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Uncovering the neuroprotective
effect of vitamin B12 in
pneumococcal meningitis:
insights into its pleiotropic
mode of action at the
transcriptional level
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Background: The interplay between bacterial virulence factors and the host

innate immune response in pneumococcal meningitis (PM) can result in

uncontrolled neuroinflammation, which is known to induce apoptotic death of

progenitor cells and post-mitotic neurons in the hippocampal dentate gyrus,

resulting in cognitive impairment. Vitamin B12 attenuates hippocampal damage

and reduces the expression of some key inflammatory genes in PM, by acting as

an epidrug that promotes DNA methylation, with increased production of S-

adenosyl-methionine, the universal donor of methyl.

Material and methods: Eleven-day-old rats were infected with S. pneumoniae

via intracisternal injection and then administered either vitamin B12 or a placebo.

After 24 hours of infection, the animals were euthanized, and apoptosis in the

hippocampal dentate gyrus, microglia activation, and the inflammatory infiltrate

were quantified in one brain hemisphere. The other hemisphere was used for

RNA-Seq and RT-qPCR analysis.

Results: In this study, adjuvant therapy with B12 was found to modulate the

hippocampal transcriptional signature induced by PM in infant rats, mitigating the

effects of the disease in canonical pathways related to the recognition of

pathogens by immune cells, signaling via NF-kB, production of pro-

inflammatory cytokines, migration of peripheral leukocytes into the central

nervous system, and production of reactive species. Phenotypic analysis

revealed that B12 effectively inhibited microglia activation in the hippocampus

and reduced the inflammatory infiltrate in the central nervous system of the
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infected animals. These pleiotropic transcriptional effects of B12 that lead to

neuroprotection are partly regulated by alterations in histone methylation

markings. No adverse effects of B12 were predicted or observed, reinforcing

the well-established safety profile of this epidrug.

Conclusion: B12 effectively mitigates the impact of PM on pivotal

neuroinflammatory pathways. This leads to reduced microglia activation and

inflammatory infiltrate within the central nervous system, resulting in the

attenuation of hippocampal damage. The anti- inflammatory and

neuroprotective effects of B12 involve the modulation of histone markings in

hippocampal neural cells.
KEYWORDS

pneumococcal meningitis, vitamin B12, epidrugs, neuroinflammation, histone
methylation, neuroprotection
1 Introduction

Acute bacterial meningitis (BM) is a severe and potentially life-

threatening infection of the central nervous system (CNS).

Currently, there is no specific treatment to prevent or reverse

hippocampal damage caused by BM. Streptococcus pneumoniae is

the leading etiological agent of community-acquired BM in children

under 5 years old, and the elderly worldwide. Despite the availability

of effective antibiotics, pneumococcal meningitis (PM) still carries

significant morbidity and mortality rates (1). One of the most

critical complications of BM is hippocampal damage, which can

lead to severe cognitive deficits in survivors. The outcome of PM

depends on complex interactions between the bacterial

pathogenicity factors and the host response, including the

activation of various immune signaling pathways (2).

Recent studies have shown that epigenetic modifications play a

critical role in regulating the host response to PM. Epigenetic

modifications refer to changes in gene expression mediated by

non-coding RNA, DNA methylation, and histone modifications

that do not involve alterations in the DNA sequence. Specifically, it

has been demonstrated that global changes in the miRNome (3) and

a decrease in global DNA methylation (4) occur in the

hippocampus during PM. These alterations can impact genome

stabil ity and the expression of genes associated with

neuroinflammation, oxidative stress, and the equilibrium between

neurogenesis and neuronal death. As a result, epigenetic

mechanisms can influence the infection’s outcome and contribute

to the development of cognitive deficits in survivors. No prior

research has explored the role of histone markings in modulating

the host response to BM. Understanding the epigenetic regulation

of the host response to PM has significant implications for the

development of new therapies. Targeting specific epigenetic

modifications may provide a novel approach to modulating the

host response to infection, improving patient outcomes, and

reducing the risk of long-term sequelae.
02
We have previously demonstrated that vitamin B12, a cofactor

