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The two-stage molecular
scenery of SARS-CoV-2 infection
with implications to disease
severity: An in-silico quest

George Potamias1*, Polymnia Gkoublia1,2

and Alexandros Kanterakis1

1Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for
Research and Technology-Hellas (FORTH), Heraklion, Greece, 2Graduate Bioinformatics Program,
School of Medicine, University of Crete, Heraklion, Greece
Introduction: The two-stage molecular profile of the progression of SARS-CoV-2

(SCOV2) infection is explored in terms of five key biological/clinical questions: (a)

does SCOV2 exhibits a two-stage infection profile? (b) SARS-CoV-1 (SCOV1) vs.

SCOV2: do they differ? (c) does and how SCOV2 differs from Influenza/INFL

infection? (d) does low viral-load and (e) does COVID-19 early host response

relate to the two-stage SCOV2 infection profile?We provide positive answers to the

above questions by analyzing the time-series gene-expression profiles of preserved

cell-lines infected with SCOV1/2 or, the gene-expression profiles of infected

individuals with different viral-loads levels and different host-response phenotypes.

Methods: Our analytical methodology follows an in-silico quest organized

around an elaborate multi-step analysis pipeline including: (a) utilization of

fifteen gene-expression datasets from NCBI’s gene expression omnibus/GEO

repository; (b) thorough designation of SCOV1/2 and INFL progression stages

and COVID-19 phenotypes; (c) identification of differentially expressed genes

(DEGs) and enriched biological processes and pathways that contrast and

differentiate between different infection stages and phenotypes; (d)

employment of a graph-based clustering process for the induction of

coherent groups of networked genes as the representative core molecular

fingerprints that characterize the different SCOV2 progression stages and the

different COVID-19 phenotypes. In addition, relying on a sensibly selected set of

induced fingerprint genes and following a Machine Learning approach, we

devised and assessed the performance of different classifier models for the

differentiation of acute respiratory illness/ARI caused by SCOV2 or other

infections (diagnostic classifiers), as well as for the prediction of COVID-19

disease severity (prognostic classifiers), with quite encouraging results.

Results: The central finding of our experiments demonstrates the down-

regulation of type-I interferon genes (IFN-1), interferon induced genes (ISGs)

and fundamental innate immune and defense biological processes and

molecular pathways during the early SCOV2 infection stages, with the inverse

to hold during the later ones. It is highlighted that upregulation of these genes

and pathways early after infection may prove beneficial in preventing subsequent

uncontrolled hyperinflammatory and potentially lethal events.
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Discussion: The basic aim of our study was to utilize in an intuitive, efficient and

productive way the most relevant and state-of-the-art bioinformatics methods

to reveal the core molecular mechanisms which govern the progression of

SCOV2 infection and the different COVID-19 phenotypes.
KEYWORDS

SARS-CoV-2, COVID-19, differential expression analysis, pathway enrichment analysis,
diagnostic and prognostic classifier models, machine learning
1 news.emory.edu/stories/2021/ 01/coronavirus_endemic_future/

index.html
1 Introduction

On January 10, 2020 WHO declared the outbreak of 2019-

nCoV, which was the first name assigned to the new disease. On

February 11, 2020 WHO named the disease as COVID-19

(COronaVIrus Disease 2019). On the same date the International

Committee on Taxonomy of Viruses (ICTV) announced “severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2)” as the

name of the causative agent for the disease. WHO declared the

outbreak a ′Public Health Emergency of International Concern′ on
January 30, 2020, and a pandemic on March 11, 2020. From the

beginning of the pandemic till today (mid-June, 2023) nearly 768M

infected cases and a total of about 6.95M deaths have been reported

worldwide (data from the WHO dashboard, covid19.who.int), of

course, with diverging figures across different continents, regions

and nations. The prevalence figures for the disease are still under

exploration, with modelling studies to report estimates with huge

divergences between them, from a low 1.5% (USA, serum study,

April 2020) to a high 13.7% (USA, PCR study, March 2020) (1). In

addition, virus variants as well as regional and workplace

characteristics strongly influences the respective estimates (2).

The reported rates for asymptomatic cases are more indicative,

and concern mainly cases with no clinical symptoms at the time

tested positive. According to the results of two meta-analysis studies

(3, 4), nearly 35-41% of confirmed cases do not develop noticeable

symptoms, and this has been attributed as the main cause of the

disease widespread (5, 6). As COVID-19 pandemic is still in

progress the figures regarding COVID-19 mortality rates remain

still vague. Of interest is the comparison between the mortality rates

of all different types of the Influenza (INFL) infection and COVID-

19. According to WHO, INFL results in 3-5 million serious cases

worldwide every year, with about 300,000 - 650,000 deaths

attributed to the disease. The majority of INFL infected people do

not seek for medical attention, and so, the actual INFL cases every

year are estimated to be about 100 times higher, which give us a raw

estimate of about 4 billion incidents. Under this assumption, a

crude estimate for INFL infection fatality rate (IFR) is about 0.1%.

This figure is substantially lower compared to respective COVID-19

IFR estimates which, according to a recent model-based study

regarding the first pandemic wave, ranges from 0.15–0.43% in

low-income to 0.79–1.82% in high-income countries with the

differences to reflect the older demography of high-income

countries (7). In a systematic model-based (a Bayesian framework
02
is utilized) meta-analysis that reviewed 3.012 age-specific

seroprevalence studies across 53 counties, the authors report a

decrease in the median IFR, from nearly 0.47% on April 2020 to

about 0.31% on January 2021 (8). In an enlightening paper, about

one year after the pandemic was declared (9), some interesting

results and estimates are reported regarding the immunological

characteristics of COVID-19 and its putative transition to an

endemic state. The authors postulate three rational assumptions

that support their hypotheses and estimates: (a) faster transmission

results in a quicker transition to the endemic state but with

increased mortality; (b) social distancing saves lives, delays

endemicity and buys crucial time for vaccine roll-out, and (c)

vaccination speeds up the transition to the endemic state and

reduces the death toll. Their modelling framework provides

forecasts about the progress of COVID-19 mortality figures in a

time scale of 2.5 to 10 years (considering different disease

reproduction numbers/R0). In addition, the authors provide a

very interesting figure that summarizes their forecast. It states

that COVID-19 will reach an IFR of about 0.1% (the actual IFNL

rate) about three years after the pandemic emergence, and even less

in subsequent years. Of course, for this to happen the virus must

spread to about 99% of the general population, either through

childhood infections (with no or low symptomatology) and/or

through mass vaccination programs1. The forecast seems to be

confirmed following the recent spread of the more ′relaxing’
Omicron SARS-CoV-2 variants and the roll-out of mass

vaccination programs worldwide.

Despite the fact that SARS-CoV-2 (henceforth as SCOV2)

became a pandemic, it is actually the third serious outbreak

caused by Coronaviruses in the last 20 years. The first SARS-CoV

(henceforth as SCOV1) outbreak happened in Hong Gong around

2002–2003 (10), and MERS-CoV (the 2nd SARS) at Saudi Arabia

and Jordan in 2012 (11, 12). The zoonotic origin of all three

infections is presented as the most justified theory so far, with

two scenarios proposed for their evolution and transfer to humans:

(a) natural selection in an animal host before zoonotic transfer and

(b) natural selection in humans following zoonotic transfer (13). A

number of studies have demonstrated a strong similarity between

the three infections in terms of their clinical manifestations (14, 15).
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In addition, it is well established that SCOV2 shares about 79+%

and 50% of its genome with SCOV1 and MERS, respectively (16,

17). The close phylogeny between SCOV1 and SCOV2 lineages

(both members of the sarbecovirus family) allows comparative

studies between SCOV2 and SCOV1 infections.

The pathogenesis of SCOV2 infection is complex, with the exact

reasons of its fatality still being explored. The fatal events of SCOV2

infection are linked with the so-called ′cytokine storm′ syndrome

(CSS) (18) that may also occur in other viral infections (e.g., Ebola

virus, Dengue virus, INFL/H1N1, SCOV1 and MERS-CoV).

