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Background: Immune checkpoint inhibitors (ICI) may cause pneumonitis,

resulting in potentially fatal lung inflammation. However, distinguishing

pneumonitis from pneumonia is time-consuming and challenging. To fill this

gap, we build an image-based tool, and further evaluate it clinically alongside

relevant blood biomarkers.

Materials andmethods:We studied CT images from 97 patients with pneumonia

and 29 patients with pneumonitis from acute myeloid leukemia treated with ICIs.

We developed a CT-derived signature using a habitat imaging algorithm,

whereby infected lungs are segregated into clusters (“habitats”). We validated

the model and compared it with a clinical-blood model to determine whether

imaging can add diagnostic value.
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Results: Habitat imaging revealed intrinsic lung inflammation patterns by

identifying 5 distinct subregions, correlating to lung parenchyma,

consolidation, heterogenous ground-glass opacity (GGO), and GGO-

consolidation transition. Consequently, our proposed habitat model (accuracy

of 79%, sensitivity of 48%, and specificity of 88%) outperformed the clinical-blood

model (accuracy of 68%, sensitivity of 14%, and specificity of 85%) for classifying

pneumonia versus pneumonitis. Integrating imaging and blood achieved the

optimal performance (accuracy of 81%, sensitivity of 52% and specificity of 90%).

Using this imaging-blood composite model, the post-test probability for

detecting pneumonitis increased from 23% to 61%, significantly (p = 1.5E − 9)

higher than the clinical and blood model (post-test probability of 22%).

Conclusion: Habitat imaging represents a step forward in the image-based

detection of pneumonia and pneumonitis, which can complement known

blood biomarkers. Further work is needed to validate and fine tune this

imaging-blood composite model and further improve its sensitivity to detect

pneumonitis.
KEYWORDS

habitat analysis, immune checkpoint inhibitor, acute myeloid leukemia, non-small cell
lung cancer, pneumonitis
Introduction

Immune checkpoint inhibitors (ICIs) have been a

transformative force in oncology and have become a key part of

the therapeutic arsenal for numerous cancers (1). Acute myeloid

leukemia (AML), a highly lethal cancer (2) which often requires

allogeneic hematopoietic transplantation (allo-HCT) (3) to achieve

a durable remission, may sometimes respond to ICIs given in

combination with hypomethylating agents (4). However, the use

of ICIs to treat AML is associated with high rates of pneumonitis,

which significantly increases mortality (5).

A major barrier to diagnosing pneumonitis is the difficulty in

distinguishing pneumonitis from other pulmonary conditions,

especially pneumonia (6). Bronchoalveolar lavage biomarkers

show clonal expensive of Th17.1 cells, but do not necessarily

distinguish between pneumonia and pneumonitis (7). Culture-

based identification of pathogens can identify up to 60% of

infections (8), but these results may require up to 48 hours and

are more useful for ruling infection in, and not out. Metagenomic

approaches may increase the yield for the detection of bacterial

organisms in immunocompromised hosts (9), but the diagnostic

yield remains suboptimal for certain infections, and distinguishing

colonization from true infection is challenging. The prompt

diagnosis of pneumonitis and pneumonia is necessary to ensure

the appropriate administration of corticosteroids, both to promptly

treat pneumonitis and to be withheld in cases of infection.

Radiomic approaches may allow for the prompt identification

of pulmonary disease, as has been shown in interstitial lung diseases

(10). However, these approaches have not been tested to distinguish

infectious pneumonia from ICI pneumonitis. The classical
02
radiomics approach profiles the infected lung region as a whole

entity and may fall short when characterizing phenotypically

heterogeneous subareas of the lung that are infected or inflamed.

Habitat imaging is an emerging technology that aims to address this

challenge by explicitly dividing the region-of-interest (ROI) into

coherent subregions termed as habitats (11–13).

Pilot studies from our group and others have demonstrated the

added value of habitat imaging analysis in profiling intratumor

heterogeneity and predicting treatment response in several cancer

types (13–16). In this study, we tested whether our habitat analyses

could accurately distinguish pneumonia and pneumonitis in a

retrospective cohort of AML patients who received ICIs therapies

between 2016-2018 (5).
Methods

Participants

We reviewed imaging from a group of 258 patients with AML

who were started on ICI therapies (ipilimumab, n=40; nivolumab,

n=175; ipilimumab and nivolumab, n=43). between 2016 and 2018.

