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Previously, it was believed that type III interferon (IFN-III) has functions similar to

those of type I interferon (IFN-I). However, recently, emerging findings have

increasingly indicated the non-redundant role of IFN-III in innate antiviral

immune responses. Still, the regulatory activity of IFN-III in adaptive immune

response has not been clearly reported yet due to the low expression of IFN-III

receptors on most immune cells. In the present study, we reviewed the adjuvant,

antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive

immunity; moreover, we further elucidated the mechanisms of IFN-III in

mediating the adaptive antiviral immune response in a thymic stromal

lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in

mucosal adaptive immunity. Research has shown that IFN-III can enhance the

antiviral immunogenic response in mouse species by activating germinal center

B (GC B) cell responses after stimulating TSLP production by microfold (M) cells,

while in human species, TSLP exerts OX40L for regulating GC B cell immune

responses, which may also depend on IFN-III. In conclusion, our review

highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive

immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP

axis may provide novel insights for clinical immunotherapy.

KEYWORDS
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1 Introduction

The interferon (IFN) response is a critical host defense mechanism against viral or

microbial infections. According to sequence homology, IFNs can be subdivided into type I

(IFN-I), type II (IFN-II), and type III IFNs (IFN-III). In humans and most mammals, IFN-I

mainly include IFN-a, IFN-b, IFN-ϵ, IFN-k, and IFN-w; IFN-II group has only a single
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1250541/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1250541/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1250541/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1250541/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1250541&domain=pdf&date_stamp=2023-09-22
mailto:mazhiyue2142@163.com
mailto:xieshenglong@med.uestc.edu.cn
https://doi.org/10.3389/fimmu.2023.1250541
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1250541
https://www.frontiersin.org/journals/immunology


Cao et al. 10.3389/fimmu.2023.1250541
member, IFN-g; IFN-III are the most recently discovered IFN

family in 2003, which are composed of four isoforms including

IFN-l1 (IL-29), IFN-l2 (IL-28A), IFN-l3 (IL-28B), and IFN-l4
(1). Humans have all IFN-III genes, while in mice, only the genes

coding for IFN-l2 and IFN-l3 are present and IFN-l1 is a

pseudogene (2, 3). IFN-l4 gene is the last to be discovered in

human hepatocytes in 2013, but the genomic region encoding IFN-

l4 is absent in mice (4). Although IFN-II is a key cytokine for

establishing adaptive immunity and mediating pro-inflammatory

and immunomodulatory features (5), IFN-I and IFN-III are more

essential for innate immune responses, which is initiated by the

recognition of pathogen-associated molecular patterns (PAMPs) via

pattern recognition receptors (PRRs). In the context of virus

invasion, viral DNA and RNA, as well as viral protein are sensed

by PRRs, thus triggering the downstream signaling cascades to

activate the production of IFNs from immune and non-immune

cells (6, 7). Distinctly, IFN-I binds to cell surface receptors

composed of two subunits IFNAR1 and IFNAR2, while IFN-III

binds to the heterodimeric IFN-lambda receptor (IFNLR)

composed of IFNLR1 and IL-10Rb. After IFNs binding to their

receptors, the Janus kinase/signal transducer and activator of

transcription (JAK/STAT) signaling pathway is activated, which

provides innate antiviral immune responses that depend on the

expression of IFN-stimulated genes (ISGs). Ubiquitin-specific

protease 18 (USP18) and suppressor of cytokine signaling 1

(SOCS1) are antagonisms of IFN-I, while IFN-III is less

influenced by these negative regulatory mechanisms (8–12).

Unlike IFN-I that is primarily produced by most immune cells,

IFN-III is mostly secreted by epithelial cells and few immune cells

like dendritic cells (DCs) (13). Additionally, although IFN-I

receptors are ubiquitously expressed, IFNLR1 is preferentially

expressed on the mucosal surface of epithelial cells rather than

immune cells, except for neutrophils, which have recently been

characterized as IFN-III responders (14–16).