of the enzyme methionine synthase in the sulfur amino acid

pathway, acts as an epidrug by increasing the production of S-

adenosyl-methionine, the universal donor of methyl, in the

hippocampus of infant rats with PM. By this mechanism,

adjuvant therapy with B12 down-regulated the inflammatory

genes Interleukin-1 beta (Il1b), C-C Motif Chemokine Receptor 2

(Ccr2) and C-C Motif Chemokine Ligand 3 (Ccl3) and largely

attenuated the apoptotic death of progenitor cells and postmitotic

neurons in the hippocampus dentate gyrus (4). Here, the safe profile

of vitamin B12 and its positive effect on the hippocampal

transcriptome of infant rats with PM are described, and evidence

is provided that B12 also modulates methyl-dependent

histone modifications.
2 Materials and methods

2.1 Animal model and experimental design

This study was approved by the Ethics Committee on the Care

and Use of Laboratory Animals (CEUA-FIOCRUZ, protocol LW-

23/17). An established experimental model of PM in infant rats was

employed, following previously described procedures (4). Briefly,

11-day-old Wistar rats (20 ± 2 g) were infected by intracisternal

injection of 10 mL saline (0.85% NaCl) containing ~2 × 106 cfu/mL

of S. pneumoniae (serotype 3, strain 38/12 MEN from the certified

bacterial collection of the Ezequiel Dias Foundation). Sham-

infected animals were injected with 10 mL of sterile saline. As at

11 days of age the rats have not yet entered puberty, their sex does

not influence the parameters evaluated in this study, and therefore,

half of the animals used were males and half were females. Animals

were separated into four groups according to the treatment

received: 10 mL of intramuscular vitamin B12 (Merck,

Kenilworth, NJ; 0.065 mg/kg) (N = 10 infected + vitamin B12; N
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= 7 sham-infected + vitamin B12); or 10 mL of intramuscular saline

(N = 6 infected + saline; N = 6 sham-infected + saline). Vitamin B12

and saline were administered at three and 18 hours post-infection.

Eighteen hours after infection, all rats were clinically assessed using

a stablished activity score (5) and infection was documented by

quantitative culture of cerebrospinal fluid (CSF). Subsequently, all

animals received 100 mg of ceftriaxone per kg of body weight

administered subcutaneously (EMS Sigma Pharma Ltda., São Paulo,

Brazil). Twenty-four hours post-infection, rats were euthanized by

intraperitoneal overdose of ketamine (300 mg/kg) + xylazine (30

mg/kg) (Syntec, São Paulo, Brazil) and perfused via the left cardiac

ventricle with 7.5 mL of RNAse-free ice-cold phosphate buffered

saline (PBS). The brains were extracted from the skulls, and the two

hemispheres were separated. The right hemispheres were fixed in

4% paraformaldehyde (PFA) (Sigma-Aldrich, St. Louis, MI) and

further processed for histopathological assessment and

immunohistochemistry analysis. The hippocampi from the left

hemisphere were dissected and stored in RNAlater (Thermo

Fisher, Waltham, MA) (for 24 hours at 4°C, followed by -80°C

until use).
2.2 Brain histopathological analysis

To document the neuroprotective effect of vitamin B12

adjuvant therapy, the previously fixed right hemispheres of the

brains were embedded in paraffin and cut into 5 µm-thick coronal

sections using a microtome (Leica CM1850, Wetzlar, Germany).

These sections were then stained with Cresyl violet and mounted

onto microscope slides for observation under optical microscopy

with a 40X objective and 10X eyepiece. The dentate gyrus’s lower

blade was evaluated, and any neurons displaying morphological

features indicative of apoptosis, such as condensed or fragmented

nuclei and apoptotic bodies, were quantified in the largest visual

field of four sections per rat. An average score per animal was

determined from all the sections evaluated using a scoring system
Frontiers in Immunology 03
where 0–5 cells were given a score of 0, 6–20 cells were scored as 1,

and >20 cells received a score of 2 (3, 4).
2.3 Transcriptome analysis

Total RNA was extracted from hippocampi using Invitrogen

Trizol reagent (Thermo Fisher) and chloroform (Merck), followed

by purification with a miRNeasy Mini Kit column (Qiagen, Hilden,

Germany) according to the manufacturer’s protocol. The

concentration and integrity of the RNA samples were assessed

using a Qubit 2.0 fluorometer (Thermo Fisher) and a Bioanalyzer

2100 (Agilent, Santa Clara, CA), respectively. Three animals from

each group were chosen for RNA-Seq, based on their hippocampal

apoptotic score values (Figure 1) being the closest to the medians of

their respective groups. cDNA libraries were generated with the

TruSeq Stranded mRNA Kit and sequenced using the TG Next-Seq

500/550 High Output Kit v2, 75 cycles (Illumina, San Diego, CA).

Raw reads were processed with Trimmomatic (6) to remove low-

quality bases, and trimmed reads shorter than 50 nucleotides were

discarded. Clean reads were then aligned to the Rattus norvegicus

reference genome (release 94) using the software Spliced Transcripts

Alignment to a Reference (STAR) (7). Read counts were quantified

using only those located at a single genomic site. Contrast analyses

between experimental groups (Sham-infected + B12 vs. Sham-

infected + placebo; Infected + placebo vs. Sham-infected + placebo;