126 patients with confirmed episodes of pneumonia (n=97) or

pneumonitis (n=29) with CT scans available for analysis were

included (Supplementary Figure 1). All cases were reviewed by a

multidisciplinary adjudication committee, who reviewed the clinical

history, including the time course of symptoms, representative

laboratory, imaging, and microbiological data, and response to

antimicrobial or anti-inflammatory therapies (Table 1).

Pneumonia was diagnosed in episodes with 1) consistent
frontiersin.org
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TABLE 1 Characteristics of the study cohort.

Variable
Pneumonia
(n=97)

Pneumonitis
(n=29)

Median age at enrollment (years) 64.01 69.14

Female sex, n (%) 37(38%) 17(58.6%)

Race, n (%)

White/Caucasian 84(86.6) 25(86.2%)

Non-white 13(13.4%) 4(13.8%)

AML Diagnosis, n (%)

De novo AML 67(69.1%) 21(72.4%)

Secondary/therapy-related AML 30(30.9%) 8(27.6%)

Prior SCT 17(17.5%) 1(3.4%)

ECOG, n (%)

0 8(8.25%) 7(24.1%)

1 82(84.54%) 21(72.4%)

2 7(7.21%) 1(3.4%)

Symptoms at baseline, n (%)

Cough 22(22.7%) 6(20.7%)

Fever 18(18.6%) 7(24.1%)

Shortness of breath 22(22.7%) 8(27.6%)

Symptoms at syndrome, n (%)

Cough 72(74.2%) 19(65.5%)

Fever 77(79.4%) 21(72.4%)

Shortness of breath 63(64.9%) 22(75.9%)

Median cell counts at baseline

Bone marrow blasts (%) 20 15

Total WBC (103 cells/mL) 2.5 2.3

NC (cells/mL) % 23 19

LC (cells/mL) % 40 40.1

Platelets (103 cells/mL) 34 29

Median cell counts at syndrome

Total WBC (103 cells/mL) 2.4 1.4

NC (cells/mL) % 22 30

LC (cells/mL) % 25 25

Platelets (103 cells/mL) 22 14

Smoking status, n (%)

Never 46(47.4%) 21(72.4%)

Former 48(49.5%) 8(27.6%)

Current 3(3.1%)

Pneumonia within 30 days of ICI initiation, n (%) 21(21.7%) 6(20.7%)

Viral infection within 30 days of ICI initiation, n (%) 4(4.1%) 1(3.4%)

(Continued)
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symptoms (e.g. fevers, cough) and consistent imaging (for example,

lobar consolidation, nodular opacities, centrilobular or tree-in-bud

opacities, cavitary opacities, halo sign) and 2) had a clear response

to antibiotics but not corticosteroids or had microbiological

confirmation from a lower respiratory tract specimen of an

organism known to cause pneumonia (7). Pneumonitis was

diagnosed in episodes with 1) consistent symptoms (e.g. cough,

shortness of breath) and consistent imaging and 2) a clear response

to corticosteroids but not antibiotics or had histopathological

confirmation of pneumonitis. Based on CT appearance,

pneumonitis cases were classified into the following patterns (17):

nonspecific interstitial pneumonitis (NSIP), organizing pneumonia

(OP), hypersensitivity pneumonitis (HP), acute interstitial

pneumonia (AIP)-acute respiratory distress syndrome (ARDS), or

indeterminate/mixed (i.e., nonspecific patchy ground-glass or

consolidative opacities or a mixture of patterns without clear

dominant pattern). Pneumonitis was graded according to the

Common Terminology Criteria for Adverse Events (CTCAE) 5.0

(18). Because symptoms of pneumonitis and pneumonia may often

be similar, the multidisciplinary committee weighted imaging,

clinical course, and response to therapies heavily in their final

diagnoses. The MD Anderson Institutional Review Board approved

the study (PA18-0802).
Overall design

Our overall approach is summarized in Figure 1A. In brief, we

performed patient and imaging curation, then trained and tested a

CT-derived signature using habitat imaging to determine whether a

patient was more likely to have pneumonia or pneumonitis. In

parallel, we derived a clinical-blood benchmark model by selecting

informative clinical and blood metrics to fit into a classification

model. Ultimately, we integrated the two approaches (imaging and

benchmark features) to evaluate the prediction performance.
Image acquisition and preprocessing