Primarily, accumulating studies have provided evidence for the

dominant role of IFN-I in mediating innate and adaptive immunity

(17–21). Although IFN-l has been discovered as a part of innate

immune cytokines, its function in immune regulation remains

elusive. The non-redundant role of IFN-l in antiviral innate

immunity has been widely summarized, such as host defense in the

respiratory and gastrointestinal tracts, which can not be compensated

by IFN-I (22–29). However, currently, little is known about the role of

IFN-III in adaptive immune response. Over the past decade, the

relevant research about the effect of IFN-III on adaptive antiviral

immunity is limited, which may be due to the low expression of

IFNLR in most immune cells (30), resulting in a limited

understanding of the antiviral activity of IFN-III. With the further

deepening of research, numerous reports regarding the responsibility

of IFN-III in stimulating adaptive antiviral immunity continue to

emerge (2, 16, 30–32). Particularly, the revealed mechanism of thymic

stromal lymphopoietin (TSLP) unveils the mysterious role of IFN-III

in orchestrating adaptive immune response (33–35). The assistance

of TSLP in IFN-III-mediated immunoregulatory faculties triggers our

interest in further research. Hence, this review will focus on the

antiviral mechanisms of IFN-III in adaptive immune regulation,
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especially the IFN-III/TSLP axis in adaptive antiviral

immunoregulation, as well as the differences between IFN-III and

IFN-I in this antiviral immune system. Additionally, the inconsistent

research conclusions between mouse and human species will also be

discussed, yearning to provide novel viewpoints for vaccine

development and clinical antiviral therapeutics.
2 IFN-III in adaptive immunity

2.1 Adjuvant activity

Adjuvants are substances added to vaccines to enhance the

host’s antigen-specific immune response (36). The commonly used

adjuvants (such as aluminum salts) could enhance immune

response thought stimulating the NLRP3-inflammasomes and

promoting the release of cytokines (such as IL-1b) (37). Other

adjuvants (such as MF59 and AS03) exert functions by activating

dendritic cells and other antigen-presenting cells (38). Additionally,

some adjuvants interact with toll-like receptors (TLRs) or directly

target specific immune cell populations. Cytokines, as important

immunomodulatory agents, are available to affect any aspect of

immune responses in a more or less specific manner (39, 40). As a

newly described IFN family, the potential ability of IFN-III as a

vaccine adjuvant to affect adaptive immune response has not been

fully evaluated until an in vivo study shows that plasmid-encoded

IL-28B can increase the virus-specific IgG2a titer in serum. This

study reveals the significant potential benefits of IFN-III as an

adjuvant in adaptive immune regulation. Moreover, IFN-III has

been reported to further enhance splenic CD8+ T cell-mediated

immunity by reducing regulatory T cell population during DNA

vaccination (41). In another study, IL-28B adjuvant can remarkably

elevate the antibody levels and neutralization titers of herpes

simplex virus 2 in mice by DNA immunization. The IL-28B

adjuvant-regulated immune response is significantly more

effective than immunization with antigen DNA vaccine alone.

Due to the involvement of IL-28B, T helper 1/2 (Th1/Th2)

cytokines secreted by activated immune cells are crucial for

controlling viral infection and disease progression (42). In

addition, IFN-III subtype IFN-l2 can also influence the

production of antibodies against the influenza subunit vaccines.

As a result, the influenza virus hemagglutinin (HA)-specific total

serum IgG levels and its subclass IgG1 levels are about 15-fold

enhanced. Besides, IFN-l2 vaccination results in a significant

increase in IgA levels in the bronchoalveolar lavage (BAL) fluids.

Similar phenomenon can also be observed in another influenza

vaccine CTA1-3M2e-DD (designated M2e) applied with IFN-l2
(33). Obviously, IFN-l2 and IFN-l3 in mice can potentiate both

cellular and humoral immune response in mice, representing

promising molecular adjuvants. However, since the potential

protection of IFN-III upon virus vaccination exhibits specificity

on the mucosal surface, different immune approaches may affect the

phenotype of immune responses (16, 22, 33). The characteristics of

IFNLR enable IFN-III to serve as a significant front-line defense

against viral infections at mucosal sites.
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2.2 Adaptive antiviral effects