Infected + B12 vs. Infected + placebo) were conducted using DESeq2

R package (8). Genes with a fold change greater than 1.5 and adjusted

P values lower than 0.01 were considered differentially expressed

(DEG) and were displayed in an UpSetPlot using the UpSetR R

package (9). Functional enrichment analysis of the DEG was

performed using Ingenuity Pathways Analysis (IPA) (Qiagen) (10)

parameterized to use the Ingenuity Knowledge Base (genes +

endogenous chemicals) considering direct and indirect

relationships and the following filters: (species = Human OR Rat

OR Mouse) AND (confidence = Experimentally Observed OR High
FIGURE 1

B12 treatment attenuates apoptosis in the granular layer of the dentate gyrus during PM. (A) Nissl-stained histological section showing the
hippocampal dentate gyrus (10X) of an infected infant rat treated with placebo. The detail shows an amplified section of the lower blade of the
granular layer (40X). Scale bar = 50 mm. (B) Apoptotic scores. Horizontal bars represent means with standard deviation. The effects of PM and
adjuvant treatment with vitamin B12 were compared with two-way ANOVA followed by Tukey’s post-test. **P < 0.01; ***P < 0.001; ****P < 0.0001.
PM, Pneumococcal meningitis.
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(predicted)) AND (tissues/cell lines = Hippocampus ORNeurons OR

all CNS Cell Lines OR CNS Cell Lines not otherwise specified OR

Immune cells OR Hematopoietic progenitor cells). Deconvolution

analysis of the RNA-Seq data to assess whether PM or adjuvant B12

affect the proportions of major leukocyte types in the inflammatory

infiltrate was conducted using the CIBERSORTx software (11),

specifically utilizing the “Impute Cell Fractions” module, and

adjusting parameters for batch correction and number of

permutations (100). Reference cell type-specific signatures were

obtained from validated single-cell RNA-Seq data of rat-derived

immune cells available in GitHub (RatDeconvolution) (12).
2.4 Validation of selected DEG by RT-qPCR

The High-Capacity cDNA Reverse Transcription Kit (Thermo

Fisher) was used to synthesize cDNA following the manufacturer’s

protocol. For qPCR reactions, Fast SYBR™ Green Master Mix

(Thermo Fisher) was utilized with 1 ng/mL of cDNA in a final

volume of 10 mL. Rat-specific primers were designed to detect

putative biomarkers identified through transcriptome analysis,

namely Neuronal PAS Domain Protein 4 (Npas4) (Forward 5’

CTCTCTTCCTGGCCATGTTC 3 ’ ; Reverse 5 ’ CTCCAT

TTTCAGCCAACAGG 3’) and Interferon Gamma (Ifng) (Forward

5 ’ CGCCAAGTTCGAGGTGAACA 3’ ; Reverse 5 ’ TTCC

GCTTvCCTTAGGCTAGATTC 3’), using Primer-BLAST software

(NCBI, Bethesda, MD, https://www.ncbi.nlm.nih.gov/tools/primer-

blast/). Peptidylprolyl Isomerase A (Ppia) (Forward 5 ’

AGGATTCATGTGCCAGGGTG 3’ ; Reverse 5’ CTCAGT

CTTGGCAGTGCAGA 3’) was employed as a reference gene for

normalization of gene expression. The ViiA 7 real-time PCR system

(Thermo Fisher) was used for thermal cycling and fluorescence

detection, following the manufacturer’s recommendations. Relative

expression of target genes was calculated using the 2^(−DDCt)
method (13).
2.5 Immunohistochemistry

The dewaxed slides (5 µm-thick coronal sections) were

subjected to antigen retrieval through heat in Tris-EDTA buffer

(pH 9.0) at 96°C for 40 minutes. Endogenous peroxidase activity

was quenched with 3% hydrogen peroxide. To evaluate microglia

activation and the intensity of the inflammatory infiltrate, a primary

rabbit monoclonal antibody against the Ionized calcium-binding

adaptor molecule 1 (Iba1) (Abcam, Cambridge, UK; #AB178847)

was used at a dilution of 1:8000, along with the Novolink Polymer

Detection System (Leica Biosystems, Nussloch, Germany) as per the

manufacturer’s instructions. To assess histone epigenetic markings,

non-specific protein binding was blocked with a commercial

blocking reagent (EMD Millipore, Burlington, MA). Following

blocking, the slides were incubated overnight at 4°C in a moist

chamber with primary antibodies against trimethyl-Histone H3

(Lys4) (H3K4me3, rabbit polyclonal antibody, Merck #05-1339)

and trimethyl-Histone H3 (Lys9) (H3K9me3, rabbit polyclonal

antibody, Merck #07-442), diluted at 1:800 and 1:2000,
Frontiers in Immunology 04
respectively, in Rinse Buffer (EMD Millipore) plus 0.1% Tween 20

(Sigma-Aldrich). The visualization of antigen-antibody complexes

was carried out using biotinylated goat anti-mouse IgG or anti-

rabbit IgG, Streptavidin-HRP and 3’3 diaminobenzidine

tetrachloride (EMD Millipore). After counterstaining with

hematoxylin, the slides were dehydrated and mounted with a

glass coverslip and xylene-based mounting media.

Images of histological sections were captured using the Aperio

Scanner (Leica Biosystems) with a 40X objective and 3X, 20X, and

40X eyepiece. The captured images were subsequently processed

using the Aperio ImageScope version 12.4.6 (Leica Biosystems) and

Fiji (Image J) (14) software. The analysis of microglia activation in the

lower blade of the dentate gyrus was performed utilizing the Skeleton

Analysis method developed by Young et al. (15). Three images were

analyzed for each animal. In this method, the data were represented

by normalizing the endpoints (cell branch tips) in relation to branch

lengths. To quantify the inflammatory infiltrate, the optical density of

the leukocyte nuclei in the hippocampal fissure was measured. The

resulting values were then normalized by fissure area.

