocytosis of opsonized

bacteria (90), as well as of antimicrobial peptides and reactive

oxygen species, which help to kill bacteria that have been

engulfed by phagocytes (90). Furthermore, the activation of TLRs

triggers the production of cytokines such as IL-12, which promotes
Frontiers in Immunology 06
the differentiation of T helper 1 (Th1) cells that are essential for the

clearance of intracellular bacterial infections (83). TLRs also cause

the upregulation of co-stimulatory molecules on antigen-presenting

cells that are necessary for the activation of naive T cells (83, 93).

While TLR activation leads to the production of mRNA for pro-IL-

1b and pro-IL-18, a caspase is required to convert these inactive

forms of IL-1b and IL-18 into their respective active forms to

initiate inflammatory signaling (20). NLRs are intracellular PRRs

that play a critical role in innate immune response and host

physiology, and their characteristic features are a central NOD

(or NACHT) domain, which is necessary for oligomerization, an N-

terminal homotypic protein-protein interaction domain and a C-

terminal leucine-rich repeats (LRRs) responsible for agonist sensing

or ligand binding (94).
NLRs

The multimeric protein complexes, termed “Inflammasomes”,

are formed by some NLRs, such as NLRC4, NLRP3 and NLRP6,

and contain an activated caspase that is responsible for converting

and activating IL-1b and IL-18 for the initiation of inflammatory

signaling (20) (Table 1). NLRs can be categorized into three groups

according to the phylogenetic structure of their domains: (1) NODs

(NOD1-5 and CIITA), (2) the NOD, LRR, and PYD containing

(NLRPs) or NALPs (NLRP1–14), and (3) the IPAF (ICE-protease-

activating factor) family of NLRs (NLRC4 and NLR family

apoptosis inhibitory proteins or NAIPs) (20, 95). NOD1 and

NOD2 were the initial NLRs identified as pathogen sensors, and

both NOD1 and NOD2 encompass CARD domains at their N

terminal domain which are known to signal through the adaptor

molecule RIP2 (96). NOD1 has been shown to recognize g-d-
glutamyl-meso-diaminopimelic acid (i.e., DAP), a cell wall

component of Gram-negative bacteria, while the NOD2 LRR

binds the MDP (muramyl dipeptide) motif present in the Gram-

negative and Gram-positive bacterial peptidoglycans (96, 97).

Studies have demonstrated that NOD1 and/or NOD2 are

capable of sensing C. pneumoniae (59), S. aureus (63), S.

pneumoniae (61, 62, 64), A. baumannii (58), and L. pneumophila
TABLE 1 Continued

Phenotype Infection Survival
Neutrophil

influx
Bacterial, viral, or fungal

burden
Bacterial viral, or

fungal dissemination

NLR Adaptor

ASC P. aeruginosa (79) NS NS ND ND

Influenza/
S. aureus (80) ↓ ↓ ↓ ND

AIM2
Inflammasome S. pneumoniae (81) ↓ ND ↑ ND

A. fumigatus (82) ↓ ND ND ND
• Phenotype was determined by mainly using whole-body knockout or transgenic mice post-infection.
• ND, not determined; NS, no significant difference.
• Neutrophil influx was determined in BALF and/or lung parenchyma.
• Bacterial, viral, or fungal burden was measured in the lungs.
• Bacterial, viral, or fungal dissemination was measured in blood or spleen.
↑ and ↓ represent change in expression compared to wild-type.
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(60, 65) through recognition of their respective peptidoglycan

ligands and also by peptidoglycan-independent mechanisms (98).

The deficiency of the NOD1 and/or NOD2 gene in mice infected

with C. pneumoniae (59), S. aureus (63), or L. pneumophila (60)

resulted in attenuated levels of pulmonary cytokines and

chemokines with decreased neutrophil infiltration into the lungs.