In addition to adjuvant activity, the IFN-III signaling also

directly contributes to adaptive immunity against virus infection,

which is mediated by direct stimulation of DCs or indirect effects on

other immune cells like natural killer (NK) cells, monocytes/

macrophages, T cells, and B cells to upregulate cytokines and

chemokines (2, 8, 32). IFN-III can indirectly modulate the

activation of NK cells and the inflammatory response of

monocytes/macrophages, thus exerting auxiliary benefits in the

antiviral activity of adaptive immunity against chronic hepatitis C

virus (HCV) (43). The common single-nucleotide polymorphisms

(SNPs) in the IFN-III signaling are strongly associated with the

treatment of chronic HCV infection (31, 32). In the context of

yellow fever virus infection, IFN-III deficiency leads to impaired T

cell activation and severe perturbation of pro-inflammatory

cytokines in mice (44) . In response to lymphocyt ic

choriomeningitis virus (LCMV) infection, IFN-III increases CD8+

T cell expansion and diminishes weight loss in the chronic

pathological stage instead of the acute infective phase, indicating

that virus-specific host interactions affect the regulatory mode of

IFN-III in the adaptive immune response (45). Further researches

investigate the critical role of the IFN-III signaling in combating

different subtypes of influenza A virus (IAV) strains (PR8 and X31),

which is orchestrated through indirect adaptive immune

mechanisms. The adaptive immunomodulation does not rely on

the direct attachment of IFN-III to CD8+ T cells, but rather on IFN-

III triggering DCs, particularly manipulating the migration and

function of CD103+ DCs, which is essential for optimal antigen

uptake and CD8+ T cell activation, thus providing permanent IAV

protection (46). The activation program of DCs is probably

regulated by TSLP, but it has not been confirmed yet.
2.3 Anti-tumor effects

IFN-III has been demonstrated to possess additional benefits in

suppressing tumors in mice by directly reducing the tumorigenicity

of tumor cells, inhibiting cell proliferation, and inducing apoptosis

(47–49). IFN-III also mediates indirect anti-tumor mechanisms by

regulating the tumor microenvironment (50). NK cells and CD8+ T

cells are recruited into the microenvironment to participate in the

anti-tumor mechanism of IFN-III in a murine model of melanoma

(51). A murine model of fibrosarcoma further confirms the indirect

anti-tumor mechanism of IFN-III. In vivo, antibody depletion of

NK cells, neutrophils, and CD8+ T cells, but not CD4+ T cells,

induces IL-28-mediated inhibition of tumor growth. Meanwhile,

the inoculation of IL-28-encoded fibrosarcoma cell line in mice

advances the production of IFN-g and evokes the activity of

cytotoxic T cells, indicating that the anti-tumor action of IL-28

also partly depends on IFN-g (52). The IFN-III signaling can target

mammary epithelial cells and promote the chemokine CXCL10

production, thereby recruiting CD4+ T cells into the tumor

microenvironment. Besides, the immune balance between Th1

and Th2 altered by IFN-III may take advantages in the treatment

of cancer (53). In addition, IFNLR-deficient (Ifnlr-/-) mice are more
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sensitive to experimental tumor metastasis and carcinogen-induced

tumor formation and are also more susceptible to the growth of NK

cell-sensitive lymphoma. Administration of IFN-III postpones the

fatality in the B16F10 melanoma model mice with adoptive cell

transfer and diminishes tumor growth in methylcholanthrene-

treated mice (54). Therefore, IFN-III may be utilized as an

adjuvant anti-tumor therapy with its ability to modulate

tumorigenesis directly and indirectly. Due to the lower expression

of IFNLR1 in most cell types, IFN-III offers a more selective targeted

anti-tumor ability with fewer side effects compared to IFN-I (55).
2.4 IFN-III in hypersensitivity disorder

2.4.1 Autoimmune disease
IFN-III was initially described as a specialized system that

inhibits viral replication on the surface of the epithelial barrier

while limiting inflammatory damage. However, although IFN-III

has complex effects on both innate and adaptive immunity, it is also

associated with systemic autoimmune diseases (56). IFN-III exerts

protective activity in chronic skin diseases such as psoriasis by

secreting CXCL10 and CXCL11, to attract NK cells, CD4+ and

CD8+ T cells. Elevated IFN-III in human keratinocytes contributes

to relieving psoriatic lesions (57). Importantly, IFN-III

demonstrates its heterogeneous characteristics in autoimmune

rheumatic diseases. Compared with healthy controls, patients

with systemic lupus erythematosus (SLE) have higher serum

levels of IFN-III (58), which is also correlated with the

upregulation of inflammatory cytokines including IL-6, IL-27,

Th17, and B cell activating factor (BAFF) (59–61). Data from

TLR7-induced lupus Ifnlr-/- mouse models support the

mechanistic role of IFN-III in SLE. The infiltration of CD4+ and

CD8+ effector memory T cells, B cells, macrophages, and

neutrophils in Ifnlr-/- mice are less than that in wild-type (WT)

mice, which contributes to weakening the over-activated immunity

and diminishing inflammation in the skin and kidneys (62). These

data suggest that IFN-III may promote the autoimmune pathology

of SLE. The serum level of IFN-l1 has also been found to increase in
rheumatoid arthritis (RA) patients (63), and the pro-inflammatory

cytokines like IL-6 and IL-8 are further increased in synovial

fibroblasts after IFN-l1 application (64). However, another

research demonstrates the protective effect of IFN-l2 in mice

with collagen-induced arthritis (65). Treatment with IL-28A

effectively reverses the development of arthritis by reducing IL-17

levels in joints and inguinal lymph nodes after restricting the

recruitment of IL-1b-expressing neutrophils (65). Therefore,

whether IFN-III is the culprit of RA remains unclear.