The CT scans of the 126 patients enrolled in this study were

obtained using both Siemens and GE medical systems CT scanners

at MD Anderson Cancer Center at the time of the event. CT scans

had a slice thickness of 2.5mm and an in-plane spatial resolution of
Frontiers in Immunology 04
0.98 to 1.2 mm. A deep learning-based segmentation model (19)

was used to extract the left and right lung parenchyma, followed by

a morphological dilation and erosion to smoothen the boundaries

of the extracted lung regions. An in-house radiologist reviewed and

manually corrected the lung ROI segmentations.
Habitat imaging analysis

The architecture of the habitat imaging technique (16) is a

unified approach containing several key steps as illustrated in

Figure 1B. First, a contrast-enhancing method was applied to

filter both the lung and mediastinum window images from the

original input images. The extracted lung and mediastinum images

were then further processed using a local entropy filter to generate

filtered images that capture subtle variations in the texture of the

images under different window settings. An image fusion approach

was then utilized to combine (fuse) the lung, mediastinum, and

their corresponding fi l tered images to form the final

composite image.

Second, the habitat detection has a patient- and population-

level clustering blocks. For the patient-level clustering step, the

simple linear iterative clustering (SLIC) algorithm (20) is used to

oversegment the individual patients’ composite images of lung ROI

into a large number of superpixels. Then, the extracted superpixels

across the whole patient are aggregated to identify the similar ones

inside one patient and across different patients. Specifically, the

superpixels from the patient-level clustering step are considered as

individual samples. In particular, we characterized individual

superpixels by extracting ten features separately on four image

channels (CT image normalized by lung window or mediastinal

window, as well as two corresponding entropy maps for local

texture). Ten different features include skewness, kurtosis, mean,

median, 1 quantile, 3 quantile, interquartile range, standard

deviation, variance, and energy. These features characterized

different aspects of the lung, including the intensity, the

symmetricity of intensity and texture, the intensity uniformity,

the texture of CT images, and the texture of entropy maps. The

superpixels were subsequently clustered using the hierarchical

clustering algorithm to identify subregions with similar imaging

patterns. The optimal number of subregions was determined using

both the gap criterion and hierarchical structure of the

clusters dendrogram.
TABLE 1 Continued

Variable
Pneumonia
(n=97)

Pneumonitis
(n=29)

Prior lung disease, n (%)

COPD 11(11.3%) 1(3.4%)

Asthma 5(5.2%) 1(3.4%)

Prior autoimmune disease, n (%) 5(5.2%) 2(6.9%)

Chest radiation prior to ICI, n (%) 5(5.2%) 2(6.9%)
ICI, immune checkpoint inhibitor; AML, acute myeloid leukemia; ECOG, Eastern Cooperative Oncology Group; WBC, white blood cell; NC, neutrophil count; LC, lymphocyte count; COPD,
chronic obstructive pulmonary disease; ILD, interstitial lung disease; SCT, stem cell transplantation.
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Feature extraction and machine learning
model construction

After the lesion/subregion segmentation, forty-four

multiregional spatial interaction (MSI) features were measured

from the habitat maps to quantify overall lung parenchyma. In

addition, we quantified the symmetric difference ( DSym) between

left and right lungs by:

DSym(L,R) = MSIL −MSIWj j � MSIR −MSIWj j (1)

where MSIW ,  MSIL,   and MSIR denotes the MSI features

computed on the whole, left and right lungs, respectively. One

strength of the MSI features is their clear interpretations. These

features are designed to quantify the spatial heterogeneity of

infected lung patterns. Specifically, the MSI features captures

information such as the absolute burden and relative percentage

of individual habitat as well as their interactions. More detailed

explanation regarding the extracted MSI features is presented

in Table 2.

After feature extraction, the correlation among the extracted

features was explored. Also, the univariate Chi-square test statistics

approach was applied to examine feature association with infection

types. Each feature was tested independently, and the output of the

univariate Chi-square model is the probability (p-value) that the

patient had been diagnosed with either pneumonia or pneumonitis

for each feature. The computed p-values of all the features are then

used to rank the individual features by computing feature

importance (score) as:

score =  −log(p)
Frontiers in Immunology 05
where p is the corresponding p-value for each feature, and

higher score denotes greater importance. Next, we iteratively

increase the number of selected features based on their

importance in order to identify the optimal diagnostic model.