However, the bacterial burden of these deficient mice varied based

on the bacterial infection. C. pneumoniae-infected NOD1/2

deficient mice had impaired bacterial clearance, while L.

pneumophila-infected NOD1/2 deficient mice had enhanced

pulmonary bacterial burden (59, 60). S. aureus-infected WT and

NOD2 gene-deficient mice showed no significant difference in

pulmonary colony forming units (CFUs) (63).

The most extensively studied NLR is NLRP3. Although NLRP3

has mainly been investigated in human and murine macrophages, it

is also expressed in airway epithelial cells of human and murine

origin during bacterial infections (96). The defining features of

NLRP3 are the N-terminal PYD that homotypically binds the PYD

of ASC and the requirement for two discrete signals for activation in

the conical pathway (99). The first signal comes from TLR

activation which primes and induces the expression of NLRP3

through NF-kB activation. Once the amount of NLRP3 in the

cytosol reaches the threshold, the second signal originates from one

or more PAMPs which results in the assembly of the NLRP3

inflammasome (96, 100). The NLRP3 inflammasome can be

activated through TLRs by multiple molecular or cellular events

including ionic flux, mitochondrial dysfunction, the production of

reactive oxygen species (ROS), and lysosomal damage (101).

Though other inflammasomes do not require TLR signaling for

the synthesis of their integralcontain molecules, the generation of

mature IL-1b by other inflammasomes may be influenced by TLR

activation since TLR signaling contributes to the enhanced cytosolic

expression of pro–IL-1b (96, 99).

The NLRP3 inflammasome has two additional non-canonical

activation pathways including a pathway induced by LPS

internalization into the cytoplasm and resulting in pyroptosis, the

release of ATP and K+ efflux, which then drive the NLRP3

inflammasome assembly and release of IL-1b (101) as well as an

K+ efflux independent pathway that does not induce pyroptosis

(101). This second alternative pathway is activated in human

monocytes after LPS stimulation and entails receptor-interacting

serine/threonine-protein kinase 1 (RIPK1), FAS-mediated death

domain protein (FADD), and caspase-8 (101). The PAMPs that

activate these various NLRP3 inflammasome pathways include

bacterial pore-forming toxins such as a-hemolysin (S. aureus)

(66, 102), streptolysin O (Streptococcus pyogenes) (103), and

pneumolysin (S. pneumoniae) (67). This pathway culminates in

NLRP3-induced IL-1b production in both murine and human

macrophages (96). Note that bacterial pore-forming toxins, apart

from inducing NLRP3 activation, can also directly induce alveolar-

capillary barrier dysfunction by increasing intracellular Calcium

(104, 105). NLRP3 activation has also been shown to exert a

protective role during K. pneumoniae infection by increasing

inflammatory cell recruitment and decreasing mortality (68).

A part of the IPAF family of NLRs, NLRC4 has also been

reported to play an essential role in innate immune regulation
Frontiers in Immunology 07
during pulmonary infections. The NLRC4 inflammasome gets

activated during K. pneumoniae infection even though K.

pneumoniae does not express either flagellin or a type III

secretion system (T3SS or injectosome) (74). NLRC4 has been

shown to cooperate with TLR5 to induce protective pulmonary

immunity against P. aeruginosa (73). We and other researchers

have shown that the NLRP6 inflammasome serves as a negative

regulator of neutrophil recruitment and function during pulmonary

infection with S. aureus (75) and S. pneumoniae (76). However, we

have recently shown that NLRP6 is a positive regulator of

neutrophil recruitment and function during K. pneumoniae-

induced pneumonia-derived sepsis where the NLRP6-deficient

mice had reduced survival, increased bacterial burden, and

decreased neutrophil migration and function (77). By contrast, a

recent investigation has reported NLRP6 to be detrimental during S.

pneumoniae pulmonary infection (106).