For histone methylation analysis, images of the dentate gyrus

were captured using the Leica DM5000B microscope (40X objective

and 10X eyepiece), scanned using the Leica MC170HD camera, and

processed with the Leica Application Suite program (Version

4.10.0). Immunohistochemically stained slides were subjected to

morphometric analysis using the Leica Qwin V3, and the intensity

of nuclear pixels (optical density) was identified in at least three

images from each animal. For nuclear evaluation, the system was

trained to recognize nuclei with a minimum pixel intensity

corresponding to positive staining.
2.6 Statistical analysis

The statistical analyses were performed using GraphPad Prism

version 6.0 (GraphPad Software Inc., Irvine, CA). Data distribution

was assessed using Shapiro-Wilk test. Differences between groups

were compared using the unpaired t test or two-way analysis of

variance (ANOVA) with a Tukey’s or Bonferroni post-test to

correct for multiple comparisons. Results were considered

statistically significant if P values were less than 0.05.
3 Results

3.1 Clinical assessment and apoptosis in
the lower blade of the dentate gyrus
granular layer

Upon examination of the CSF at 18 hours post-infection, all

animals infected with S. pneumoniae experienced PM with positive

bacterial titers of approximately 1 × 108 cfu/mL. Compared to

sham-infected controls (mean ± standard deviation: 5 ± 0), infant

rats with PM (3.917 ± 0.51) showed a significant decrease in activity

score (P < 0.001), which was not affected by adjuvant therapy with

vitamin B12 (3.818 ± 0.40). Histomorphological analysis confirmed

that vitamin B12 had a neuroprotective effect (Figure 1).
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3.2 Transcriptome analysis

3.2.1 In healthy animals, vitamin B12 causes only
minor changes in the hippocampal transcriptome

The contrast between Sham-infected + B12 and Sham-infected

+ placebo disclosed 17 genes up-regulated and 21 genes down-

regulated in healthy animals treated with the vitamin (Figure 2A).

Although no canonical pathway was predicted to be affected, these

38 DEG are annotated with Gene Ontology (GO) terms

predominantly related to positive regulation of glycolysis, gene

expression, cell proliferation, neurotransmission, learning,

memory, and inhibition of neuron differentiation and cell

adhesion (Additional File 1).

3.2.2 During PM, the hippocampus transcriptome
undergoes substantial changes

In the hippocampus of animals with PM, 1025 genes were up-

regulated and 234 were down-regulated (Figure 2A, Additional File 2).

From this ensemble of DEG, several canonical pathways associated

with increased immune response and neuroinflammation were
Frontiers in Immunology 05
predicted to be activated. Conversely, a few anti-inflammatory

pathways, such as LXR/RXR Activation and PPAR Signaling, were

predicted to be inhibited. The affected canonical pathways with the

highest prediction confidence (P value) are shown in Figure 2B.

3.2.3 B12 mitigates the major effects of PM on
the hippocampus transcriptome

In animals with PM treated with B12, 210 genes were down-

regulated (194 were up-regulated by PM), and most of them are

related to inflammation according to their GO annotations

(Figure 2A, Additional File 2). This result is in line with the

proven hypothesis that B12 inhibits gene expression by increasing

the methylation of gene promoters (4). However, B12 up-regulated

118 genes, out of which 16 were also up-regulated by PM and 11

were down-regulated (Figure 2A and Additional File 2). An

example of gene up-regulated by B12 in infected animals is

Npas4. Its expression pattern was validated by RT-qPCR

(Figure 3). These results indicate that B12 regulates gene

expression in PM by another mechanism besides DNA

methylation at gene promoters.
FIGURE 2

Transcriptome analysis. (A) Upset plot representing DEG in the analyzed contrasts (B12 effect = Sham-infected + B12 vs. Sham-infected + placebo;
PM effect = Infected + placebo vs. Sham-infected + placebo; Treatment effect = Infected + B12 vs. Infected + placebo). Genes with Expression Log
Ratio = -0.58 (down-regulated) or 0.58 (up-regulated) and Adjusted P-value < 0.01 were considered differentially expressed. (B) Main canonical
pathways affected by PM and B12 treatment. During PM, the hippocampus transcriptome undergoes substantial changes, activating canonical
pathways related to increased immune response and neuroinflammation (in orange). The treatment with vitamin B12 mitigates the major effects of
PM (in blue), attenuating the pro-inflammatory profile. Values above the Z-scores represent the pathway ratio. (C) Main upstream regulator
molecules modulated by PM and B12 identified in functional enrichment analysis. In red, predicted up-regulation; In green, predicted down-
regulation. PM, Pneumococcal meningitis; DEG, Differently expressed genes; Suffixes: up, up-regulated; down, down-regulated.
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Functional enrichment analysis revealed that B12 counteracts