Cytokines include interferons, tumor necrosis factors (TNFs),

interleukins, and chemokines that regulate host defense responses

and play an important role in mediating innate immune responses,

mainly by regulating inflammatory reactions, excessive chronic

production of which promote inflammatory diseases. CSS plays a

decisive role in the progression of SCOV2 infection and is an

important factor for severe and fatal outcomes (R. 19). Studies have

shown that COVID-19 patients with severe symptoms exhibit much

higher levels of white blood cells, neutrophils, procalcitonin and

other inflammatory markers compared to patients with mild

symptoms (20). It is postulated that CSS presents a systemic

inflammatory response to the infection, which leads to over-

activation of immune cells and to uncontrolled production of

inflammatory cytokines (21). In a recent study that compared the

immune profiles between patients with severe respiratory INFL

illness and moderate/severe COVID-19 patients, CSS was found to

be relatively rare among moderate and severe COVID-19 infections,

with most COVID-19 patients to exhibit suppressed immune

profiles, mainly noticeable in IFN signaling, relative to those

detected in INFL patients (22). This is in contrast to the findings

and assumptions dominating the pertinent literature (23), and were

challenged by other clinical meta-analysis studies (24). So, a

question of major importance relates to the staging of SCOV2,

i.e., the progression from an early to a later infection stage and

especially, to the molecular and regulatory machinery that underlies

and characterizes this progression.
1.1 SCOV2 molecular infection profile: An
impaired resistance-tolerance interplay

The two-stage progress of SCOV2 infection is directly linked to

the suppression of key host immune actions, with various studies

showing that SCOV2 causes the ′blocking′ of type I interferons

(IFN-I) and the suppression of immune/defense responses in the

first hours and days of infection (25). The aberrant functioning of

fundamental innate immune responses during the early infection

stage leads to uncontrolled virus replication, and to subsequent

excessive leukocyte recruitment and uncontrolled inflammatory

events at the later infection stages (26). IFN-Is are pleiotropic

cytokines composed by a family of IFN proteins which are

encoded by at least thirteen IFN-related genes (27). Contrasted to

other virus infections, the early stages of SCOV2 infection is carved

by reduced IFN-I/III responses with parallel induction of

proinflammatory chemokines (28). In a study that included

patients with fatal pneumonia caused by SCOV2, a two-stage
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disease evolution is signified and linked to respective viral-load

levels (29). The two-stage SCOV2 progression profile is also

highlighted in a recent single-cell RNAseq study contrasting the

infection profiles between children and adults, demonstrating that

the pre-activation of key interferon-stimulated genes (ISGs) in the

upper airways controls early SCOV2 infection in children (30). A

key to unlock and characterize the transition from suppressed

immune responses at the early stages of the infection to their

over-activation at later stages may be obtained from the interplay

between two fundamental host defense strategies, namely: resistance

and tolerance (31). Disease resistance engages various physiological

and molecular host immunity processes, both innate and adaptive,

aiming to reduce the pathogen’s load. IFN-signaling, with its

crosstalk with apoptotic, inflammation and cell stress-response

pathways, hold the primary role for these processes to be

triggered and elicit a host antiviral state (32). Disease tolerance

triggers host responses aimed to contain the damage to the affected

tissue and support its function by tolerating the pathogen’s burden.

In the upper respiratory tract/URT, the initial entry and replication

site for SCOV2, tolerance defense mechanisms aim to sustain the

exchange of gas and blood oxygenation. When resistance is

weakened and the virus spreads to the lower respiratory tract,

tolerant defense processes are triggered in order to preserve the

alveolar structures which are crucial for gas exchange. But, the same

IFN-I genes that guide the antiviral activities poses a ′dual-role′, as
they are engaged in the modulation of destructive immune

responses that cause tissue damage (33). So, down-regulation of

IFN-Is/ISGs during the early infection stages and their exaggerated

induction during the later stages may be proved harmful for the

smooth function of the needed tolerance processes, leading to

severe, and putatively fatal, clinical outcomes. It is indicative that

for COVID-19 severe cases with prolonged hospitalization, fatal

events mostly occur after the virus is cleared, a fact that designates

the continuation of host resistance mechanisms even if the threat is

eliminated (34).
1.2 The molecular canvas of immune and
defense response during the infection
course: the SCOV2 case

In the initial phase of (viral or bacterial) infection the first task

for the host cells is to identify virus invasion via specialized pattern

recognition receptors (PRRs) and the recognition of particular

pathogen-associated molecular patterns (PAMPs) (35). These

molecules are sensed by specific receptors and the triggering of

dedicated molecular pathways (e.g., Toll-like and RIG-I). Following

this course, various host defense processes are activated including,

direct antiviral molecules and inflammatory mediators such as IFN-

I/III, tumor necrosis factor (TNF), interleukin 6 (IL-6) and other

chemokines. Their role is to trigger a series of molecular processes

that lead to the induction of ISGs and various proinflammatory

cytokines (32, 36, 37). The main role of ISGs is to block virus

replication, with several negative IFN regulators to also target PRRs

in order to reduce the magnitude of host responses. The complex

canvas of IFN/ISGs during the full life-cycle of various viral
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infections, from their attachment to their maturation, is exemplified

in (38). The authors present a total of 24 genes and highlight their

specific key antiviral roles and activities, namely: CH25H − affects

virus entry at the host-membrane fusion events; IFITM1/2/3/5 −

inhibit endocytic-fusion events; TRIM5 − prevents uncoating of

viral RNA; MX1/2 family − block endocytic traffic of virus particles;

OAS1/2/3/L, RNaseL, MOV10 and ZAP − degrade and block

translation of viral mRNAs; IFIT1/2/3/4/5 − inhibit viral protein

translation; TRIM22 − inhibit viral transcription as well as the

replication and trafficking of viral proteins to the plasma

membrane; ISG15 − inhibit viral translation, replication and

egress; RSAD2 (Viperin) − inhibit viral replication at the plasma

membrane; BST2 (Tetherin) − trap the escaped mature virus

particles on the plasma membrane and inhibit viral release.

Despite this, SCOV2 has employed several different mechanisms

to escape the host immune/defense processes, mainly via the

‘blocking’ of IFN-signaling and induction of ISGs. This leads to

productive viral replication during the early stages of infection, a

situation that greatly contributes to COVID-19 pathology and

severity (39, 40). It is well-established that not only SCOV2 but

also other viral infections interfere with interferon signaling (39, 41)

but, in contrast to other respiratory viral infections, COVID-19

patients demonstrate downregulation of interferon signaling

pathways at the early infection stages (22, 42, 43). The crucial

role of dendritic cells (DCs) as the medium that bridges innate and

adaptive immunity is also signified, as DCs have a decisive role for

the activation of antiviral T-cells. They possess the unique ability to

present, through the major histocompatibility complex class I/

MHC-I, cell-associated antigens to CD8+ cytotoxic T-cells, with

IFN-Is to act as enhancers that promote DC maturation (44, 45). It
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is shown that reduced production of IFN-Is in DCs during the early

infection stages leads to aberrant T-cell responses, a fact identified

as one of the causes for severe SCOV2 infection outcomes (46).

Furthermore, in a bioinformatics analysis that relates DCs with

immune-induced diseases, a set of ten key genes are reported to play

a decisive role, namely: ISG20, IFITM1, HLA-F, IRF1, USP18,

IFI44L, GBP1, IFI35, IFI27 and IFI6/IFI27-like protein/ISG12

(47). There is also strong supportive evidence that SCOV2

activates the complement, mainly through direct recognition of

SCOV2’s spike S and nucleoplasmid N proteins, leading to

activation of various complement pathways and triggering of C3,

C4 and C5 components (48), with the subsequent direction of IgG

and IgM antibodies against the receptor-binding domains of virus

proteins (49, 50). The crucial role of the virus non-structural protein

1 (NSP1) in shutting down mRNA translation of IFNs,

proinflammatory cytokines and ISGs, through its binding to the

host 40S ribosomal subunit, has also been highlighted. This places

NSP1 as one of the main immune evasion factors of SCOV2, mainly

through suppression of RIG-I/DDX58 virus sensing proteins (51).

As a guide to the aforementioned observations, Figure 1 outlines the

main molecular events during the full SCOV2 viral life-cycle (left

part of the figure). At the right part of the figure the KEGG COVID-

19 disease pathway is shown, with the involved key regulatory sub-

networks highlighted in pink color. The annotations for the key

molecular processes taking place are shown in light-pink boxes. The

engaged signaling pathways (signaling of TNF, Toll-like receptors,

RIG-I receptors and JAK-STAT/IFN-signaling) are also indicated.

The aforementioned observations and discussion make clear

that the elucidation of the molecular landscape underlying and

governing SCOV2 infection should be explored and assessed in
A B

FIGURE 1

(A) The main molecular processes during SCOV2 infection [inspired and fully redesigned from (52)]. (B) Annotated COVID-19 KEGG pathway
(www.genome.jp/pathway/hsa05171); key regulatory subnetworks and engaged pathways are highlighted.
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relation to the progression stages of the infection. To this end, a

central element to our analysis methodology is the designation of

SCOV2 infection stages from the gene-expression profiles of cell-

line samples infected at different time-points. We conducted a series

of experiments and respective in-silico bioinformatics analyses on a

series of gene-expression datasets in order to explore a spectrum of

critical biological and clinical questions related to SCOV2 infection,

with the following targets: (i) establishment of a reliable

methodology for the designation of SCOV2 infection stages (e.g.,

early, late) on the one hand, and the designation of host SCOV2

infection phenotypes on the other (e.g., low/high viral-load levels or

early/late host infection responses) based on gene-expression

(RNAseq or microarray) profi les; (ii) identification of

differentially expressed genes (DEGs), enriched biological

processes and pathways, as well as creation of coherently grouped

networks of genes as representatives for the molecular fingerprints

underlying SCOV2 infection; (iii) explore and reveal the common

molecular fingerprints underlying both SCOV2 and SCOV1

infections, as well as respective fingerprints that differentiate

between SCOV1/2 and INFL infections; (iv) identification of

significant molecular imprints that distinguish between different

SCOV2 viral-load levels and between different severity phenotypes

(e.g., mild, moderate, severe/critical), and finally (v) induction and

assessment of COVID-19 diagnostic and prognostic machine-

learning (ML) models as an aid to support respective clinical

decision-making processes. To succeed our targets, in the next

section we detail on a carefully designed and documented

bioinformatics pipeline that operates on a set of indicative public-

domain gene-expression datasets in order to tackle a set of critical

tasks that concerns SCOV2 infection.
2 In the original publication it is reported that DESeq2’s ′median of ratios′