Specifically, the top-ranked features were used to build an

ensemble model of 100 boosted classification trees. To avoid

biased classification to the pneumonitis class due to data

imbalance (i.e., significantly larger number of samples in the

pneumonia class), we employed synthetic minority oversampling

technique (SMOTE) nested with leave-one-out cross validation

(LOOCV) approach together to validate model performance. To

avoid information leakage, we first left out one sample as the test

set before applying SMOTE on the training set to train a

prediction model. This process is repeated n -times (n equals to

total number of samples) until every data sample is left out as a

test sample.

In parallel, we also built a benchmark model using clinical and

blood-based measures. For clinical variables, we included cough,

fever, shortness of breath at both baseline and at time of syndrome

together with age and sex. For blood-based variables, we used five

blood-based measurements including absolute white blood cells

(WBC) count, absolute neutrophils count (ANC), absolute

lymphocyte count (ALC) and platelet count at both baseline and

time of syndrome together with bone marrow blast cells count at

baseline. Using similar strategy as our earlier work (5), we

considered the log transformation of WBC and platelets at both

baseline and at time of syndrome. Given the clinical and blood

measures, we adopted a similar SMOTE and LOOCV machine

learning strategy to build the benchmark model. The diagnostic

performance of the benchmark model was compared to the habitat
A

B

FIGURE 1

Architecture of the proposed framework. (A), Overview of the overall proposed approach starting from image acquisition, habitat analysis and
diagnostic model prediction. (B), Overview of the steps involved in the habitat analysis.
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TABLE 2 Multiregional spatial interaction features interpretation.

Feature
name

Feature description

MSI 1 –

MSI 4
2nd order statistics features (contrast, correlation, Homogeneity and energy)

MSI 5 –

MSI 9
absolute subregions volume (SR1 – SR5)

MSI 10 –

MSI 14
interaction (absolute) between subregions and border

MSI 15 –

MSI 18
interaction (absolute) between SR1 and the remaining subregions, i.e., MSI 15 = SR1 ∩ SR2, MSI 16 = SR1 ∩ SR3, …, MSI 18 = SR1 ∩ SR5.

MSI 19 –

MSI 21
interaction (absolute) between SR2 and SR3, SR4 and SR5, i.e., MSI 19 = SR2 ∩ SR3, MSI 20 = SR2 ∩ SR4, MSI 21 = SR2 ∩ SR5.

MSI 22 –

MSI 23
interaction (absolute) between SR3 and SR4, SR5, i.e., MSI 22 = SR3 ∩ SR4, MSI 23 = SR3 ∩ SR5.

MSI 24 interaction (absolute) between SR4 and SR5, i.e., MSI 24 = SR4 ∩ SR5.

MSI 25 –

MSI 29
normalized percentage of subregions volume (SR1 – SR5)

MSI 30 –

MSI 34
normalized interaction (percentage) between subregions and border

MSI 35 –

MSI 38
normalized interaction (percentage) between SR1 and the remaining subregions, i.e., MSI 35 = SR1 ∩ SR2, MSI 36 = SR1 ∩ SR3, …, MSI 38 = SR1 ∩ SR5.

MSI 39 –

MSI 41
normalized interaction (percentage) between SR2 and SR3, SR4 and SR5, i.e., MSI 39 = SR2 ∩ SR3, MSI 40 = SR2 ∩ SR4, MSI 41 = SR2 ∩ SR5.

MSI 42 –

MSI 43
normalized interaction (percentage) between SR3 and SR4, SR5, i.e., MSI 42 = SR3 ∩ SR4, MSI 43 = SR3 ∩ SR5.

MSI 44 normalized interaction (percentage) between SR4 and SR5, i.e., MSI 44 = SR4 ∩ SR5.

MSI 45 –

MSI 48
symmetric difference (left vs right lung) of the 2nd order statistics features

MSI 49 –

MSI 53
symmetric difference (left vs right lung) of absolute subregions volume (SR1 – SR5)

MSI 54 –

MSI 58
symmetric difference (left vs right lung) of the interaction (absolute) between tumor subregions and border

MSI 59 –

MSI 62
symmetric difference (left vs right lung) of the interaction (absolute) between SR1 and the remaining subregions, i.e., MSI 59 = |MSIL 15 – MSIW 15| × |
MSIR 15 – MSIW 15|, …, MSI 62 = |MSIL 18 – MSIW 18| × |MSIR 18 – MSIW 18|.