the effect of PM in several canonical pathways related mainly to the

immune response, oxidative stress, blood-brain barrier (BBB)

integrity, and leukocyte migration (Figure 2B and Additional File

3). It is worth noting that the transcriptome analysis did not reveal

any adverse effects of B12 in the context of PM. The main upstream

regulator molecules modulated by PM and B12 were also identified

with IPA (Figure 2C). The results clearly demonstrate that B12

counteracts the effects of PM in several upstream regulator genes

with pivotal roles in inflammation and immune response and

predicted with the highest confidence, as well as in functions

related mainly to the infiltration of immune cells from the

periphery to the CNS across the BBB. The effects of PM and B12

on the expression pattern of Ifng, the upstream regulator with the

highest prediction confidence (Figure 2C), were validated by RT-

qPCR (Figure 3).
3.2.4 RNA-Seq deconvolution suggests that B12
attenuates the infiltration of neutrophils into
the CNS

Based on RNA-Seq deconvolution analysis, PM is found to

trigger the infiltration of neutrophils (PM effect: P = 0.0003 in two-

way ANOVA) and, to a lesser extent, monocytes (PM effect: P =

0.0101 in two-way ANOVA) into the CNS. Additionally, this in

silico approach suggests that B12 induces the infiltration of B cells

into the CNS irrespective of the infection (PM effect: P = 0.0364 in

two-way ANOVA). Notably, B12 significantly diminishes the

infiltration of neutrophils into the CNS of infected animals (B12

effect: P = 0.0009 in two-way ANOVA; P < 0.001 when comparing

Infect + placebo vs. Infect + B12 with Tukey’s post-test)

(Supplementary Material 4).
Frontiers in Immunology 06
3.3 Vitamin B12 attenuates hippocampal
inflammation during PM

Immunohistochemistry and histopathological analysis were

conducted to evaluate microglia activation and the intensity of

inflammatory infiltrate in the CNS during PM. Figure 4

demonstrates that adjuvant B12 effectively alleviated microglia

activation in the hippocampus of infected animals, as evidenced

by the quantification of Iba1-expressing cells (Panel E) and the

evaluation of cell morphology using the endpoints/branch length

ratio (Panel F). Furthermore, B12 treatment reduced the

inflammatory infiltrate in the hippocampal fissure (Figure 4G).

These findings provide confirmation that adjuvant therapy with

vitamin B12 attenuates PM-induced neuroinflammation, consistent

with the predictions derived from the transcriptome analysis.
3.4 Histone methylation patterns

Finally, immunohistochemically detectable changes in hippocampal

patterns of histone H3 methylation induced by PM and/or vitamin B12

were assessed. PM did not affect the trimethylation of histone H3 at

lysine 9 (H3K9me3) but significantly increased H3 trimethylation at

lysine 4 (H3K4me3, P < 0.001) (Figure 5). In addition, adjuvant therapy

with vitamin B12 in rats with PM increased the markings H3K9me3 (P

< 0.001) and H3K4me3 (P < 0.01).
4 Discussion

The pathophysiology of PM involves a dynamic interplay

between bacterial virulence factors and the host immune
FIGURE 3

RT-qPCR validation of putative biomarkers identified with RNA-Seq. Npas4 and Ifng relative expression values (2^(-DDCt)) during PM and after
treatment with B12. Groups were compared using unpaired t test. Outliers were identified by the ROUT test and removed from the analysis. Bars
were expressed as mean with standard deviation. **P < 0.01; ***P < 0.001. PM, Pneumococcal meningitis.
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response, resulting in neuroinflammation and, ultimately,

neurological dysfunction. The presence of the bacteria in the CSF

initiates an inflammatory response, primarily mediated by

microglia and perivascular and meningeal macrophages, which

subsequently release inflammatory mediators such as cytokines

and chemokines. These proinflammatory factors promote further

inflammation and oxidative stress, leading to the disruption of the

BBB, the pleocytosis of peripheral leukocytes, and the influx of

excitatory amino acids into the CNS (2). This cascade of events

triggers apoptosis in both progenitor cells and postmitotic neurons,

which are scattered throughout the inner granular layer of the

dentate gyrus in the hippocampus (16). This detrimental condition

causes extensive damage to the hippocampal formation, a brain

region which plays a crucial role in the consolidation of new

memories and spatial navigation. Hippocampal apoptosis was

associated with abnormal neuropsychological test results in

animals after PM (17, 18). Besides, studies have shown that

patients who have survive PM often experience long-term

cognitive deficits, including problems with memory, attention,

executive function, and cognitive performance (2, 19–21).