normalization method was used where, counts are divided by sample-

specific size factors determined by median ratio of gene counts relative to

geometric mean per gene (59).
2 Materials and methods

2.1 Computational framework

For our experiments and analyses we utilized the iDEP server

(bioinformatics.sdstate.edu/idep). iDEP is an R-Shiny web-based

application equipped with state-of-the-art bioinformatics

techniques based on the smooth integration of respective R-

packages (53), including: differential expression gene (DEG),

exploratory (k-means clustering, principal components analysis/

PCA) and enrichment/pathway analysis, (54, 55), as well as

advanced visualization capabilities (heatmaps, hierarchical

clustering trees, enriched pathway maps and gene networks). To

further support our analyses, and beside the annotation services

provided by iDEP, we utilized g:profiler (56) for the conversion of

gene IDs between different gene-expression annotations

(biit.cs.ut.ee/gprofiler/gost). A novel and fundamental component

of our analytical methodology is the construction of coherent

clusters of networked genes as the representative core molecular

fingerprints that characterize SCOV2 infection stages and the

different host phenotypes (i.e., the low/high viral-load levels and

the early response to the infection). For this, we relied on the

STRING server (string-db.org) for functional annotation,

clustering, gene network construction and visualization of
Frontiers in Immunology 05
correlations and interactions between the induced DEGs. In

section 2.1.2 we present in more detail the methods and

techniques that were utilized in our experiments.
2.2 Tasks, experimental set-up and
analysis pipeline

2.2.1 Tasks, datasets and setup of experiments
Fifteen gene-expression datasets from NCBI’s gene expression

omnibus/GEO repository (www.ncbi.nlm.nih.gov/geo) were used in

order to address the aforementioned biological and clinical

questions (Table 1). The whole quest is organized around six

tasks that correspond to the raised biological/clinical questions.

The datasets that were used in order to handle and cope with each

task and conduct the respective experiments, accompanied by the

respective data pre-processing details, are presented in the sequel.

Recognizing the value of reproducible science, we provide at the end

of the deposited Supplement File (Supplement.pdf) a table

(Supplementary Table 1) that summarizes all the data-

preprocessing details (e.g., sample/gene filtering and data

normalization specifics), as well as, the specific parameterization

setups for each of the performed experiments (e.g., false discovery

rate/FDR and fold-change/FC cutoffs, the number of induced

differential genes/DEGs and the number of fingerprint genes). To

support the need of replication studies two additional files are also

provided as Supplementary Material: (i) the compressed file

Datasets.zip that contains all the processed datasets used in the

conducted experiments, and (ii) the file DEGs.xlsx that lists the

induced DEGs and fingerprint genes that were resulted from all the

conducted experiments, accompanied by their unions and

intersections being reported in the paper.

2.2.1.1 Task1: The two-stage SCOV2 core
molecular fingerprint

To address this task we used two datasets, GSE151513 and

GSE158930. GSE151513 comprises gene-expression profiles from

Calu-3 human lung adenocarcinoma cell-lines infected with

SCOV2 virus at a multiplicity of infection (MOI) of 2. Poly-A

RNAseq gene-expression profiles were acquired with the ′Illumina

HiSeq 2500 (Homo sapiens)′ platform (15,761 of them are included

in the provided original dataset as gene-filtering was applied). The

cell-line samples were collected at six hours post-infection (hpi)

time-points: 0, 1, 2, 3, 6 and 12 hours, in triplicates, (n=18, three

replicates for each infected sample). No normalization was

performed as the original data were already normalized2. The

results of the study are published in (57). We applied gene

filtering on the available RNAseq data, removing 40% of gene-

transcripts, ranked by their maximum expression level across all

samples, leaving 9,457 gene-transcripts for further analysis. The
frontiersin.org
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results from the experiment conducted with the GSE151513 dataset

are presented in section 3.1.1, and demonstrate a two-stage core

molecular fingerprint that contrast between early and late SCOV2

infection stages. In order to further confirm our findings, we used

the GSE158930 RNAseq dataset. GSE158930 comprises gene-

expression profiles from ALI (air-liquid interface) cultures of

primary human bronchial epithelial cells (HBECs) infected with

SCOV2 virus at a MOI of 1. RNAseq gene-expression profiles were

acquired with the ′Illumina NextSeq 500′ platform (57,905 Ensembl

gene-transcripts). The cell-line samples were collected at five hpi

time-points: 4, 24, 48, 72 and 96 hours (in du-/tri- or quadr-

uplicates, n=19 infected samples). The results of the study are

published in (58). We also applied gene filtering, removing gene-

transcripts with CPM<5 across all samples, leaving 9,833 gene-

transcripts for further analysis. In addition, sample filtering was also

applied, keeping only the duplicate samples (i.e., replicates 1 and 2,

as not all samples were profiled in tri- or quadru-plicates), leaving

10 infected samples to analyze. The filtered gene-expression counts

were transformed using the variance stabilizing transformation

(VST) method (59). The results from the experiment with the

GSE158930 dataset are also presented in section 3.1.1.
3 HUGO Gene Nomenclature Committee, www.genenames.org
2.2.1.2 Task2: The common molecular fingerprint of
SCOV2 and SCOV1 infections

To contrast the molecular profiles underlying SCOC2 and

SCOV1 infections we used two datasets, GSE33267 and

GSE148729. GSE33267 includes the gene-expression profiles of

Calu-3 cell-line samples infected with the wild-type (icSARS) or

the DORF6 (mutant not expression ORF6 protein) SCOV1 strains

at a MOI of 5. The gene-expression profiles were acquired with the ′
Agilent Whole Human Genome Microarray 4x44K G4112F

(Feature Number version)′ microarray platform (33,631 gene-

probes). Samples were collected in triplicates at eleven different
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hpi time-points, namely: 0, 3, 7, 12, 24, 30, 36, 48, 54, 60 and 72

hours. The results from this study are published in (60). No data

normalization was performed as the original gene-expression

profiles were already quantile normalized and log2 transformed.

We retained just the icSARS/SCOV1 samples (n=33); the mock-

treated and DORF6 samples were discarded. The feature numbered

probes were mapped to human gene nomenclature committee/

HGNC3 official gene symbols, relying on the respective iDEP’s

mapping process. Gene filtering was also applied where, 40% of

genes ranked by their maximum expression level across all samples

were discarded, leaving 10,353 genes for further analysis. The results

from the experiment conducted with the GSE33267 dataset are

presented in section 3.1.2, and show a similar two-stage core

molecular fingerprint underlying both SCOV2 and SCOV1

infections. Confirmation of the findings was done using the

GSE148729 dataset. GSE148729 comprises RNAseq gene-

expression profiles of Calu-3 human cell-line samples infected

with SCOV1 (Frankfurt strain) and SCOV2 (patient isolate

BetaCoV/Munich/BavPat1/2020| EPI_ISL_406862) viruses at a

MOI of 0.33, using bulk and single-cell polyA-RNA, smallRNA,

and totalRNA sequencing. In our experiments we focus on the total-

RNAseq gene-expression data. Gene-expression profiles were

acquired with the ′Illumina NextSeq 500/HiSeq 4000 (Homo

sapiens)′ platform (40,648 Ensembl gene-transcripts) over three

hpi time-points: 4, 12 and 24 hours, in duplicates (n=12, 6 samples

for each virus infection). The results of this study are published in

(61). Gene filtering was also applied where, gene-transcripts with

CPM<5 across all samples were discarded, leaving 10,535 Ensembl

gene-transcripts for further analysis, with their count values being

VST transformed. The results from this experiment are also

presented in section 3.1.2.
TABLE 1 Datasets used to address the posted biological/clinical questions and tackle the respective tasks (refer to section 2.1.1).