Our previous studies have shown host survival and bacterial

clearance is dependent on NLRP12 activation following K.

pneumoniae infection (78). The absent in melanoma 2 (AIM2)

macromolecular inflammasome complex forms in response to

cytosolic double-stranded DNA (dsDNA) which leads to

pyroptosis and the maturation of proinflammatory cytokines IL-

18 and IL-1b (107). Regardless of the sequence, the sugar-

phosphate backbone of dsDNA binds to the HIN domain of

AIM2 and relieves the PYD for self-oligomerization, and the PYD

interaction with ASC results in the activation of the AIM2

inflammasome (108). A recent study has shown the AIM2

inflammasome is required for host defense against S. pneumoniae

pulmonary infection by inducing IL-1bmaturation and secretion in

macrophages (81). The recruitment of ASC is required for the

formation of inflammasomes, and studies have shown the

individual deletion of ASC during P. aeruginosa (79) and

influenza with S. aureus co-infection (80) modulates the

immune response. Though inflammasomes are vital components

of the innate immune system during responses to several

pathogens, there have been several studies that have shown

extracellular bacteria activating the NLRs, such as NLRC4,

NLRP6, and/or NLRP3, to induce pyroptosis and cause

detrimental inflammatory-induced damage in the host (20).
Pulmonary viral infection

Respiratory infections commonly consist of multiple different

pathogens, and post-influenza bacterial pneumonia is a main cause

of mortality and morbidity during both seasonal and pandemic

influenza virus infections (109) (Table 1). With the most recent

SARS-CoV pandemic, there has been more interest and research

into viral respiratory infections and diseases. SARS-CoV induces

severe acute respiratory syndrome (SARS) characterized by

excessive lower respiratory tract infection. Severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of

COVID-19 and the global pandemic in 2020 (110). By the end of

2021, over 287 million cases were reported worldwide with over 5.4

million deaths, and in the United States, more than 54.5 million
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confirmed cases and more than 825,000 deaths were

documented (111).

While the impact of SARS-CoV2 has brought attention to the

severity of respiratory viral infections, other respiratory viruses are

still clinically relevant as they also can cause respiratory distress and

exacerbate other diseases and disorders. Other prominent

respiratory viruses include influenza and human rhinovirus (RV),

both single-stranded RNA (ssRNA) viruses. Respiratory tract

infections caused by influenza kill up to 500,000 people and cost

up to $167 billion annually for treatment and care (4). Influenza

pandemics have shown the severity of viral-bacterial coinfections,

with the deaths among patients with the Spanish flu (caused by an

H1N1 influenza virus) predominantly caused by secondary

bacterial infections (112). During the most recent H1N1

pandemic, S. pneumoniae was found to be the most common

coinfection contributor, but there was no significant association

between bacterial coinfection and ICU mortality (112, 113). RV, the

most common viral infectious agent in humans, circulates

worldwide and is responsible for more than 50% of cold-like

illnesses, costing billions of dollars annually in medical visits

(114). Though RV infections can result in mild symptoms, RV

has been shown as the most common respiratory viruses detected in

patients with otitis media, bronchiolitis, croup, and pneumonia, and

is known as a common exacerbator of chronic lung diseases (115).

Asthma exacerbations remain a major cause of disease

morbidity and a significant financial burden to patients (116).

The frequent triggers of asthma exacerbation are viral respiratory

infections such as RV, influenza, and coronaviruses (116). In both

children and adults, hospital admissions for asthma exacerbations

correlate with the seasonal increase in RV infections (116). During

the H1N1 influenza A pandemic in 2009, the mortality and

admission rate to the intensive care unit with H1N1 infections

often correlated with asthma exacerbation (116). Respiratory

infections usually consist of multiple different pathogens. The

influenza pandemics and the most recent SARS-CoV pandemic

have underscored the clinical relevance of viral-bacterial

coinfections. Although S. pneumoniae/H1N1 co-infections did not

significantly increase mortality, there are reports that SARS-CoV2/

S. pneumoniae co-infections increase mortality 7-fold (117).
TLRs

Following viral infection, the host triggers a rapid innate

response characterized by the production of IFNs and

inflammatory cytokines/chemokines to inhibit virus replication

and destroy the invading virus (118). Upstream of this response,

certain TLRs are responsible for the recognition of viral PAMPs,

including viral nucleic acids and viral proteins, which results in the

activation of numerous intracellular signaling cascades that lead to

antiviral IFN and inflammatory cytokine response (118). On the

host cell membrane, TLR10 can recognize extracellular bacterial

and viral proteins (119). Endosomal TLRs, within endosomes and

lysosomes, encounter and bind nucleic acids released from engulfed

microbes, including viruses (120). TLR3 is known to recognize

double-stranded RNA produced by viruses during replication, while
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TLR9 recognizes unmethylated DNA with cytosine-phosphate-