MSI 63 –

MSI 65
symmetric difference (left vs right lung) of the interaction (absolute) between SR2 and SR3, SR4 and SR5, i.e., MSI 63 = |MSIL 19 – MSIW 19| × |MSIR 19 –

MSIW 19|, …, MSI 65 = |MSIL 21 – MSIW 21| × |MSIR 21 – MSIW 21|.

MSI 66 –

MSI 67
symmetric difference (left vs right lung) of the interaction (absolute) between SR3 and SR4, SR5, i.e., MSI 66 = |MSIL 22 – MSIW 22| × |MSIR 22 – MSIW
22|, MSI 67 = |MSIL 23 – MSIW 23| × |MSIR 23 – MSIW 23|.

MSI 68 symmetric difference (left vs right lung) of the interaction (absolute) between SR4 and SR5, i.e., MSI 68 = |MSIL 24 – MSIW 24| × |MSIR 24 – MSIW 24|

MSI 69 –

MSI 73
symmetric difference (left vs right lung) of the percentage of subregions volume (SR1 – SR5)

MSI 74 –

MSI 78
symmetric difference (left vs right lung) of the normalized interaction (percentage) between subregions and border

MSI 79 –

MSI 82
symmetric difference (left vs right lung) of the normalized interaction (percentage) between SR1 and the remaining subregions, i.e., MSI 79 = |MSIL 35 –

MSIW 35| × |MSIR 35 – MSIW 35|, MSI 82 = |MSIL 38 – MSIW 38| × |MSIR 38 – MSIW 38|.

MSI 83 –

MSI 85
symmetric difference (left vs right lung) of the normalized interaction (percentage) between SR2 and SR3, SR4 and SR5, i.e., MSI 83 = |MSIL 39 – MSIW 39|
× |MSIR 39 – MSIW 39|, MSI 85 = |MSIL 41 – MSIW 41| × |MSIR 41 – MSIW 41|.

MSI 86 –

MSI 87
symmetric difference (left vs right lung) of the normalized interaction (percentage) between SR3 and SR4, SR5, i.e., MSI 86 = |MSIL 42 – MSIW 42| × |MSIR
42 – MSIW 42|, MSI 87 = |MSIL 43 – MSIW 43| × |MSIR 43 – MSIW 43|.

MSI 88 symmetric difference (left vs right lung) of normalized interaction (percentage) between SR4 and SR5, i.e., MSI 88 = |MSIL 44 – MSIW 44| × |MSIR 44 –

MSIW 44|.
F
rontiers in Im
MSIL, multi regional spatial interaction feature extracted from the left lung; MSIR, multi regional spatial interaction feature extracted from the right lung; MSIW, multi regional spatial interaction
feature extracted from the whole lung.
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imaging model. Furthermore, we evaluated the performance when

integrating clinical-blood benchmark and habitat in a composite

model. For comparison purposes, we also extracted the classical

radiomics features from the whole lung regions and built a

prediction model.
Statistical analysis

The ability to separate pneumonia (coded as 0) from pneumonitis

(coded as 1) was assessed by the accuracy, specificity, and sensitivity

in the leave-one-out cross-validation. For this work, sensitivity means

the true positive rate of pneumonitis, while specificity represents true

negative rate of pneumonitis. To mitigate the imbalance in the

distribution of pneumonia and pneumonitis, Synthetic Minority

Oversampling Technique (SMOTE) algorithm was applied.

Furthermore, we applied Bayesian theorem to compute the pre-test

and post-test probability (21), which referred to the probability of

detecting pneumonitis before a diagnostic model was performed

(pre-test probability) and after a model is performed (post-test

probability). The feature correlation analysis was done using the

Pearson’s correlation test with the R software. The Chi-square test

statistics was used to evaluate the predictive value of individual

features and the t-test statistics was used to compare the prediction

performance of the different models.
Results

Study participants

Table 1 shows the characteristics of the overall study cohort

(n=126) who developed pneumonia or pneumonitis. Most patients

had de novo AML, but ICI was usually given after frontline therapy

was initiated. 86 patients received nivolumab without ipilimumab,

either alone (n=11), or with azacitidine (n=58) or idarubicin

(n=17). 15 patients received ipilimumab without nivolumab,

either alone (n=9) or with azacitidine (n=6). 25 patients received

nivolumab and ipilimumab together, with (n = 17) or without (n=8)

azacitidine. We identified 97 distinct patients of pneumonia and 29

distinct patients of pneumonitis in which a CT was available for

analysis. No patients had more than one pneumonia or

pneumonitis. All cases of pneumonia and pneumonitis were

independently reviewed by blinded expert thoracic radiologists

who reviewed feature characteristics in the current study.