Dataset Sample type Platform # Task

GSE151513
cell-lines RNAseq 1 The two-stage SCOV2 core molecular fingerprint

GSE158930

GSE33267
cell-lines

Microarray
2 The common molecular fingerprint of SCOV2 and SCOV1 infections

GSE148729 RNAseq

GSE47960 cell-lines Microarray 3 Differentiation between SCOV1 and INFL/H1N1 molecular profiles

GSE152075 patient
samples

RNAseq 4 Differentiation between the molecular fingerprints of low/high SCOV2 viral-load levels
GSE156063

GSE166190 patient
samples

RNAseq 5 The molecular fingerprints of early SCOV2 infection responders
GSE161731

GSE156063
GSE188678
GSE163151

patient
samples

RNAseq 6 Building and assessment of SCOV2 diagnostic classifier models

GSE152418
GSE178967
GSE172114
GSE177477

patient
samples

RNAseq 6 Building and assessment of SCOV2 prognostic classifier models
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2.2.1.3 Task 3: Differentiation between SCOV1 and INFL/
H1N1 molecular profiles

To address this task, we used the GSE47960 dataset that is

widely used in various relevant studies. It contains the gene-

expression profiles of human airway epithelial (HAE) cell cultures

infected with the wild-type (icSARS) SCOV1 strain (n=34), and the

H1N1 influenza strain (n=20), with samples collected at nine

different hpi time-points: 0, 12, 24, 36, 48, 60, 72, 84 and 96

hours for SCOV1, and seven hpi time-points: 0, 6, 12, 18, 24, 36

and 48 hours for H1N1. The larger extend of SCOV1 hpi time-

points is expected, as the respective immune/defense responses, in

contrast to INFL/H1N1, are delayed in SCOV1 infection. This is

mainly due to the larger extent of the respective incubation periods;

a mean of 2 days for the INFL/H1N1 2009 pandemic, 2-7 days for

SCOV1 and 4-12 days for SCOV2 (62). Gene-expressions were

profiled with the ′Affymetrix Human Gene 1.0 ST Array′
microarray platform (32,067 gene-probes). The results of the

study are published in (63). In our experiment we kept just the

samples infected with the icSARS/SCOV1 strain; the samples

infected with other strains (SARS-dORF6 and SARS-BatSRBD)

were discarded. No normalization was performed, as the gene-

expression profiles in the original dataset were already quantile

normalized, and no gene-filtering was applied. The results of this

experiment are presented in section 3.1.3 and demonstrate a

stronger, compared to SCOV1, immune/defense response profile

during the early H1N1 infection stage.

2.2.1.4 Task 4: Differentiation between the molecular
fingerprints of low/high SCOV2 viral-load levels

To address this task we used two datasets, GSE152075 and

GSE156063. GSE152075 comprises RNAseq profiles (acquired with

the Illumina ′NextSeq 500′ gene-level platform; 35,784 genes) of

nasopharyngeal (NP) swabs from 430 SCOV2 infected individuals

and 54 negative controls. In our experiments we retained and

focused just on the adult samples (age >= 20). SCOV2 viral-load

were assessed by N1Ct, the PCR cycle threshold (Ct) of the SCOV2

nucleocapsid N1 target. As suggested in the original study

publication (64), N1Ct values were discretized into three intervals

that reflect respective viral-load levels: LOW (25.1 ≤ N1Ct ≤ 30.5,

average N1Ct = 26.4, n=59) and HIGH (12.3 ≤N1Ct ≤ 18.0, average

N1Ct = 16.2, n=72); the samples with medium viral-load levels (18

≤ N1Ct ≤ 25) were disregarded as we are interested to contrast

between extreme viral-load levels. Gene filtering was applied where,

genes with CPM<2 in at-least 59 samples (the number of samples

with low viral-load) were filtered-out, leaving 8,130 genes for

further analysis. The original gene read-counts were VST

transformed. The results from the experiment with the

GSE152075 dataset are presented in section 4.1, and indicate that

low viral-load cases exhibit a suppressed immune response profile

similar to the one underlying the early SCOV2 infection stage.

Confirmation of findings was performed using the GSE156063

dataset. GSE156063 comprises RNAseq profiles acquired with the

′Illumina NovaSeq 6000′ ensemble gene-transcript level (15,979

Ensembl transcripts are included in the provided original dataset as

gene-filtering was applied) of nasopharyngeal/oropharyngeal (NP/
Frontiers in Immunology 07
OP) swabs from 234 patients with acute respiratory illnesses (ARIs),

infected either by SCOV2 or by some other virus or bacteria. The

results of the study are published in (65). The infection type for each

sample was acquired early in the infection stage by metagenomic

sequencing (mNGS). mNGS integrates infection transcriptional

signatures, and has proved its significance as a diagnostic tool for

the assessment of ARIs, including those caused by SCOV2 infection

(66–69). Viral-load is quantified in reads-per-million (RPM) values.

In our experiments, only the samples with log10RPM>0 were

retained for further analysis. The log10RPM values were quantile

discretized into four nominal values, namely: too-high (average

log10RPM=5.4, n=17), high-to-medium (4.3, n=16), low-to-

medium (2.3, n=16), and too-low (1.15, n=17); samples with

medium viral-loads (average log10RPM=3.0) were disregarded.

Discretization was performed using scikitlearn’s KBinsDiscretizer

python implementation following a quantile strategy. Too-high and

high-to-medium samples were assigned to the HIGH viral-load

class (3.75 ≤ log10RPM ≤ 5.89, average = 4.85, n=33), and the too-

low and low-to-medium samples to the LOW class (0.14 ≤

log10RPM ≤ 2.55, average = 1.69, n=33), respectively. Gene

filtering was additionally applied where, genes with CPM<5 over

all samples were filtered-out, leaving 3,551 gene-transcripts for

further analysis. The original gene read-counts were VST

transformed. In both experiments we focused on the SCOV2

infected samples in order to differentiate between HIGH and

LOW viral-load levels. The results from the experiment with the

GSE156063 dataset are also presented in section 4.1.

2.2.1.5 Task 5: The molecular fingerprints of early SCOV2
infection responders

To address this task we utilised two datasets, GSE166190 and

GSE161731. GSE166190 includes RNAseq profiles of a total of 20

SCOV2 infected individuals, 11 adult (≥20 years old) and 9 children

(≤16 years old). RNAseq profiles were acquired with the Illumina ′
HighSeq 4000 (Homo sapiens)′ platform; 58,825 Ensembl gene-

transcripts. For each individual the days post onset of symptoms/

DPOS, as reported by each individual, were recorded and divided

into five intervals: interval 1 (0-5 DPOS; the early infection stage),

interval 2 (6-14 days), interval 3 (15-22 days), interval 4 (23-35

days), and interval 5 (36-81 days). The original publication of this

study (70) report results that contrast between the response profiles

of children and adults. Gene filtering was applied where, gene-

transcripts with CPM<3 in at-least half of the samples were

discarded, with the read-counts being VST transformed. From

them, gene-transcripts with official HGNC gene symbols were

retained for further analysis (13,027 unique genes). The results

from the experiment with the GSE166190 dataset are presented in

section 4.2, and show that early responders exhibit a robust antiviral

immune response in the early stages of infection which, inverses the

standard two-stage SCOV2 infection profile. To further confirm our

findings, we used the GSE161731 dataset. GSE161731 includes

RNAseq profiles of a total of 77 whole-blood samples from

COVID-19 patients (the RNAseq gene-expression profiles were

acquired via the ′Illumina NovaSeq 6000′ platform; 60,675

Ensembl transcripts). Whole blood samples were collected
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between 1-35 days post infection and divided based on disease

severity and time from symptom onset. In particular, as reported in

the original study publication (71), the individuals were assigned to

three classes according to their reported time from onset of

symptoms, early (≤10 days, the EARLY responders), intermediate

(>10-21 days, the intermediate/MID responders) and late (>21

days, the LATE responders), with some of them being

hospitalized. Each individual was sampled at different post

infection time-points. For each of the multi-sampled individuals

we kept just one sample, the one that corresponds to the individual’s

earliest sampling. That is, if an individual is assigned to the early

class (i.e., reported in its first hospital visit, ≤10 days from the onset

of symptoms), and was then re-sampled at later time-points, the

sample of the first hospital visit is retained. In this way we assure

that the gene expression profile of each retained sample

corresponds to an early, intermediate or late response of each

individual. The samples were assigned to the following classes:

EARLY_NO (not hospitalized early responders, n=9), EARLY_YES

(hospitalized early responders, n=5), MID_NO (not hospitalized

intermediate responders, n=19), MID_YES (hospitalized early

responders, n=6) and LATE_NO (not hospitalized late

responders, n=6). With this process 45 unique SCOV2 infected

individuals were retained for further analysis. A new class variable is

introduced, ′onset_hosp′, that holds the respective combined (days

from symptoms onset and hospitalization status) nominal values.

Gene filtering was also applied where, the transcripts with CPM<5

in at-least 10% of the retained samples, and which are mapped to

official HGNC gene symbols, were retained for further analysis

(11,497 unique genes), with the read-counts being VST

transformed. The results from the experiment with the

GSE161731 dataset are also presented in section 4.2.

2.2.1.6 Task 6: Building and assessment of SCOV2
diagnostic and prognostic classifier models

The union of seven lists of genes being included in the core

molecular fingerprints induced from specific experiments

aforementioned above compose a set of 52 genes that were

utilized for the devise and assessment of SCOV2 and COVID-19

diagnostic and prognostic classifiers, respectively. The seven

fingerprint gene used are: (a) the three gene sets that characterize

the progression of SCOV2 infection and resulted from the

experiments with datasets GSE151513, GSE158930 and
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GSE148729 (tasks 1 and 3), (b) the two gene sets that

characterize the low viral-load profile of infected individuals and

resulted from the experiments with datasets GSE152075 and

GSE156063 (task 4), and (c) the two gene sets that characterize

the profile of early responders to the infection and resulted from the

experiments with datasets GSE166190 and GSE161731 (task 5)

(please refer to section 5). The 52 genes were assessed for their

power in the diagnosis of SCOV2 infection and the prognosis of

COVID-19 when used as descriptors in respective classifier models.