guanosine (CpG) motifs that are commonly found in bacterial

and viral DNA (88, 121). Though TLR3 has not been shown to

affect the clearance of respiratory syncytial virus (RSV), an ssRNA

virus, TLR3 was shown to alter cytokine concentration and mucus

production in the lungs after RSV infection (38). Studies have also

shown TLR3 activation during influenza A virus (IAV)-induced

acute pneumonia to be detrimental to mice, resulting in decreased

survival, viral clearance, and recruitment of neutrophils to the lungs

(37). However, TLR2/6 and TLR9 have been shown to work

synergistically to protect mice during lethal IAV-induced

pneumonia (122).

Both TLR7 and TLR8 recognize single-stranded RNA produced

by viruses during replication (123, 124). However, recent studies

have shown activation of TLR7 or TLR8 triggers distinct IRF and

NF-kB pathways to induce differential cytokine/chemokine profiles

to promote inflammation (123, 125). IAV infection of TLR7-

deficient mice resulted in increased morbidity and neutrophil

influx; however, lung viral titers were similar to that seen in WT

mice (44). TLR7 was also shown to recognize RSV and initiate an

innate immune response (45). Though studies have shown TLR8 is

activated during influenza and RSV infections, there is no current

knockout (KO) mouse model available to differentially observe

TLR8’s role during these infections (46, 47). TLRs recognize viral

RNA and DNA in endosomes, while RIG-I-like receptors (RLR) are

the main PRRs that recognize cytoplasmic viral RNA (126). The

activation of these receptors primarily leads to the activation of an

antiviral innate immune response through the production of

IFNs (126).
NLRs

Viruses can trigger the activation of the NLRP3 inflammasome,

a complex of proteins involved in the immune response (21).

Mitochondrial antiviral signaling proteins, also known as IPS-1/

cardif/VISA, located in the outer membrane of mitochondria, can

activate the NLRP3 inflammasome, leading to downstream

signaling. Viral RNA and a non-structural protein called PB1-F2

have also been implicated in inflammasome activation (21, 127).

PB1-F2 can further activate the release of IL-1b by inducing

aggregation in phagosomes (21, 127). In another report,

expression of the influenza virus M2 protein, a proton-specific

ion channel, in the Golgi apparatus was found to induce NLRP3

inflammasome activation (69, 127, 128). ATP and ATP-dependent

K+ efflux, both of which can cause NLRP3 activation, have been

associated with several viruses, including RSV and influenza virus

infections (21, 129). It has been suggested that ATP released from

dead cells during influenza virus infection can induce NLRP3

activation. In another study, it was found that genomic influenza

RNA was unable to cause an inflammasome response in the absence

of ATP in macrophages derived from bone marrow (130). The role

of ATP-related NLRP3 activation in influenza infection was

demonstrated in cocultures of macrophages and epithelial cells,

and it was also shown that ATP signaling through the P2X7

receptor is important for NLRP3 activation in vivo (21, 34, 129).
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The activation of NLRP3 and NLRC5, along with caspase-1