Furthermore, IFN-III also contributes to the pathogenesis of

autoimmune disease in the central nervous system (CNS). In an

experimental autoimmune encephalomyelitis (EAE) murine model

of multiple sclerosis (MS), Ifnlr-/- mice are associated with

diminished Th1 cells and decreased pro-inflammatory cytokines

compared with WT animals. The neutralization of IFN-III signaling

also promotes the recovery of autoimmunity in the CNS (66). Taken

together, these data highlight the intimate relationship between

IFN-III and autoimmune diseases.
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2.4.2 Asthma
For hosts with asthma, IFN-III has been reported to hamper

hypersensitized immunity. In experimental allergic models, the

application of IFN-III can not only reduce granulocyte

recruitment in BAL and inflammation in lung tissues (67) but

further modulate TH1 and TH2 responses in a dose-dependent

manner (68). Additionally, most patients suffer from asthma

exacerbation after virus infection. For that, IFN-III production

stimulated by the virus in the lung exerts antiviral effects without

triggering inflammation (69). IFN-III has been evidenced to

decrease IL-4, IL-5, and IL-13 production in asthma, which also

provides protective advantages in hypersensitivity disorder (70).

However, the role of IFN-III varies in patients of different ages and

with different disease stages; for instance, IFN-III level is generally

stable in stable asthma in adults, which represents more effective

disease control (71).
3 TSLP in mucosal adaptive immunity

TSLP is a short-chain hematopoietic cytokine that signals

through TSLP receptor (TSLPR), a high-affinity heterodimeric

receptor composed of IL-7a-chain and a unique TSLP chain (72).

TSLP is predominantly produced by epithelial cells in mucosal

tissue (73). Additionally, TSLP can also be produced by other

immune cells (such as fibroblasts, DCs, monocytes, and mast

cells) following stimulation (74). In most studies, TSLP is

described as a pathogenic cytokine that can trigger allergic

diseases (such as allergic dermatitis and asthma) (75) and induce

pro-inflammatory factors in autoimmune diseases (76–78),

particularly in barrier tissues (such as skin, lungs, and intestines)

(79). TSLP can activate DCs to promote a Th2-type immune

response associated with allergy disease. Moreover, TSLP also

affects regulatory T cells (Tregs) development, contributing to

immune tolerance (80, 81).

However, TSLP also performs a non-redundant role in antiviral,

antibacterial, and antitumor regulation to some extent. TSLP

interacts with TSLPR on CD11b+ DCs to participate in immune

responses and promote the long-term antiviral immunity of CD8+

T cells following influenza infection in mucosal tissues, especially in

the respiratory tract (82, 83). The TSLP-TSLPR pathway in CD11c+

cells is also essential for inducing respiratory antigen-specific IgA in

response to pneumococcal infection (84). Moreover, TSLP can

potently induce adaptive immunity mediated by CD4+ Th2 cells

to block the early carcinogenesis of breast cancer without causing

inflammatory responses in normal breast tissues (85). However,

recent researches have also suggested that TSLP might have both

pro-tumorigenic and antitumor effects, and its activity depends on

the tumor microenvironment context and the cancer type (74, 86).

As a B cell-associated cytokine, TSLP not only performs

immune activity via direct ingestion but also serves as a vaccine

adjuvant (87). With the participation of TSLP as an enhancer,

TSLP-activated DCs can induce much robust CD8+ T cell

expansion, thus providing more efficient anti- tumor
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immunotherapies than historically used adjuvant Bacillus