Currently, PM is treated with antibiotics and corticosteroids, but

these treatments do not prevent hippocampal damage (17, 18).
Frontiers in Immunology 07
B12 vitamers are essential cofactors for key enzymes in energy

metabolism and the sulfur amino acid pathway. They also play a

beneficial role in neuroinflammatory conditions by scavenging

reactive oxygen species (ROS), maintaining appropriate H2S levels,

preventing the harmful effects of excess homocysteine, and

reducing N-methyl-D-aspartate (NMDA) receptor-mediated

excitotoxicity in CNS cells. Furthermore, B12 modulates chromatin

remodeling mechanisms that down-regulate critical genes in

neuroinflammation (22). It has been previously reported that

adjuvant therapy with vitamin B12 mitigates apoptotic damage to

the hippocampus and down-regulates some key inflammatory genes,

namely Il1b, Ccr2, and Ccl3, in infant rats with PM (4). Specifically,

vitamin B12 has been found to down-regulate the expression of Ccl3

by enhancing the methylation of specific cytosine residues in its

promoter region. Despite the fact that therapeutic administration of

B12 has been shown to increase global DNA methylation in the

hippocampus of healthy infant rats (4), the present study

demonstrated that in the absence of infection, the vitamin regulates

only a limited number of genes, which are expected to have an overall

positive effect on hippocampal function (Additional File 1).

Therefore, the findings of the present study provide support for the

expected safe profile of B12.
FIGURE 4

Microglia activation and inflammatory infiltrate during PM is attenuated in B12-treated infant rats. Immunohistochemical staining of Iba1+ cells (20X)
of a representative infected animal administered with placebo (A) or B12 (B). Scale bar = 100 mm. In detail, zooms (40X) of typical ameboid (more
activated) and intermediate (less activated) microglia’s state, respectively Bar = 50 mm. Histological sections showing the hippocampal fissure (3X) of
a representative infected animal administered with placebo (C) or B12 (D). Scale bar = 700 mm. In detail, a zoom (40X) of the polymorphonuclear
leukocytes present in the hippocampal fissure. Bar = 50 mm. (E) Microglia count (Iba1+ cells/mm2). (F) Microglia activation (Iba1+ cells endpoints
\branch length). The highest values obtained corresponded to the less activated microglial state, indicating cells with a more branched morphology
and smaller size. (G) Inflammatory infiltrate (Optical density). For all plots, horizontal bars represent means with standard deviation. The effects of PM
and adjuvant treatment with vitamin B12 were compared with unpaired t test. *P < 0.05. PM, Pneumococcal meningitis.
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PM is known to broadly modify the hippocampal

transcriptome, leading to the activation of several pathways

functionally related to the major components of the

physiopathology of this disease, including microglia activation,

oxidative stress, BBB disruption, leukocyte extravasation into the

CNS, neuroinflammation, and cell death, among others.

Furthermore, PM also inhibits some anti-inflammatory and cell

survival pathways (23, 24). The findings of the present study

support and improve this previous knowledge. Of particular

interest in the scope of this study is the outcome of adjuvant

therapy with B12 in the canonical pathways most affected by PM,

as the vitamin effectively reversed these disease effects (Figure 2B,

Additional File 3).

Pivotal canonical pathways involved in pneumococci detection

in the CNS and signaling to trigger the innate immune response,

namely Role of PRRs in Recognition of Bacteria and Viruses, Toll-like

Receptor signaling, Inflammasome pathway, NF-kB Signaling, and

TREM1 Signaling, are activated by PM, and inhibited by B12

(Figure 2B, Additional File 3).

The first line of defense against invading pneumococci in the

CNS is constituted by the innate immune system, which is activated

by the recognition of conserved microbial structures or pathogen-

associated molecular patterns (PAMPs) by antigen presenting cells

(APC) expressing pattern-recognition receptors (PRRs) (25).

Among these APCs there are blood cel ls , which are

predominantly found in the meninges, choroid plexus, and

perivascular space, as well as astrocytes and microglial cells that

reside within the brain parenchyma (26). Transmembrane Toll-like

receptors (TLRs) 2, 4, and 9, and cytosolic Nucleotide-Binding

Oligomerization Domain 2 (NOD2) receptors are critical PRRs

responsible for APC detection of S. pneumoniae in the CNS (27–

29). All TLR as well as NOD2 signaling pathways ultimately result

in the activation of Nuclear Factor Kappa B (NF-kB) (28, 30). This

transcriptional factor activates several genes that contribute to the

pathophysiology of BM, such as IL-1b, Tumor Necrosis Factor

(TNF)-a, Interleukin 6 (IL-6), Interleukin 8 (IL-8), Macrophage

Inflammatory Protein-1 Alpha (MIP-1a), inducible nitric oxide

synthase (iNOS), cyclooxygenase-2 (COX)-2, and Intercellular
Frontiers in Immunology 08
Adhesion Molecule-1 (ICAM-1) (31). Additionally, the Triggering

Receptor Expressed On Myeloid Cells (TREM) protein receptor

family is emerging as a crucial regulator of various cellular

functions, including inflammation amplification. Evidence

indicates that activation of TREM-1 through danger- and

pathogen-associated molecular patterns (DAMPs and PAMPs)

can lead to the production of cytokines (32). TREM-1 signaling

has already been associated with host defense during the early stages

of infection with highly pathogenic Streptococcus suis (33).