maturation and IL-1b release, is also induced by viroporin 2B of

human rhinovirus (70). This cytotoxic pore-forming protein is

thought to control ion channel activity, resulting in an influx of

cytosolic Ca2+ from the Golgi and endoplasmic reticulum, leading

to inflammasome activation (21, 130). The overlapping activation of

NLRP3 and NLRC5 by the same pathogen and their similar

responses to human rhinovirus infection indicate a heterogeneous

inflammasome or cooperative interaction between these two

inflammasomes (21, 131, 132). Similarly, human RSV signals

through its small hydrophobic viroporin molecule, which results

in caspase-1 activation and IL-1b maturation (133). The ion

channel activity of viroporin disturbs the intracellular ion balance,

leading to NLRP3 inflammasome activation (134). Following RSV

infection, pro-IL-1b synthesis is caused by the TLR2/MyD88/NF-

kB pathway, along with K+ efflux and ROS generation, resulting in

the establishment of the NLRP3 inflammasome (132). Both signals

ultimately lead to the maturation and activation of caspase-1 and

the release of IL-1b. This was validated by the lack of inflammasome

activation in RSV mutants lacking viroporin, as well as through use

of lipid raft disruptors and viral ion channel-inhibiting drugs (131).

AIM2-dependent IL-1b secretion from macrophages was shown

during influenza A infection, and upregulation of the

inflammasome-related AIM2 gene was shown during asthma

exacerbation by rhinovirus-A16, though very little is known about

the AIM2 function during rhinovirus infection (135). While the

mechanism associated with inflammasome activation by SARS-

CoV infection is not completely understood, it has been

associated with the uncontrolled release of proinflammatory

cytokines, such as MCP-1, IL-6, IL-18, IFN-g, and IL-1b in the

lungs, blood, and lymph nodes (134, 136). In addition, N protein

from SARS-CoV augments NLRP3 activation in order to induce

inflammation in immune cells and the lung (137).
Pulmonary fungal infection

Fungal infections pose a significant threat, particularly to

individuals that are immunocompromised (21, 138). Aspergillus

fumigatus and Cryptococcus neoformans are common causes of

fungal infections that can result in life-threatening conditions,

particularly in immunocompromised individuals and organ

transplant recipients (138, 139). Another significant fungal

infection is Paracoccidioidomycosis (PCM), an endemic disease

caused by P. brasiliensis that is responsible for systemic

granulomatous mycosis, which is commonly found in specific

Latin American countries such as Brazil, Argentina, Venezuela,

and Colombia (140).
TLRs

Respiratory fungal infections have been reported to activate

TLR2, TLR4, TLR9, and NLRP3 (89, 97, 141) (Table 1). Studies have

shown that TLR2 and MyD88 are required for protection during C.

neoformans infection (142–144). In human host cells, TLR2-,
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TLR4- and MyD88-dependent activation were reported to play a

critical role in cytokine production, polymorphonuclear neutrophil

(PMN) activation, and vulnerability to infection by A. fumigatus

(35, 142, 145, 146). Conidia, a spore produced by various fungi, are

recognized by TLR2 and TLR4 and result in the production of

proinflammatory cytokines, while the hyphae of the fungi are

recognized by TLR2 and stimulate IL-10 production (142, 147,

148). The germination from conidia to hyphae was speculated as an

escape mechanism for Candida albicans and A. fumigatus (147,

148). For instance, the ligands for TLR4 are present on A. fumigatus

conidia but not hyphae, while the ligands for TLR2 are on A.

fumigatus conidia and hyphae (148, 149). TLR4 is also activated by

the binding of the O-linked mannans from C. albicans, as well as

glucuronoxylomannan (GXM) from C. neoformans (148–150).

There have been reports the MyD88 adaptor protein plays a role

in cell signaling and protective responses during fungal infection,

while other reports have shown MyD88 signaling and activation of

NF-kB to be insignificant for fungal clearance (35, 142, 145, 151,

152). TLR2 was shown to recognize fungal b-glucans of fungal

species, and to specifically interact with phospholipomannans

(PLMs), linear beta-1,2-oligomannoside structures unique to C.