Calmette–Guérin (88). As an adjuvant of the human

immunodeficiency virus (HIV) vaccine CN54gp140, intranasal

inoculation of TSLP, rather than intradermal inoculation, triggers

potent and sustained serum and mucosal immune responses

without inducing additional inflammatory responses. With the

aid of TSLP, DCs located in the nasal mucosa are activated and

Th2-cell-skewed immune responses are strongly promoted,

followed by B cell differentiation and antigen-specific IgA and

IgG1 secretion (89). The combination of TSLP and IAV-M2e

vaccine can damper the weight loss of mice, and all animals can

survive during the challenge infection period. Furthermore, TSLP

stimulates an increase in serum M2e-specific IgG1 levels. The same

results can be observed when TSLP is given together with another

IAV vaccine haemagglutinin (HA), a commercial influenza vaccine

containing particle-derived hemagglutinin. In TSLPR deficient

(Tslpr-/-) mice, intranasal immunization with the IAV vaccine

fails to boost neither antigen-specific IgG1 nor nucleoprotein-

specific CD8+ T cells compared with WT mice (33, 35). Taken

together, these data verify the non-redundant role of TSLP in

mucosal adaptive immunity, whether administrated alone or

combined with vaccination.
4 IFN-III mediates adaptive immunity
via TSLP

4.1 Importance of the IFN-III/TSLP axis in
adaptive immunity

Considering that both IFN-III and TSLP are produced by

epithelial cells and both play roles in immune response as

described above, it is of great significance to investigate the

relationship between these two cytokines. Current studies have

shown that intranasal inoculation of influenza virus subunit

vaccine containing TSLP can effectively reinforce the serum IgG1

levels to a similar extent as IFN-l2 triggered. However, in Tslpr-/-

mice, immunization with M2e or HA-based Influsplit Tetra IAV

vaccine combined with IFN-III as an adjuvant inhibits the

enhancing effect of IgG1, indicating that TSLP can replace the

enhancing activity of IFN-III, and TSLP is required for IFN-III-

induced immune protection. Simultaneously, the losing function of

TSLP in the IAV vaccine in Tslpr-/-mice can’t be compensated even

in the presence of IFN-l2 (33). These results indicate that the

positive effects of IFN-III on the production of IgG1 and IgA

depend mechanistically on TSLP. Interestingly, thus TSLP-

mediated protective antiviral immunity of the IFN-III can

similarly be realized through rectal vaccine inoculation. Whereas

the stimulating effect of IFN-III as an adjuvant in influenza vaccine

is canceled if administered intraperitoneally or subcutaneously,

implying that these non-mucosal sites do not express significant

IFN-III-responsive cells to produce TSLP-dependent antibodies

(35). Taken together, we proved that TSLP was responsible for

the IFN-III-related adaptive immune system. The IFN-III/TSLP
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axis (refer to some immune interactions between TSLP and IFN-III)

participated in antiviral adaptive immune regulation at mucosal

sites, particularly in the respiratory and gastrointestinal

tracts (Figure 1).

Although IFN-III and TSLP are both produced by epithelial

cells and exert effects on antiviral and antitumor immune

regulation, a direct or well-defined interaction between the two in

moderating cancer or hypersensitivity disorder is still lacking.

Nevertheless, based on adaptive immunity exerted by the IFN-III/

TSLP axis in the context of virus infection, there remains an area of

ongoing research.
4.2 The IFN-III/TSLP axis is mechanistically
different in mouse and human

IFNLR is expressed in human B cells while lacking in mice,

which suggests that the IFN-III/TSLP axis may have different

immunoregulation functions in mice and humans (14). As

mentioned previously, TSLP is a cytokine modulating antibody

production towards IgA and IgG via the intranasal route (89). IFN-

III vaccination in mice infected with the influenza virus can strongly

trigger microfold (M) cells on the upper respiratory tract, which

induces TSLP production, CD103+ DCs migration, and promotes

the production of follicular helper T (Tfh) cells in lymph nodes.

Later, TSLP-dependent germinal center (GC) B cells in lymph

nodes are activated and thus numerous high-affinity IgA and IgG

antibodies are secreted (33, 90). Besides, apart from the critical role

of IFN-III in mucosal homeostasis (91), TSLP has also been found

highly expressed in antigen-stimulated colonic epithelial cells,

which in turn activates Tregs through the mTORC1 pathway to

maintain mucosal homeostasis (92). Hence, the IFN-III/TSLP axis

may also participate in modulating mucosal homeostasis to some

extent (Figure 2, left).
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In the human species, the IFN-III/TSLP axis seems to show

inconsistent roles. A previously in-vitro study has indicated that

IFN-III is associated with a decrease in Th2-cytokines, B-cell

proliferation, and IgG production in IAV-infected patients (93).