Inflammasome-mediated recognition of the pneumococcus also

contributes to the host innate immune response. Indeed, the

NALP3 inflammasome regulates Caspase-1 activation and

subsequent secretion of both IL-1b and Interleukin 18 (IL-18)

(34). NK cells stimulated by IL-18 produce the pro-inflammatory

cytokine Interferon Gamma (IFNG), which is a pivotal driver of

neuropathology and behavioral sequelae in experimental PM. IFNG

modulates a range of processes, including myeloid recruitment and

activation, as well as inhibition of bacterial clearance (35). Although

the levels of IFNG are elevated in both the CSF of patients with PM

(36, 37) and in the brain tissue of rats (38) with the disease, the exact

role of this cytokine in PM remains unclear. The present study

identified IFNG as the upstream regulator of several critical genes

regulated by PM. It is noteworthy that B12 significantly mitigated

the impact of the infection on these IFNG-regulated genes.

Furthermore, B12 counteracted the PM-induced alterations in the

expression of multiple genes regulated by other predicted upstream

regulatory molecules (Figure 2C).

In addition to counteracting the effects of PM in the initial

processes of pathogen recognition and innate immunity activation,

B12 also inhibits disease effects in canonical pathways that directly

regulate the major component of neuroinflammation

(Neuroinflammation Signaling Pathway, IL6 Signaling, Integrin

Signaling, and Leukocyte Extravasation Signaling, Production of

NO and ROS in macrophages, and Fcy Receptor-mediated

Phagocytosis in Macrophages and Monocytes) (Figure 2B,

Additional File 3). Neuroinflammation is defined as an

inflammatory response within the brain or spinal cord (39). This

response is mediated by the production of cytokines, chemokines,
FIGURE 5

Effects of PM and B12 treatment on H3K4me3 and H3K9me3 in dentate gyrus granule cells. Histological sections showing the lower blade of the
hippocampal granular layer (40X) immune-stained with antibodies anti-H3K4me3 (A, B), or anti-H3K9me3 (D, E). Scale bar = 100 mm. (A, D) infected rats
administered with placebo. (B, E) infected rats treated with vitamin B12. (C, F) = Optical density. Horizontal bars represent means. The effects of PM and
vitamin B12 were compared with 2-way ANOVA followed by Bonferroni post-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. PM, Pneumococcal meningitis.
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ROS, reactive nitrogen species (RNS), and secondary messengers

produced by microglia, astrocytes, endothelial cells, and

peripherally derived immune cells.

The activation of NF-kB through PRRs stimulates the

production of early-phase cytokines, IL-1b, TNF, and IL-6 (40,

41). These cytokines induce the up-regulation of several adhesion

factors on the vascular endothelium, leading to the influx of

leukocytes, primarily neutrophils, into the infected site, mainly

within the first few hours of infection (42–45). However, in PM,

it appears that IL-6 is not directly associated with promoting

pleocytosis in the CSF but rather with brain edema, BBB

disruption, and increased intracranial pressure (46). Leukocytes

cross the BBB by binding to selectins and rolling across the

endothelium (45). Integrins up-regulated on the vascular

endothelium facilitate the binding of leukocytes and subsequent

BBB migration (26).

During PM, endothelial cells and neutrophils produce RNS

such as nitric oxide (NO), catalyzed by endothelial nitric oxide

synthase (eNOS) and iNOS, respectively (47, 48). Neuronal nitric

oxide synthase (nNOS) appears to play a minor role in BM (49).

Moreover, in neutrophils, macrophages, and endothelial cells,

NADPH oxidase induces the production of ROS, such as

superoxide (O2
-), in response to infection (50). Although

neutrophils produce a higher amount of ROS compared to

macrophages, the latter cells produce a greater quantity of RNS

than the former (51). S. pneumoniae generates hydrogen peroxide,

which reacts with NO to produce peroxynitrite (ONOO-). This

highly reactive compound can cause lipid peroxidation and

destabilization of cell membranes, DNA damage, and subsequent

activation of the DNA repair enzyme poly (ADP-ribose)

polymerase (PARP) leading to cellular energy collapse and death

(48, 50). Moreover, ROS and RNS have been identified as mediators

of BBB breakdown (52).

Phagocytosis is a host cell endocytic response to particulate

matter like bacteria. The process of phagocytosis is complex and

comprises several events like particle binding, receptor clustering,

actin nucleation, pseudopod extension, membrane recycling, and

phagosome closure. The Fc gamma receptors (FcgR; subtypes
FcgR1A, FcgRIIA and FcgRIIIA) of the immunoglobulin

superfamily are the best-characterized receptors for phagocytosis

in avidly phagocytic cells of the hematopoietic lineage, like

macrophages, neutrophils, and microglia (53, 54).

The findings discussed above are in line with the results of a

previous study in which B12 was shown to down-regulate

proinflammatory genes that are up-regulated by PM by

promoting the hypermethylation of their promoter regions (4).

However, B12 also activated the anti-inflammatory canonical

pathways PPAR Signaling and LXR/RXR Activation, which are

inhibited by PM.