albicans (149). TLR2 can also form TLR2/TLR1 and TLR2/TLR6

heterodimers to recognize the GXM component of Cryptococcus

neoformans (149, 153). A. fumigatus was found to activate mouse

TLR2/6 heterodimers but not that of humans, whereas both human

and mouse TLR2/1 heterodimers recognize A. fumigatus (149, 154).
NLRs

The role of the NLRP3 inflammasome in defending against

various fungal infections, such as the ones mentioned above, has

been extensively studied, but the functions of other inflammasomes,

including NLRP6, NLRP12 and NLRC4, are still not well

understood. In human monocyte cell lines, activation of the

NLRP3 inflammasome and subsequent processing of IL-1b are

triggered by hyphal fragments of A. fumigatus, and both

processes rely on the activity of Syk tyrosine kinase (82, 139,

155). Mice with a double deficiency in both NLRP3 and AIM2

exhibited increased vulnerability to pulmonary A. fumigatus

infections when compared to WT mice, while mice lacking only

the inflammasome displayed a phenotype similar to that of WT

mice (82). Furthermore, NLRP3- and AIM2-mediated secretion of

IL-1b and IL-18 was found to be important for conferring

protection against A. fumigatus in an immunocompromised

mouse model (82). On the contrary, an independent study

utilizing mice with NLRP3 deficiency showed enhanced host

protection and decreased fungal burden in the lungs following

infection. Interestingly, NLRP3 KO mice exhibited increased

susceptibility to A. fumigatus compared to WT mice when

exposed to a higher dose of A. fumigatus (71). C. neoformans is

another type of opportunistic fungal pathogen that commonly

infects individuals with compromised immune systems (138).

Studies conducted using human macrophages and mouse models

have revealed that the NLRP3 inflammasome is triggered by

capsular C. neoformans infection (72). In mouse dendritic cells,
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the secretion of IL-1b in response to C. neoformans necessitates

NLRP3 activation, while NLRC4 or AIM2 inflammasomes are not

involved (72). In an in vivo setting, proper recruitment of

neutrophils and clearance of the fungus from the lungs was found

to depend on NLRP3 activation (72, 138). However, another study

demonstrated that internalized, encapsulated C. neoformans can

cause not only canonical caspase-1 but also noncanonical caspase-8

inflammasome activation in mouse dendritic cells (71, 138, 139).
Concluding remarks

Respiratory diseases are major public health threats worldwide,

and the overuse of antibiotics and antivirals to treat these infections

pressures these pathogens to gain antibiotic or antiviral resistance.

The rise of these antibiotics or antiviral-resistant strains has caused

severe illnesses and has given precedence to the development of

other treatment methods and therapies. The innate immune

response is essential for the effective elimination and control of

infections, and the modulation of precise aspects of the innate

immune response has become a popu lar targe t for

immunomodulatory therapeutics. The experimental evidence

reported highlights the relevance of TLR and NLR activation in

response to pathogens and the corresponding inflammatory

response. It is now clear that TLRs and NLRs not only control

innate immune responses, but also trigger adaptive immune

responses. Of note, the interaction between the host and

pathogen in the lung decides if the activation of TLRs and NLRs

by infectious agents is protective or detrimental. Nonetheless, the

TLR and NLR pathways are complex, and it is possible that

crosstalk occurs within TLR and NLR cascades and between TLR

and NLR pathways. Therefore, further studies are necessary to

better identify the specific mechanisms and pathways mediated by

TLRs and NLRs for the expression, activation, and regulation of

respiratory innate defense against microbial infections.

Despite the importance of NLRs in bacterial, viral, and fungal

infections in the lung, much remains to be learned, as new NLRs,

their ligands, and signaling pathways are being discovered.

Although understanding of innate immune defense has improved,

future challenges will be to apply knowledge of innate immune

defense to design host-targeted immunotherapies to mitigate

excessive inflammation-mediated tissue damage following

microbial infection in the lung while controlling microbial growth
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and multiplication. In this context, several TLR agonists and

antagonists have shown promise in preclinical animal models and

have now entered clinical research. Moreover, downstream NLR

molecules, such as caspase-1, IL-1 receptor antagonists and IL-1b,
have also been evaluated in preclinical models.
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