By contrast, another study has shown that human naïve B cells

interact with IFN-III stimulation and then differentiate into

plasmablasts through the mTORC1 pathway (94). In respiratory

epithelial cells, human Tslp genes are expressed during respiratory

syncytial virus infection (95). TSLP-activated DC cells can induce

Tfh cells to differentiate from naïve CD4+ T cells into a Th2-skewed

environment, mechanistically depending on OX40L, a ligand of

OX40 (96). Since previous in vitro studies have demonstrated that

human TSLP can modulate GC-B cells’ immune response and B

cells from humans directly respond to IFN-III (94, 97), it is

currently unknown whether the coordination of the IFN-III/TSLP

axis in adaptive antiviral immunity can also be replicated in

humans, as observed in mice (Figure 2, right).

The reason why IFN-III-stimulated B cells show completely

different functions between humans and mice is currently unclear.

However, there are indications that the IFNLRI gene in various cell

types is correlated with epigenetic changes, including DNA

methylation and histone modifications. As has been evidenced

previously, the transcriptional regulation of the IFNLR1 gene is

dynamic, which may influence IFNLR1 expression and result in

multiple functions. Indeed, histone deacetylase inhibitors can cancel

the silencing of the IFNLR1 gene and confer IFN-III responsibility

in previously inactivated human cell lines. The dynamic expression

of IFNLR may explain the conflicting role of IFN-III in adaptive

viral protection (98).

Considering that the in-vivo mouse models and in-vitro human

studies cannot completely demonstrate the exact operation of IFN-

III in the human body, a more relevant model on non-human

primates may exhibit closer effects. Interestingly, under IFN-l3
stimulation, macaques exhibit an adaptive immune response

consistent with the immune activity in mice. In rhesus macaques,

DNA vaccination encoding IFN-III exerts a positive effect on

enhancing the antiviral activity of antigen-specific CD8+ T cells.

Moreover, IFN-l3 adjuvant can further induce continuous Th1

cell-biased immune responses (99, 100).
4.3 IFN-I orchestrates adaptive immunity
via a TSLP-independent mechanism

IFN-I can promote adaptive immune response or possess

adjuvant activity against virus infection, bacterial burden, and

tumor invasion (18, 101–105). The role of IFN-I in autoimmune

diseases is bifacial. Though IFN-I is correlated with severe SLE

progression, it may also play a positive role in the pathological

improvement of RA (106, 107). Here we focus on the adaptive

antiviral activity of IFN-I.

IFN-I and IFN-III can commonly be secreted by most nucleated

cells, while IFN-III is particularly secreted by epithelial cells of

mucosal organs. Although the signaling pathways triggered by these

two types of IFNs are similar, their adaptive antiviral immune

responses display functionally different (8–12). IFN-I modulates
FIGURE 1

The IFN-III/TSLP axis in adaptive immunity. IFN-III and TSLP are both
produce by epithelial cells, but perform different biological activities.
IFN-III is critical in modulating tumor invasion or hypersensitivity disorders
(such as autoimmune disease and asthma); TSLP is the pathogen of
asthma and autoimmune disease but contradicts in cancer. Interestingly,
both IFN-III and TSLP show direct or indirect antiviral activities on
mucosal sites. The interaction between IFN-III and TSLP has also been
revealed by the latest researches (33, 35). Therefore, the IFN-III/TSLP axis
is responsible for adaptive antiviral immunity but is unclear in the context
of cancer or hypersensitivity disorder.
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adaptive immunity via direct or indirect mechanism that depends

on its impact on B and T cells involved in the adaptive immune

response. In indirect mechanism, IFN-I firstly binds to DCs

expressing IFNAR (108), thereby stimulating DCs to produce

chemokines and cytokines that enhance the survival and

proliferation of T cells including CD4+ T cells and CD8+ T cells,

as well as induce the differentiation of T helper cell subsets

including Th1 and Tfh cells (109–111). The activated Tfh cells

migrate to B cell follicles and participate in GC reactions to generate

high-affinity antibodies. Th1 cells on the other way express the

master transcription factor T-bet and produce high levels of IFN-g,
which promotes macrophage activation and enhances CD8+ T cell