The diagnostic classifiers aim to differentiate between SCOV2 and

other (viral or non-viral) acute respiratory illness (ARIs). Three

studies and respective datasets were utilized for this task, namely:

GSE156063 (65), GSE188678 (72) and GSE163151 (73). The

performances of the induced classifiers were compared with the

results reported in the respective publications. The prognostic

classifiers aim to predict the different SCOV2/COVID-19

phenotypes with respect to different clinical outcomes (e.g.,

severe/critical vs. mild-moderate/non-critical) or symptomatology

(symptomatic vs. asymptomatic) of real patient cases. Four studies

and respective datasets were utilized for this task: GSE152418 (74),

GSE178967 (75), GSE172114 (76) and GSE177477 (77). The

performance of the induced prognostic models was also assessed

a n d c omp a r e d w i t h t h e r e s u l t s r e p o r t e d i n t h e

respective publications.

2.2.2 Analysis pipeline
For our in-silico experiments we followed a specially designed

analytical workflow, the basic operational components of which are

outlined in Figure 2. As we have already mentioned, in an effort to

serve reproducible science and replication of results, at the end of

the Supplement File (′Supplement.pdf′), a table is provided

(Supplementary Table 1) that summarizes the specific setup for

each of the performed experiment.

2.2.2.1 Gene filtering and normalization

For RNAseq datasets delivered in gene count formats a

minimum CPM (counts per million) cutoff was set for a

predetermined number of samples (e.g., CPM ≥ 3 in half of the

samples). In all other cases, a filtering of gene-probes or genes was

performed according to a preset minimum expression value. For

these experiments, 40% of low expressed genes (based on their

maximum value across all samples) are discarded. In addition,
FIGURE 2

The overall analytical pipeline – operations and their flow.
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probes or Ensembl-transcripts not mapped to HGNC official

symbols are also filtered-out. Mapping of gene-probes or Ensembl

transcripts to HGNC official symbols was done either by the

automatic iDEP’s mapping service or, with the help of the g:

profiler server4. Not normalized RNAseq data were normalized

with DESeq’s variance stabilizing transformation/VST method (59),

as implemented in the iDEP server. The specific gene filtering and

normalization processes followed in each experiment were outlined

in previous section 2.1.1 where, in the presentation of each task the

data-preprocessing details for the respectively used datasets are

presented (refer also to Supplementary Table 1 at the end of the

provided Supplement File (Supplement.pdf).

2.2.2.2 Designation of infection stages and phenotypes

A central component of our analysis is the identification of

SCOV2 infection stages and/or phenotypes based on the available

gene-expression profiles. To do so, the genes of the input dataset

were clustered using the k-means algorithm. The pre-defined

number of clusters was determined with the Elbow method − an

effective method used by various biomedical and gene-expression

analysis studies (78, 79). In all experiments, k-means was applied on

a set of 500-2000 most variable mean-centered genes. The genes of

each cluster were then passed through an enrichment analysis

process in order to identify and focus on the cluster being heavily

enriched in GO-biological-processes (geneontology.org) that relate

to host immune and defense responses. With a careful inspection of

the PCA plot of the samples constrained on the genes included in

this cluster, the clearly separable sample groups are identified. We

take these groups as representatives, either of the different infection

stages (e.g., early/high) or, the different viral-load phenotype classes

(e.g., high/low), with the samples of each group to be assigned to the

respective infection stage or viral-load class. The specifics of the

designation of infection stages or phenotypic classes followed in

each experiment are detailed in the respective sections and

paragraphs. For a detailed example of the methodology followed

for the designation of infection stages please refer to the paragraph ′
Designation of SCOV2 infection stages′ in section 3.1.1 and its

supporting (Figures 3B–D). Such an elaborate and thorough

designation of infection stages and phenotypes, represents a novel

rationally designed approach for the analysis of relevant gene-

expression data. Specifically, in the case of SCOV2 infection, it

highlights and enables the emergence of critical differential genes

and molecular fingerprints that characterize the infection.

2.2.2.3 Differential expression gene analysis

For each experiment, the already normalized or VST

transformed gene-expression profiles of samples are assigned to

respective infection stages or phenotype classes which, were then

passed to a differential expression gene (DEG) analysis process. The

well-known limma R package (80, 81), as implemented in the iDEP

server, was utilized for this. Limma was preferred for DEG analysis

as it is applied directly on transformed/normalized gene-expression

profiles and not on read counts (also suggested by the developers of
4 g:profiler/Gene ID conversion, https://biit.cs.ut.ee/gprofiler/convert
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iDEP). DEGs are induced by setting FDR (false discovery rate) to

0.05 and varying fold-change (FC) thresholds in the different

experiments. In most cases the minimum FC threshold was set

equal to 2, but for datasets with a large number of induced DEGs,

and in order to ease their biological interpretation, higher FC

thresholds were chosen. The specifics of DEG analysis followed in

each experiment are detailed in the respective sections and

paragraphs. Consult also Supplementary Table 1 ate the end of

the provided Supplement File (′Supplement.pdf′).

2.2.2.4 Enrichment & pathways analysis

The identified up-/down-regulated DEGs were subjected to

enrichment analysis for the following entries: GO-biological

processes (82, 83), KEGG (www.genome.jp/kegg/pathway.html)

and REACTOME (reactome.org) molecular pathways, as well as

for specific gene hallmark signatures from the Human MSigDB

col lect ions (http: / /www.gsea-msigdb.org/gsea/msigdb/

collections.jsp) (84). The Benjamini–Hochberg adjusted

hypergeometric test was used and applied for the identification of

enriched entries, using the fgsea R package (85) as implemented in

the iDEP server.

2.2.2.5 Coherent clusters of DEGs

We heavily relied on the STRING server (string-db.org, version

11.5) (86), and in particular on the respective clustering services it

offers, in order to form coherent networked gene clusters from the

identified DEGs. We consider and interpret these clusters of

networked genes as representative core molecular fingerprints for

the designated SCOV2 infection stages or phenotypes. STRING

collects, scores and integrates a spectrum of publicly available

sources (e.g., ENSEMBL, GeneCards, KEGG, NextProt, RefSeq

and UniProt) of physical and functional protein-protein

interaction information, coupling them with computational

predictions, to offer operations that ease the formation of

comprehensive protein/gene networks (86). Downstream analysis

and interpretation of results was supported by the MCL (Markov

Clustering) clustering algorithm which was applied on the STRING

formed network of the identified DEGs. MCL is a fast and scalable

unsupervised graph clustering algorithm (87). It has proven its

superiority in extracting clusters from interaction networks (88),

and its effectiveness for protein association network analysis (89).

MCL is applied on the weighted network of induced DEGs, with the

weight of connecting gene edges acquired from relevant

information sources (text-mining, experimental, databases, co-

expression, neighborhood, gene-fusion and co-occurrence). By

retaining the highly confident connections (the highest cutoff of

0.9 was used) the formed robust and coherent clusters of gene

networks offer informative hints about the key molecular

fingerprints underlying SCOV2 infection, and serve the biological

interpretation of our findings. Exploiting the rich sources of

molecular knowledge managed by STRING to generate gene

association networks, and in particular, our focus on the coherent

clusters of networked genes as key molecular fingerprints

underlying infection, represent a novel and at the same time,

rational and well-designed analytical approach for corresponding

efforts in the field. The STRING visualization services were used in
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order to picture the constructed gene network clusters which, were

then manually adjusted to be included in the reported figures.

2.2.2.6 Diagnostic and prognostic classifiers

The devise of diagnostic and prognostic classifiers is based on

the union over the induced fingerprint genes that differentiate and

characterize: the early SCOV2 infection stage, the low viral-load

molecular profile of infected individuals, as well as the profile of

early responders to the infection. This union consists of 52 unique

genes that were used as descriptors for the devise of the respective

SCOV2 diagnostic and COVID-19 prognostic classifier models. The

Weka open - sou r c e mach in e - l e a rn ing env i r onmen t

(www.cs.waikato.ac.nz/ml/weka/) was utilized for the devise and

performance assessment of the classifier models (details are

presented in see section 5).
5 The bracketed entry indicates that the paragraph refers to the conducted

experiment and to the respective results produced with a specific dataset (in

this case GSE151513); the datasets used for respective tasks are presented in

Table 1.
3 Results

3.1 Comparison of the progression of
SCOV2, SCOV1 and INFL infections:
Similarities and differences

3.1.1 SCOV2 follows a two-stage profile
characterized by suppressed IFN-signaling and
blocking of the induction of ISGs at the early
stages of the infection

Initially a PCA analysis was performed on the normalized and

filtered GSE151513 gene-expression data (see section 2.1.1/Tasks,

datasets and set-up of experiments/′Task1′) in an effort to explore the
separation between SCOV2 infected and mock-treated samples. The

PCA plot showed that the two types of samples are mixed. Both

mock-treated and infected samples are grouped together and

according to the hpi time-points, (Figure 3A), with the first PC

components to be strongly correlated with the hpi variable (p=4.28e-

18 and p=6.37e-11 for PC1 and PC2, respectively). This indicates a

strong dependence of the underlying molecular events from the
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progression of the infection, i.e., from early to the later post

infection time-points. Focusing on just the mock-treated samples

and inspecting the respective PCA plot (Supplementary Figure 1A), it

can be observed that the samples are grouped according to the hpi

variable and not according to the different replicate batches (both

PC1 and PC2 components are highly correlated with the hpi

variable), indicating the absence of batch effects that could be

caused by replicate samples. This may be also confirmed by the

respective heatmap (Supplementary Figure 1B) where, mock-treated

samples are clearly clustered according to the hpi time-points. In

addition, as we show in the sequel (at the end of the experiment with

GSE151513 dataset), the molecular profile underlying the course of

mock-treated samples, from the early hpi time-points to the later

ones, differs drastically from the respective profile of infected samples.