Representative cases of pneumonia and pneumonitis are shown in

Supplementary Figure 2. Supplementary Table 1 shows a list of

organisms isolated in cases of microbiologically-proven pneumonia.

Of the patients with pneumonitis, 19 had an indeterminate/mixed

pattern, 7 had an organizing pneumonia pattern, and 3 had an acute

interstitial pneumonia (AIP)-acute respiratory distress syndrome

(ARDS) pattern. The median time to pneumonitis was 109 days

after ICI initiation (range 1-484 days).
Frontiers in Immunology 07
Habitat imaging reveals intrinsic infection
patterns of lung parenchyma

We applied our proposed habitat imaging method (Figure 1B)

and determined the optimal number of intra-lung subregions. As

shown in Figure 2A, there are five distinct clusters (i.e, habitats)

according to hierarchical structure of the dendrogram. We then

investigated the imaging parameters that underline and differentiate

these habitats. Figure 2A shows the detailed distributions of the

representative features from five types of imaging parameters

(intensity uniformity, Intensity, texture of lung window, texture

of entropy map, symmetricity of intensity and texture) in each of

these habitats. The detailed phenotypical patterns of CT imaging

associated with each habitat were summarized in Figure 2B. We

observed that subregions 1 corresponds to the uninfected lung

parenchyma, subregion 3 corresponds to ground glass opacity

(GGO) with elevated texture heterogeneity and low CT number,

subregion 4 corresponds to the consolidation, subregions 2 and 5

correspond to the transition zone to GGO at different degrees. The

detailed partitioning results of entire lung region after habitat

analysis were presented in Figure 3 for four selected pneumonia

and pneumonitis patients, where detailed habitats were consistently

defined to quantify the infection patterns.
Habitat model outperforms benchmark
model of clinical and blood metrics

Given the clinical variables and blood metrics both at baseline

and at time of infection (their correlation in Supplementary

Figure 3A), we built a benchmark model with the feature

importance presented in Figure 4A and model performance in

Figure 4B. The top ranked features include sex; cough at time of

event; baseline platelets; and ANC (at both baseline and at time of

event). This benchmark model had an accuracy of 68%, sensitivity

(i.e., true positive of pneumonitis) of 14%, and specificity (true

negative of pneumonitis) of 85%. Then, based on the habitat map

for individual patients, we extracted MSI features to characterize the

overall infection patterns as well as their symmetricity between left

and right lungs, which resulted in a total of 88 features. The

correlation among these habitat features was presented in

Supplementary Figures 3B, C. Next, we built a classifier to

differentiate pneumonia from pneumonitis using LOOCV, and the

feature importance was presented in Figure 4C. For the prediction

model, interestingly the top ranked habitat features were MSI30

which measures the infected area on the lung surface and MSI37,

which relates to the interaction between habitat 1 (normal lung

parenchyma) and habitat 4 (consolidation). Using this approach, we

found that pneumonia had elevated asymmetric interaction,

suggesting more asymmetry in the CT pattern between left and

right lung. The habitat model achieved an accuracy of 79%, sensitivity

of 48%, and specificity of 88%, based on the cross-validated confusion

matrix in Figure 4D. For comparison purposes, we also built a

conventional radiomics model (Supplementary Figure 4), which we
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found to have a significantly lower performance (accuracy, 60%;

sensitivity, 17%; specificity, 72%) to the habitat model (p = 5E − 19).
Imaging-blood composite model achieves
the optimal performance

Next, we integrated the prediction results from both the habitat

model and the benchmark model (Figure 5A). Based on the
Frontiers in Immunology 08
cascading model with clinical and blood model in the first layer

and habitat model in the second, we simulated the predicted

infection type stratification as shown in Figure 5B. If we set up

the rule as following: we will make a diagnosis if both models agree

and will label the cases as ambiguous cases if both models disagree.

This has achieved 87.1% accuracy in predicting pneumonia, a

greater than 10% increase than clinical model. Of note, 0%

accuracy in predicting pneumonitis, indicating imaging and blood

are capturing different and non-overlapping pneumonitis cases. For
A

B

FIGURE 2

Habitat subregions identification. (A), Heatmap of the five identified subregions together with distribution plot (boxplot) of five representative features
from the feature types grouped by habitat subregions. (B), Characteristics of the five habitat subregions in relation to the CT feature types.
FIGURE 3

Representative habitat maps of four subjects from both the pneumonia and pneumonitis categories.
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these 37 conflicting cases that imaging and blood model disagreed,

imaging model had an accuracy of 59% and the blood model had an

accuracy of 41%.