responses. However, the effect of IFN-I on CD4+ T cell

differentiating into Tfh and Th1 may disparate, which depends on

the cells sensing these cytokines, the nature of the pathogen, and the

stage of the infection (112–115). IFN-I signaling also regulates B cell

response indirectly by inducing DCs to secret B cell stimulatory

cytokines, thereby promoting immunoglobulin (Ig) isotype

switching (116). This pathway acts on the mediation of IFN-I

between CD4+-differentiated Th1 and Tfh to prosper GC B cell

response (117). In the lungs, IFN-I-induced CXCL13 can initiate

CXCR5-dependent recruitment of B cells and support ectopic GC

formation (118). In direct adaptive immune regulation, IFN-I

signaling immediately activates T cell receptor, thus promoting T

cell proliferation and differentiation (110). IFNAR-deficient B cells

induce an impaired antibody response and subclass switching when

treated with IFN-a, indicating a direct effect of IFN-I on B cells

(119). Indeed, IFN-I is required for different stages of B cell

response, including early B cell activation and GC formation
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(120). Unlike IFNAR that is extensively expressed on most

hematopoietic and non-hematopoietic cells, IFNLR is absent on

the surface of mouse B and T cells (30), but specifically activated on

the epithelial surface (16). Hence, IFN-I exhibits an adaptive

immune response directly by interacting with immune cells,

instead of mucosal epithelial cells, which is completely different

from IFN-III (Figure 3).

Although IFN-I and IFN-III are engaged in almost the same

intracellular signaling pathway, it is of interest that, the functions of

IFN-I and IFN-III in their adjuvant activities for influenza vaccines are

different. On the one hand, when the influenza vaccine is applied with

IFN-aB/D intranasally, both the antigen-specific IgG1 and IgG2c levels

in serum and the IgA levels in BAL fluids are elevated. IFN-I can also

improve vaccine-induced serum antibodies after intraperitoneal

immunization. In contrast, IFN-l2-enriched influenza vaccine

promotes the IgA levels in BAL fluids and IgG1 levels in serum but

not IgG2c. Thus IFN-III-induced vaccine immune responses are not

observed either through intraperitoneal or subcutaneous routes. On the

other hand, while the immune activity of IFN-l2 plus vaccine is

dampened in Tslpr-/- mice, antibodies in both serum and BAL fluids

remain unaffected in TSLP-deficient mice administrated with IFN-aB/
D-involved influenza vaccine (33, 35). In summary, the adjuvant

activity of IFN-I is not restricted to mucosal tissue. The vaccine-

induced influenza virus resistance mediated by IFN-I does not rely on

TSLP immune regulation. On the contrary, TSLP is important for IFN-

III-mediated adaptive immune response (34). Hence, IFNs can be

selectively used in the application of clinical adjuvants. IFN-III may be

more suitable for mucosal immune regulation and epithelial surface

protection, whereas IFN-I provides more benefits in systematical
FIGURE 2

Engagement of the IFN-III/TSLP axis in adaptive antiviral activity: environment decided. The IFN-III/TSLP axis exerts distinct adaptive antiviral
activities in mice and human. In the murine environment (left), IFN-III induces TSLP production by virus-infected M cells and promotes the migration
of CD103+ DCs, thereby promoting TSLP-dependent GC B cell response by Tfh cells and fostering high-affinity antibody production. Antigen-
stimulated TSLP also regulates mucosal homeostasis by activating Tregs through the mTORC1 pathway. In the human environment (right), on the
one hand, IFN-III can either inhibit antibody production or enhance GC B cell response by naïve B cells through the mTORC1 pathway; on the other
hand, TSLP-activated DCs are capable of inducing naïve CD4+ T cells to differentiate into Th2 via the OX40L pathway, and this process may also
depend on IFN-III.
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immune responses (121). Therefore, the selective use of IFNs

contributes to efficient and targeted immunotherapy.
5 Discussion

The studies we mentioned above have revealed the non-

redundant role of IFN-III and TSLP in adaptive immune

modulation respectively. Moreover, the vital role of the IFN-III/

TSLP axis in adaptive response was further highlighted. As

described, the adaptive immune regulatory faculty of IFN-III is

indirect and depends on TSLP. IFN-III triggers TSLP synthesis

from M cells specialized in the upper respiratory tract; TSLP then

promotes the maturation and migration of CD103+ DCs to draining

lymph nodes, where DCs stimulate CD8+ T cells from naïve state

and activated GC B cells by affecting Tfh cells, thus producing virus-

specific IgG1 and IgA (33, 35). With the participation of adjuvants,

vaccine-induced protective immunity can achieve stronger immune

responses than antigens alone (122). In the mouse models of

influenza virus vaccination, adaptive antiviral immune responses

are markedly dependent on the previously unknown IFN-III/TSLP

axis, which is not found in IFN-I adjuvant activity (34). Cytokines,

as natural peptides closely related to the host immune response,

have unique advantages as potential vaccine adjuvants (123). We

herein highlighted the crucial function of IFN-III and TSLP

cytokines, as well as the IFN-III/TSLP axis in modulating

adaptive immune responses.