The profile of mock-treated samples is mainly dominated by normal

cell-cycle events and not by immune/defense processes that dominate

(as we showcase in the sequel) the infected samples. The non-

separation of SCOV2 and mock-treated samples was further

confirmed by the inability to infer any differential expressed gene

to discriminate between the respective samples, even with relatively

low FDR (≤0.1) and FC (≥1.5) cutoff values. The finding suggests that

the molecular background underlying SCOV2 infection should be

explored with respect to the progression stages of the infection. So, in

the sequel we focus only on the SCOV2 infected samples and try to

contrast between the different progression stages of the infection.

3.1.1.1 Designation of SCOV2 infection stages
[GSE1515135]

The designation of infection stages and the assignment of

samples into respective classes was performed by following a k-
A B DC

FIGURE 3

Designation of infection stages. [GSE151513]. (A) PCA plot of mock-treated and SCOV2 infected samples; both types of samples are grouped
according to the hpi variable (the groups of samples are surrounded). (B) Selection of the optimal number of clusters with the Elbow method for k-
means clustering. (C) Designation of infection stages based on the inspection of samples’ PCA plot on the cluster of 1,199 genes found enriched in
immune/defense GO-biological-processes; samples (surrounded) in hpis 0, 1 and 2 designate the EARLY, and samples in hpi the 12 the LATE SCOV2
infection stage, respectively. (D) PCA plot of the samples (using all 9,457 genes of the filtered dataset) assigned to the respective SCOV2_EARLY and
SCOV2_LATE infection stage classes; the line indicates the PC with the largest explained variance, here PC1 (51%) which is correlated with the hpi
variable (p=1.35e-09).
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means/PCA-plot process on the most variable genes (for details

refer to section 2.1.2/Analysis pipeline/′Designation of infection

stages and phenotypes′). (Figure 3B) shows the Elbow-plot where,
two clusters found to be the optimal choice for k. From the two

induced clusters, one (consisting of 1,199 gene-transcripts) found

to be largely dominated by enriched GO-biological processes that

are directly related to cell-mediated host immune/defense

responses, including: ‘Response to type I interferon’, ‘Defense

response to virus’, ‘Cellular response to type I interferon’,

‘Negative regulation of viral process’, ‘Response to virus’,

‘Interferon-gamma-mediated signaling pathway’, ‘Negative

regulation of viral genome replication’ and ‘Regulation of viral

life cycle’. (Figure 3C) shows the PCA plot of samples on the

expression-profiles of the 1,199 cluster genes. With a careful

inspection of the plot, and by taking in consideration that both

PC1 and PC2 components are strongly correlated with the hpi

variable (p=1.24e-14 and p=7.71e-12 for PC1 and PC2,

respectively), two separable groups of samples could be clearly

identified − one with samples in hpi time-points 0, 1 and 2 (n=9),

and one with samples in hpi 12 (n=3). These hpis designate the

respective EARLY and LATE SCOV2 infection stages, with the

samples in each group to be assigned to the corresponding stage

class (a total of n=12 samples). As the scope of our study is to

intensely contrast between the extreme stages of the infection

course, the samples at intermedia hpis 3 and 6 are discarded. The

clear separation between the two infection stage classes (when the

intermedia hpis are removed) could be observed by inspecting the

PCA plot of the retained 12 samples on all 9,457 genes (Figure 3D).

3.1.1.2 DEG analysis [GSE151513]

The gene-expression profiles of the retained SCOV2 EARLY/

LATE samples were subjected to DEG analysis. Note that the

analysis is performed on all, retained after filtering, 9,457 genes,

and not just on the 1,199 genes of the enriched cluster used to

designate the infection stages. By setting FDR≤0.05 and FC≥2, a

total of 132 gene-transcripts (DEGs) were found to significantly

differentiate between the LATE and EARLY stages; 79 up- and

53 down-regulated in the EARLY infection stage. All induced DEGs

induced by the experiment with the GSE151513 dataset (and for all

other experiments reported in the sequel) are included in the

DEGs.xlsx file that is deposited in the Supplement Material

a c c o m p a n y i n g t h e p a p e r ( c o n s u l t s h e e t ′
1_GSE151513_SCOV2_2-stage′). Here it is crucial to note that

the differentiation polarity is inverted, that is, down-regulated

DEGs in the EARLY stage are up-regulated in the LATE stage,

and vice-versa. In an effort to gain insight into the functional roles

and the interactions between the 53 down-regulated DEGs we

followed a clustering approach using the MCL graph-based

clustering algorithm (refer to section 2.1.2/Analysis pipeline/′
Designation of infection stages and phenotypes′). Keeping only

high-confidence gene interactions (i.e., a cutoff of 0.9 was used in

the construction of the STRING gene network), 23 DEGs, all

protein coding genes, were coherently grouped into three

interconnected clusters (Figure 4A); the three clusters are

indicated with different colors). We consider these genes as

representatives for the two-stage SCOV2 core molecular
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fingerprint (for the GES151513 dataset). In addition, as shown in

(Figure 4B), these genes exhibit low and high expression levels in

the EARLY and LATE infection stages, respectively; the colored-

shaded circles at the left of the figure indicate the mean expression

value6 of the 23 genes over the samples assigned to the respective

infection stage (indicated with cyan and dark-pink shaded circles

for the SCOV2_EARLY and SCOV2_LATE samples, respectively),

including the mean gene-expression value of all genes over all

samples (indicated with black shaded circle).

What is important is that all the 23 genes are directly related to

IFN-I signaling and especially to ISGs. Table 2 summarizes the

functional roles and key antiviral activities of these genes. The

findings agree with the discussion made in section 1/′The molecular

canvas of immune and defense response during the infection

course: the SCOV2 case′ about the special antiviral role of critical
ISGs during the whole viral life-cycle process.

In order to validate our findings we collected indicative sets of

genes with documented antiviral activity from four relevant studies,

namely: (i) a set of 42 ISGs reported in a review about the antiviral

functions of ISGs (90); (ii) a set of 33 IFN-I related genes reported in

a recent study from the COvid-19 Multi-omics Blood ATlas

(COMBAT) consortium (www.combat.ox.ac.uk) (91); (iii) a set of

25 ISGs reported in a recent study to contrast the gene expression

profiles of SCOV2 infected samples between adults and children

(92); and (iv) a set of 24 key genes interfering the viral life cycle

reported in (38). The union of these four gene sets comprises 97

unique genes (consult the provided Supplement File DEGs.xlsx/′
1_GSE151513_SCOV2_2-stage′). The fact that 21 of the 23 (91.3%)
genes included in the aforementioned two-stage SCOV2 core

molecular fingerprint fall within this union supports our findings

and provide a strong evidence for the impaired immune/defense

host response taking place during the early SCOV2 infection stages.

Here we have to make a special note about three genes, MT1F,

MT1G and MT2A which, although not included in the 23

fingerprint genes, they are included in the list of induced 53

induced down-regulated DEGs in the early SCOV2 infection stage

(notice also the down-regulation of the enriched ′Metallothioneins

bind metals′ enriched REACTOME pathway induced by the

enrichment/pathway analysis presented in the sequel; (Figure 4C).

These genes belong to the family of Metallothioneins (MTs), a

family of small highly conserved cysteine-rich metal-binding

proteins. MTs regulate zinc (Zn) (93) that has a beneficial role in

physiological and molecular host defense mechanisms during

various pathogen infections, including SCOV2 (94). In-vitro

experiments on mice reveal a direct and strong increase in the

mRNA levels of MTs during acute influenza/A infection, especially

at the upper respiratory tract (95). The physiology underlying this

increase is attributed to the beneficial antioxidant role of MTs as

they are triggered in order to effectively ‘clean-up’ the reactive

oxygen species (ROS) generated by the host defense phagocytes

during infection. It is also known than Zn contributes to host
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defense responses by maintaining the membrane barrier structure

and function (96) via the modulation of cytokine-induced epithelial

cell barrier absorptiveness (97). At the molecular level, recent

studies demonstrate that Zn is required for interferon-mediated

expression of MTs (98), and helps to enhance IFN-I response

during SCOV2 infection, exhibiting an inhibitory ability of

SCOV2 RNA polymerase through its failure to be associated with

serious clinical outcomes (99). Furthermore, Zn deficiencies are

directly linked to anosmia and taste dysfunctions (ageusia), already

established as common SCOV2 symptoms (100), especially when

decreased levels occurs in the nasopharyngeal tract (101). In

addition, it is evidenced that acute viral infection of the

nasopharyngeal mucosa lead to a decrease in local Zn levels as

part of the normal defense against respiratory pathogens (102).