In addition, we mixed the habitat features with clinical and

blood metrics together to re-fit a prediction model, and the ranked

feature importance table was shown in Figure 4E. In general, the

habitat features were consistently more important than the clinical

and blood measures. The composite model achieved the optimal

performance with an overall accuracy of 81%, sensitivity of 52% and

specificity of 90% (Figure 4F).

Further, we compared the post-test probability of detecting

pneumonitis based on different models when the various models
Frontiers in Immunology 09
diagnosed pneumonitis (Table 3). The pre-test probability (i.e.,

prevalence) of pneumonitis was observed to be 23%. With the

benchmark prediction model using clinical and blood metrics, the

post-test probability degraded to 22% if the model diagnosed

pneumonitis. When using our habitat model, the post-test

probability increased to 55% if the model diagnosed pneumonitis.

We observed synergistic effects when combining habitat imaging

with clinical and blood metrics into a composite model, which

achieved the best post-test probability of 61% if the model

diagnosed pneumonitis, more than a 2-fold increase from pre-test

probability. By contrast, the classical radiomics model had the worst

performance with post-test probability of 15%.
A B

D

E F

C

FIGURE 4

Performance comparison of the different diagnostic models. (A, B) shows the feature importance and confusion matrix for the clinical-blood
(benchmark model). (C, D) shows the feature importance and confusion matrix for the habitat-based model. (E, F) shows the feature importance and
confusion matrix for the composite (clinical-blood plus habitat models).
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Discussion

Recognizing the difficulty in distinguishing pneumonia and

pneumonitis in the absence of definitive biomarkers, we

developed an imaging-based pipeline that could distinguish these

two entities with a much-improved accuracy using a well-

characterized cohort of patients with AML undergoing ICI

therapy. Our proposed imaging marker has significantly

outperformed a benchmark model based on clinical-blood

metrics. Further, we observed a synergy between our imaging

markers and blood markers, and their integration into a joint

model has achieved the best prediction. All in all, our pilot study

serves as proof-of-concept to demonstrate that machine learning of

computed tomography (CT) scans can offer complementary values

on top of existing clinical biomarkers for improved management of

immune-related adverse events (irAE).

Diagnosing pneumonitis in real-time is challenging, and the

prompt differentiation of pneumonitis from other conditions, such

as pneumonia or cancer progression, is not always possible from

imaging information alone. Additional tests may be required, but

these results may further delay the prompt administration of

definitive therapy toward pneumonia or pneumonitis, potentially

leading to patient harm. For example, prompt administration of

antibiotics for community acquired pneumonia decreases in-
Frontiers in Immunology 10
hospital mortality (22). Improving the ability of interpreting

radiologists to diagnose pneumonitis may lead to improved

patient outcomes. Tools such as the one we highlight in this work

can potentially augment the capabilities of interpreting so to help

radiologists make definitive image-based diagnoses. Approaches

that combine artificial intelligence imaging tools with clinical

radiologists often exceed the accuracy seen with human

evaluations, as has been shown when determining the probability

that a lung nodule is malignant (23) or whether reticular

abnormalities represent interstitial lung disease (24). We envision

that this tool may reduce the uncertainty seen when trying to

differentiate pneumonia and pneumonitis in real time, but further

studies are needed to validate this.

Pneumonitis is a serious complication of checkpoint inhibitor

immunotherapy, and the mortality ranges from 10-20% in non-

small cell lung cancer cohorts (NSCLC), where ICIs are frequently

used (25–27) to nearly 50% in AML (5). Pneumonitis is likely to be

more amenable to treatment if detected early and distinguished

from pneumonia. The treatments for pneumonitis, namely

immunosuppressive therapies of appropriate intensity and

duration, are substantively different from the treatments for

pneumonia. Furthermore, overuse of antimicrobial agents in

patients without pneumonia may alter the intestinal microbiome,

potentially reducing the efficacy of ICIs (28). In our original report,
A

B

FIGURE 5

Evaluation of the benefit of the habitat model in improving baseline model prediction. (A), shows the heatmap of the different model’s prediction.
(B), shows how the cascading model improves the benchmark models predictions in both the pneumonia and pneumonitis group. Notes that CB
and H here represents the clinical-blood and habitat models, respectively.
TABLE 3 Pretest and posttest probability comparison among different diagnostic models.