Nevertheless, the potential function of the IFN-III/TSLP axis in

modulating adaptive immunity has not been fully explained. On the

one hand, limited by the genetically different IFN-III system

between humans and mice, which IFN-III subtypes confer

immune activity in the IFN-III/TSLP system in both humans and

mice remains unclear. On the other hand, our review shows that
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IFN-III modulates mucosal adaptive immunity via TSLP in mice;

however, considering the second TSLP mRNA isoform (referred to

as ‘short-form TSLP’) identified from normal human bronchial

epithelial cells, whether two isoforms of TSLP (short-form and

long-form TSLP) provide the identical function in the IFN-III/TSLP

axis remains to be clarified (124). Moreover, when it comes to

clinical application, it is currently unknown whether the IFN-III/

TSLP axis is available to stimulate vaccine-induced antibody

production in the human upper respiratory tract, as observed in

mice. In addition, since IFNLR is specifically expressed on epithelial

cells, the protective effect of the IFN-III/TSLP axis is exhibited

particularly on mucosal sites through the intranasal and rectal

vaccination way rather than the intraperitoneal or subcutaneous

way. Therefore, mucosal vaccination seems to be the optimal choice

for children and the elderly, as this vaccination method produces

less pain and high compliance. Besides, in vivo studies have shown

that IFN-III induces fewer inflammatory responses than IFN-I in

the respiratory and gastrointestinal tracts (12, 14, 125, 126), while

TSLPR has also been reported to regulate intestinal inflammation

(127), the IFN-III/TSLP axis thereby exhibits many benefits when

coming into application. Although there are currently no approved

IFN-III drugs for use in humans, pre-clinical experiments have

suggested the bright prospects of IFN-III for its fewer side effects

compared with IFN-I. A phase IIb study has shown that pegylated

IFN-l1 treatment can produce a similar or improved immune

response against chronic hepatitis C virus infection with fewer side

effects when compared to IFN-I (128). Another phase IIb trial has

indicated the benefits of pegylated IFN-III therapy in chronic

hepatitis B patients by enhancing NK and CD8+ T cell response,

which therefore impeded viral replication and antigen levels, while

the treatment of IFN-I induced detrimental outcomes (129). Hence,

IFN-III vaccination and its regulated IFN-III/TSLP axis are

undoubtedly more efficient in future applications. Additionally,
FIGURE 3

Mechanisms of IFN-I in adaptive immunity: TSLP-independent. Epithelial cells-derived TSLP exerts adaptive antiviral activity by activating DCs that
trigger CD8+ T cell amplification, B cell differentiation, and antigen-specific antibody secretion. IFN-I regulates adaptive immune response directly by
stimulating immune cells (such as T cells or B cells), which is independent of TSLP, or indirectly by stimulating DCs to induce CD4+ T cells to
differentiate into Tfh or Th1 cells that can activate antibody production by GC B cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1250541
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2023.1250541
although the immunity benefits of IFN-III have been revealed, it is

not yet clear whether the IFN-III/TSLP axis functions in defeating

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in

the context of coronavirus disease 2019 (COVID-19) pandemic

(130–135). To date, various SARS-CoV-2 vaccines and

recombinant vaccines are consecutively developed and applied in

clinical practice (136–138). However, there still exist multiple

challenges. On the one hand, the adjuvants of SARS-CoV-2

vaccines are limited and only contain aluminum salt-based

adjuvants, emulsion adjuvants (MF9 and AS03), and toll-like

receptor agonists. On the other hand, vaccines-induced immune

response is restricted, usually leading to TH1 activation instead of

TH2. Besides, current vaccines are inoculated via the intramuscular

route, which may lack the protection of mucosal immune responses.

In this review, we illuminate that IFN-III can target mucosal

surfaces and provide adaptive immunoregulatory functions in

vaccine administration via the IFN-III/TSLP axis. Therefore, IFN-

III is a potential candidate for the SARS-CoV-2 vaccine adjuvant,

which can promote mucosal immunity and help to establish a

stronger immune defense line by supplementing adaptive immune

responses, especially by activating mucosal immunity, thereby

better combating coronavirus-caused respiratory infections.

Obviously, IFN-III has great values in clinical research and

application. Further experimental studies and clinical trials are

required to explore the characteristics of IFN-III in the field of

COVID-19 vaccines.
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