3.1.1.3 Enrichment analysis [GSE151513]

In order to reveal and highlight the molecular events that take

place during the progress of SCOV2 infection, we proceed to the

identification of enriched biological processes, pathways and

hallmark gene signatures that contrast between EARLY and

LATE SCOV2 infection stages. Based on the induced 132 DEGs,

a number of GO-biological processes, REACTOME/KEGG

pathways and HALLMARK_MSigDB gene signatures were

found as significantly enriched and down-regulated in the early

infection stage (Figure 4C). The results signify the fact that during
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the early stage of the infection, key biological processes and

pathways engaged in first-line host innate immune/defense

responses are ‘blocked’, with the list largely dominated by IFN/

cytokine signaling and pro-inflammatory processes. Notably, even

the KEGG COVID-19 pathway is found to be down-regulated

during the early infection stage. The findings provide strong

evidence that down-regulation of key antiviral immune/defense

processes during the early course of SCOV2 infection and their

up-regulation at the later stages may be the cause for the later

emergence of uncontrolled, exaggerated and acute inflammatory

COVID-19 clinical outcomes.

We performed the same as above analysis using only the mock-

treated samples, with the respective samples assigned to the same

infection stages, i.e., samples in hpis 0,1,2 to the early, and samples in

hpi 12 to the late stage, respectively. DEG analysis resulted into 119

DEGs; 81 up- and 38 down-regulated in the early stage (data not

shown). None of these genes (either up- or down-regulated) belongs to

the list of the identified 23 genes that consist the formed two-stage

SCOV2 core molecular fingerprint. Performing enrichment analysis of

these genes, a list of fifteen significantly enriched biological processes

were identified, all up-regulated in the early stage. The list was strongly

dominated by cell-cycle events, including ‘Regulation of programmed

cell death’, ‘Regulation of apoptotic process’, ‘Apoptotic process’, ‘Cell

death’, ‘Programmed cell death’, ‘Negative regulation of cell

population proliferation’, and ‘Cellular developmental process’. This
A

B

C

FIGURE 4

[GSE151513]. (A) Network of the 23 coherently clustered DEGs that compose the two-stage SCOV2 core molecular fingerprint for GSE151513 and
found as down-regulated in the EARLY SCOV2 stage. (B) Expression levels of the 23 genes that contrast between the respective EARLY/LATE SCOV2
stages; the mean expression value of the 23 genes over the samples assigned to SCOV2_EARLY and SCOV2_LATE stages are indicated with cyan
and dark-pink circles at the left of the figure, respectively; mean expression value of all genes across all samples is indicated with black-circle.
(C) Enriched entries (GO-biological processes, REACTOME/KEGG pathways and Hallmark MSigDB signatures) found as down-regulated in the EARLY
(up-regulated in the LATE) SCOV2 infection stage; cyan color indicates down-regulation; notice the down-regulation of KEGG COVID-19 pathway
indicated with blue color.
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highlights the fact that, even if both infected and mock-treated

samples are grouped according to the hpi variable (consult

Figure 3A), their molecular backgrounds differ drastically. In other

words, the infected samples follow the cell-cycle ′norm′ but with

overwhelming immune/defense molecular events being under- or

over-expressed during the early or late infection stages, respectively.

This proves the soundness of our approach to focus only on the

SCOV2 samples and contrast between the designated early/late stages

in order to explore and assess the two-stage molecular profile that

governs the progression of the infection.

Confirmation of the two-stage SCOV2 infection profile was

done using the GSE158930 RNAseq dataset (see section 2.1.1/′
Task1′). Following the same methodology to identify infection

stages, samples in hpi 4 and 24 (n=4) were assigned to the

EARLY, and samples in hpi 72 and 96 (n=4) to the LATE
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SCOV2 infection stage, respectively (see Supplementary

Figures 2A–C) for details). Setting FDR≤0.05, FC≥4 (a higher FC

threshold was set in order to control the number of differential

genes and ease their interpretation), and setting the ′rep′ variable as
an extra factor to take in consideration the ′rep′licated/paired
samples, a set of 175 DEGs (all protein coding genes) were found

to differentiate between the LATE and EARLY stages (consult

Supplement File DEGs.xlsx/′1_GSE158930_SCOV2_ 2-stage′); 15
up- and 160 down-regulated in the EARLY infection stage.

Applying MCL clustering on the down-regulated genes and

following the same network analysis methodology as in the

previous experiment, 33 DEGs (all protein coding genes) were

coherently grouped into two interconnected clusters (the two-

stage SCOV2 core molecular fingerprint for GSE158930,

(Figure 5A). Their expression levels are shown in (Figure 5B),
TABLE 2 Key antiviral activities of the 23 genes in the two-stage SCOV2 core molecular fingerprint being down-regulated in the EARLY SCOV2
infection stage; their functional interactions with other genes in the list as well as other engaged genes that belong to the broader families of the 23
genes are also reported (in bold) - the reported information was thoroughly and carefully collected from various established public resources.

Gene Key antiviral activities

IFI27/6
IFIT1/2/

3/5

− Inhibit the entry of viruses to the host cell cytoplasm; prevent viral fusion and release of viral contents into the cytosol − Active against multiple viruses –
influenza A, SCOV1&2, marburg virus/MARV, ebola/EBOV, dengue virus/DNV, west Nile virus/WNV,/HIV-1, hepatitis C virus/HCV

IFITM1
− Member of the IFN-inducible transmembrane (IFITM) family (IFITM1,2,3,5) − IFITM1 blocks virus entry and inhibit various viruses (e.g., Ebola,
Marburg, Hepatitis C Virus/HCV) including SCOV1&2; inhibits HIV-1 production − May block membrane fusion of diverse enveloped virus

ISG15
− At least 158 putative ISG15 target proteins are identified, with important roles in IFN-I response − Upregulation of ISGs results in an antiviral state and
reduction of viral spread − Holds a critical role of innate immune response at the initial infection stages − Acts as a cytokine to exacerbate SCOV2-triggered
inflammation − Regulated by viral RNA sensors, including IFIH1 (MDA5)

IRF7/9
− A critical regulator of IFN-Is − IRF9 associates with phosphorylated STAT1/STAT2 and promotes the transcription of ISGs − IFN-related STAT1 nuclear
translocation proved indispensable for antiviral transduction

STAT2 − Mediates induction of IFN-Is/ISGs; associates with IRF9 to promote the activation of ISGs − Mediates proinflammatory responses to TNFa signaling

OAS1/2/3
− 2’-5’-oligoadenylate synthetases (OAS) family includes OAS1, OAS2, OAS3, and OAS-like (OASL which is associated with viral translation) interferon-
induced antiviral enzymes − Regulate the early phase of viral infection by degrading viral RNA in combination with RNaseL, resulting in the inhibition of
viral replication

MX1/2

− Recognize the nucleoproteins or (nucleo-)capsid proteins of different viruses − Provide a molecular signature to distinguish between host and non-host
mRNAs during viral infection − Sensor viral single-stranded RNAs (ssRNAs) and inhibit expression of viral mRNAs − MX1: potential suppressive effect on
the activity of viral ribonucleoprotein complex and its GTPase − MX2: may be effective in repressing viral replication, transcription, and nucleocapsid
shuttling

XAF1 − Stabilizes IRF1 protein and induces more antiviral activity of IRF1 target genes, including DDX58/RIG-I, DDX60, MX1, and OAS2

RSAD2
(Viperin)

− Plays major role in the cell antiviral state induced by IFN-Is; it can also be upregulated independently of IFN, through an IRF1 or IRF3 mechanism −

Employs multiple mechanisms to limit the viral life cycles, especially by inhibiting viral replication at the plasma membrane − Has underlying anti-viral
egress and replication effect

SAMHD1
− Restricts viral DNA synthesis, preventing virus replication by regulating innate immune sensing and mediating the (up-)regulation of IFN-Is/ISGs −
Mediates proinflammatory responses to TNFa signaling − Negatively regulates inflammation via its interaction with various key proteins in DNA damage
repair pathways

USP18
− Mediates the regulation of ISG15 via its conjugation (ISGylation) - an enzymatic cascade of UBE1L/UBAT, UBE2L6 and HERC5 − Mediates the
regulation of inflammatory response to IFN-Is

DDX58
(RIG-I)

− Innate immune receptor; plays a major role in sensing viral infection and in activating of a cascade of antiviral responses including the induction of IFN-Is
and proinflammatory cytokines − Critical role in sensing CoVs (and other viruses) and the activation of ISGs − Regulates IRF7/3 via the RIG-I => IRF7/3
signaling pathway

UBE2L6 − Critical role in ISG15 regulation as a modifying enzyme, in association with USP18, UBAT and HERC5 − Engaged in virus-induced macrophages

IFIH1
(MDA5)

− Innate immune receptor; plays a major role in sensing viral infection, including SCOV2, and the induction of proinflammatory cytokines
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and the respective enriched entries (biological processes, pathways

and hallmark MSigDB signatures) in (Figure 5C).