Model Pre-test Probability Post-test Probability

Benchmark (clinical-blood)

23%

22%

Habitat 55%

Refitted composite model 61%

Classical Radiomics 15%
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28/31 cases of pneumonitis were treated with both corticosteroids

and antibiotic therapies. While pneumonia was fivefold more

common in our cohort than pneumonit i s , promptly

distinguishing these two conditions will benefit all patients

undergoing ICI therapy for cancer, regardless of the underlying

rates of these two conditions. Further, diagnosis of pneumonitis

with histopathology in nearly all cases due to the concern for

bleeding due to thrombocytopenia or the concern for pulmonary

deterioration after a biopsy procedure.

Computed tomography (CT) patterns associated with immune

checkpoint inhibitor related pneumonitis may resemble interstitial

lung diseases seen in the general population, including organizing

pneumonia, interstitial pneumonitis, and others (29). The patterns

that may be seen in these diseases is highly variable from case to

case, as others have shown (30, 31). Radiomics has been used to

predict the risk of developing ICI-induced pneumonitis based on

baseline CT scans from 2 patients who developed pneumonitis and

30 who did not (32), but not to differentiate pneumonitis from other

lung diseases. In this study, we have implemented the habitat

imaging algorithm to differentiate pneumonia and pneumonitis.

Compared to conventional radiomics, the key strength of our

habitat imaging analysis is that it explicitly accounts for the

spatial heterogeneity of the infected lung and partitions the whole

lung regions into phenotypically distinct subregions. By analyzing

these subregions individually as well as their interactions, we have

demonstrated its superior performance in separating pneumonitis

from pneumonia. Analogous to the superior multiregional gene

sequencing over conventional cocktail sequencing (33), a fine

grained spatial analysis enabled by habitat imaging can reveal

new insights to improve the pneumonitis diagnosis. By contrast,

traditional radiomics extracts features (including texture) from the

entire lung region but cannot capture the degree of intra-lung

infection heterogeneity. This may explain why our habitat imaging

approach outperformed conventional radiomics.

Our study has several strengths. This is the first tool of its kind

and is positioned to address a significant problem that hinders the

treatment of all patients undergoing ICI therapy. The tool was

developed by incorporating CT images that used diverse acquisition

protocols, and thus can be more easily applied and validated in

external cohorts. Also, another strength of our study is the strict

selection of patients with AML under immunotherapy. AML

patients do not have solid malignancies in their lung regions to

confound the imaging analysis, which is different from solid tumors

(e.g. NSCLC).

Several limitations must be considered. First, the results

presented in this manuscript would benefit from an external

cohort for model validation. Second, while all cases of pneumonia

and pneumonitis in this study were confirmed by an expert

multidisciplinary cohort at MD Anderson, the accuracy of this

tool needs to be confirmed in a prospective cohort where the

appropriate testing, especially CT imaging of the chest and

universal BAL, are performed promptly and systematically. Third,

it is likely that blood and clinical markers that associate with

pneumonitis will vary from cohort to cohort, which would make

an approach that only utilizes imaging more attractive. Fourth,
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other lung processes such as disease progression or radiation injury

are more applicable to solid tumors but not seen in the current

cohort treated for AML, and therefore this tool must be validated

before applying in patients with solid tumors such as non-small cell

lung cancer. Fifth, it is possible that pneumonia and pneumonitis

may co-exist in some patients, and it is not uncommon for more

than one serious adverse event to manifest concurrently in AML

patients (34). Therefore, a test that determines the probability of

one or the other as mutually exclusive results may not be

appropriate in all cases. Sixth, there is no “gold standard” to

diagnose pneumonia, and it remains a clinical diagnosis.

Therefore, it is possible that the multidisciplinary adjudication of

pneumonia and pneumonitis were erroneous in some instances.

Finally, because ICIs are not currently approved to treat AML, there

is not a possibility to expand the number of cases with pneumonitis

in a similar cohort.In conclusion, we developed a tool that could

accurately distinguish pneumonia and pneumonitis in AML

patients treated with ICI inhibitors. If validated, our approach

holds great promise to improve the clinical care of cancer patients

treated with ICIs by improving our ability to differentiate

pneumonitis from other lung diseases in a prompt fashion.
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