The peroxisome proliferator-activated receptors (PPARs) are a

group of nuclear receptor proteins that regulate the transcription of

genes involved in energy production, lipid metabolism, and

inflammation. The PPAR family includes PPARa and PPARg.
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Upon activation by their ligands, these two receptors down-

regulate the production of pro inflammatory cytokines such as

TNF, IL-6, and Il-1b. In the case of PPARa, these effects are due to
its capacity to inhibit NF-kB signaling pathway (55).

The Liver X receptors (LXRs) are a group of nuclear receptor

proteins that play a significant role in the regulation of lipid

metabolism and cholesterol homeostasis, including the conversion

of cholesterol to bile acids. LXRs have also been shown to modulate

immune and inflammatory responses, particularly in macrophages.

LXRs act as ligand-dependent transcription factors that form

heterodimers with the retinoid X receptor (RXR), which then

bind to LXR-responsive elements (LXREs) in DNA to promote

the expression of target genes. Interestingly, ligand activation of

LXRs not only activates transcription of target genes, but also

inhibits transcription from promoters of certain genes of

proinflammatory cytokines that do not contain LXREs, a

phenomenon referred to as trans-repression (56). Due to their

cholesterol sensing and anti-inflammatory activities, LXRs are

considered as integrators of metabolic and inflammatory

signaling (57).

The anticipated anti-neuroinflammatory and neuroprotective

effects of B12, as predicted through transcriptome analysis in

infected animals treated with the vitamin, were successfully

confirmed at the histological level (Figures 4 and 1, respectively).

The anti-inflammatory effect of B12 is further supported by the

deconvolution analysis of the RNA-Seq data, suggesting that B12

reduces the infiltration of neutrophils into the CNS in infected

animals. These computational findings also align with prior

research, which demonstrated that PM triggers the infiltration of

neutrophils, and to a lesser extent, monocytes, into the CNS (58).

The suggested increase in the B cell fraction within the

inflammatory infiltrate in the CNS due to B12, regardless of the

infection, warrants further investigation. It is important to note that

these results should be interpreted cautiously since the reference

dataset does not include microglial cells.

In infected animals, adjuvant therapy with B12 leads to the up-

regulation of another interesting gene, Npas4 (Supplementary

Material 2, Figure 3). Npas4 is a transcription factor with

pronounced expression in the brain, including the hippocampus,

where it plays a pivotal role in regulating the formation and

maintenance of inhibitory synapses in response to excitatory

synaptic activity (59, 60). By this mechanism, Npas4 may act as

a neuroprotective factor in the context of PM, where the influx of

excitatory amino acids into the CNS can induce neuronal

excitotoxicity (61). A previous work demonstrated that

administering B12 to infant rats with PM increases methyl

bioavailability and DNA methylation in the hippocampus (4).

However, the observed expression pattern of Npas4, as further

validated by RT-qPCR (Figure 3), cannot be attributed to

an increase in its promoter methylation induced by B12. To

explore potential explanations for the positive regulation of

genes like Npas4 by B12, histone markings were assessed by

immunohistochemistry in hippocampal sections. The up-
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regulation of Npas4 in PM animals treated with B12 indeed

correlates with the expected effect of the increased epigenetic

mark H3k4me4 observed within the granular layer of the

hippocampal dentate gyrus of animals in this particular group

(Figure 5). H3k4me3 is associated with the active transcriptional

state of chromatin, while H3k9me3 is linked to transcriptionally

inactive heterochromatin (62). Thus, the results presented herein

suggest that changes in histone methylation patterns may work in

concert with DNA methylation, ultimately contributing to a

positive balance in protecting progenitor cells and postmitotic

neurons in the hippocampal dentate gyrus during PM, as depicted

in Figure 1.

It is conceivable that the favorable impact of therapeutic

vitamin B12 in PM may also be partially mediated by its direct

effects in counteracting oxidative stress, preventing excitotoxicity,

and other related mechanisms. This study was limited by its sole

focus on exploring the impact of the vitamin on epigenetic and

transcriptional regulation.
5 Conclusion

In conclusion, adjuvant therapy with B12 modulates the

hippocampal transcriptional signature induced by PM in a way

that is consistent with the mitigation of several aspects of the innate

immune response activated by the disease. These aspects include the

recognition of pathogens by immune system cells, signaling via NF-

kB, production of pro-inflammatory cytokines, migration of

peripheral leukocytes into the CNS, and production of ROS and

RNS. B12 also activates anti-inflammatory pathways inhibited by

PM. Consequently, B12 attenuates neuroinflammation and

apoptotic cells death in the hippocampal dentate gyrus. The

effects of B12 at the transcriptional level are mediated not only

through the previously demonstrated DNA hypermethylation but

also by alterations in histone methylation patterns. Notably, no

adverse effects of B12 were predicted or observed, reinforcing the

well-known safety profile of this epidrug. These findings support

the proposition of a clinical trial to evaluate the potential of B12 as

an adjuvant therapy to mitigate hippocampal damage associated

with neuroinflammation in PM.
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