The union of the two core two-stage SCOV2 molecular

fingerprints identified from the previous experiments (23 genes

for GSE151513 and 33 genes for GSE158930) consist of 38 genes

being down-regulated in the EARLY SCOV2 infection stage, with

18 of them to be shared between the two fingerprints, namely: IFI27,

IFI6 (IFI27-like/ISG12), IFIH1, IFIT1/2/3/5, IFITM1, ISG15, MX1/

2, OAS1/2/3, RSAD2, STAT2, UBE2L6 and XAF1 (consult

Supplement File DEGs.xlsx/′1_finger.Genes_UNION_COMMON

′). The 18 genes and their MCL clustering are shown in

Supplementary Figure 3A). As for the respective enriched entries

(Supplementary Figure 3B), a set of 12 down-regulated enriched

biological processes are shared between the two experiments (80.0%

for both experiments); 10 REACTOME pathways (66.7% and 90.0%

for GSE151513 and GSE158930, respectively); 7 KEGG pathways

(63.6% and 70.0% for GSE151513 and GSE158930, respectively);

and 5 hallmark MSigDB signatures (83.3% and 62.5% for

GSE151513 and GSE158930, respectively). It can be easily

checked that the shared enriched entries are heavily dominated

by innate immune/defense processes being down-regulated during

the early SCOV2 infection stage.

A specific reference should be made here concerning four genes,

namely: HLA-A, HLA-B, HLA-C and HLA-E. Even if these genes

are not in the list of 33 genes that compose the core SCOV2

molecular fingerprint for GSE158930, they are in the list of the

induced 160 down-regulated genes in the EARLY SCOV2 infection

stage. All these genes are harbored at the MHC/HLA (major
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histocompatibility complex/human leucocyte antigen) genome

region, known as the most human polymorphic gene region. It is

established that the polymorphic abundance of MCH/HLA genes is

the key for their critical role in the regulation of host immune

responses to most attaching pathogens (103), including SCOV2

(104). The human MHC/HLA genes are engaged to antigen

processing, presentation and immune modulation. Their main

functional role is to present antigens to CD8+ cytotoxic T

lymphocytes (105), whereas their expression is induced by IFN

genes (106). Furthermore, a number of variants in HLA alleles/

haplotypes are known to be associated with susceptibility and

progression of various infections, including SCOV2, with some of

the most indicative summarized in (107), namely: HLA-A*11:01/

24:02 with protective role against SCOV2 infection; HLA‐A*24:02

and HLA-B*22 with SCOV2 infection susceptibility; HLA-A*25:01

with moderate disease outcomes; and HLA-A*01:01/02:01, HLA-

B*15:03/27:07, HLA-C*05 and HLA-E*01:01 with severe outcomes.

In their original publications the providers of GSE151513 (57)

and GSE158930 (58) datasets do not directly contrast between the

early and late infection stages, as we done in our analyses. In any

case, in the publication of the GSE151513 dataset, the authors

report a set of 19 ISGs being up-regulated in the late SCOV2

infection stage. 68.4% (13/19) of them are shared with the set of 18

genes being common between the two SCOV2 core molecular

fingerprints identified in the previous experiments. Among other,

two genes, STAT2 and UBE2L6, with key antiviral activities

(consult Table 2) in the list of the 18 genes are not in the list of

the 19 reported genes. As for GSE158930, in their respective original
A

B
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FIGURE 5

[GSE158930]. (A) Network of the 33 coherently clustered DEGs that compose the two-stage SCOV2 core molecular fingerprint for GSE158930 and
found as down-regulated in the EARLY SCOV2 stage. (B) Expression levels of the 33 genes that contrast between the respective EARLY/LATE SCOV2
stages (the shaded circles at the left of the figure as in Figure 4). (C) Enriched entries (GO-biological processes, REACTOME/KEGG pathways and
Hallmark MSigDB signatures) found as down-regulated in the EARLY (up-regulated in the LATE) SCOV2 infection stage; cyan color indicates down-
regulation; notice the down-regulation of KEGG COVID-19 pathway indicated with blue color.
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publication the authors report a set of 26 genes being up- and down-

regulated in the late (72, 96 hpis) and early (24, 48 hpis) infection

stages, respectively, with 42.3% (11/26) of them to be shared with

the aforementioned set of 18 genes. Among other, four genes with

key antiviral activities in the list of 18 genes are not included in the

list of the 26 reported genes, namely: ISG15, RSAD2, STAT2 and

UBE2L6. The above indicate, on one hand the competence of our

analysis methodology as founded on the designation and direct

contrast between early/late infection stages, and on the other, the

adequacy of our findings compared to published results.

Our results provide evidence and demonstrate a two-stage core

molecular profile that governs the progression of SCOV2 infection

from the early to the later stages. The profile is realized by an impaired

response of key immune/defense processes during the early infection

stage, as materialized by the inhibition of IFN-signaling and the ′
blocking′ of key ISGs, with the inverse to hold during the late stages of
the infection. The findings are consistent with, and support the results

reported in other relevant studies in which, the direct correlation of

prolonged activation of high IFN-I levels with disease severity is

highlighted (108), and the strong early IFN-I/ISG response to be

beneficial for the clinical outcome of the infection (109).

3.1.2 SCOV1 and SCOV2 exhibit a common core
progression molecular fingerprint realized by the
suppression of IFN/ISGs during the early
infection stage

Both SCOV1 and MERS are known to be equipped with a

variety of mechanisms to block IFN-I responses (110, 111). Several

clinical studies show that both viral infections manage to escape

innate immunity during the first days of infection. In particular, it is

known that timing in the induction of IFNs is the key to the

pathogenicity profile of SCOV1 (112, 113), with the delayed IFN-I

signaling and the subsequent accumulation of monocyte–

macrophages being one of the main causes for SCOV1

immunopathology (112). Furthermore, recent in vitro studies

provide evidence that SCOV2 is sensitive to IFN-I pretreatment,

even to a higher level than SCOV1 (114, 115). These findings

validate and necessitate studies that contrast between SCOV1 and

SCOV2 molecular profiles in an effort to explore putative common

molecular fingerprints that govern both infections.

As in the previous experiments, we focus only on the SCOV1

infected samples of the GSE33267 dataset (see section 2.1.1/Tasks,

datasets and set-up of experiments/′Task2′) as we could not find

any DEG to differentiate between mock-treated and SCOV1

infected samples. Following an analysis methodology analogous to

the previous experiments, we managed to designate the early and

late SCOV1 infection stages, with samples in 0, 3, 7 and 12 hpis

assigned to the EARLY (n=12), and samples in 54, 60 and 72 hpis to

the LATE SCOV1 infection stage (n=9). As in the previous

experiments the samples at intermedia hpis, 24, 30, 36 and 48

were discarded as we are interested to study the infection

progression course at its extremes. Details for the designation of

SCOV1 infection stages are illustrated in (Supplementary

Figures 4A, B.1, B.2, C). Setting FDR≤0.05 and FC≥8 (a quite

high FC cutoff was set in order to keep the number of induced DEGs

manageable so that we could focus on the most contrasted ones and
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ease their interpretation), a set of 168 DEGs to differentiate between

the two infection stages were induced, 7 up- and 161 down-

regulated in the EARLY SCOV1 infect ion stage (see

Supplementary Figure 4D) for the respective heatmap). Applying

MCL clustering on the 161 down-regulated genes and following a

similar to the previous experiments’methodology, a set of 18 down-

regulated DEGs were coherently grouped into one cluster that

present the two-stage core molecular fingerprint of SCOV1

infection (for GSE33267; (Figure 6A), see also Supplement File

DEGs.xlsx/′2_GSE33267_ SCOV1_2-stage′). (Figure 6B) shows the
average expression levels of these genes, with their low/high

expression profiles contrasted between the respective SCOV1

EARLY/LATE stages. 13/18 genes (72.2%) are shared with the 18

genes shared between the two SCOV2 core molecular fingerprints

identified in the previous experiments with GS151513 and

GSE158930 datasets (down-regulated in the early infection stage);

the shared genes are indicated with circled black dots. Similar

findings hold for the respective enriched results (Figure 6C);

shared enriched entries between the two infections are also

indicated with circled black dots).

Confirmation of findings was done using the GSE148729

dataset (see section 2.1.1/Tasks, datasets and set-up of

experiments/′Task2′). Initially we tried to contrast between

SCOV1 and SCOV2 using all samples. DEG analysis, even with a

low FC threshold (≥1.5), yielded no differential genes, suggesting

that the contrast between the two infections should be done

according to the infection progression stages. So, we followed the

same as in the previous experiments methodology to designate the

respective infection stages, separately for SCOV1 and SCOV2

samples. Samples in hpi 4 (n=2) and samples in hpi 24 (n=2), for

both SCOV1/2 datasets, were assigned to the respective EARLY and

LATE SCOV1/2 stages (see Supplementary Figures 5A.1, A.2, B.1,

B.2)). By setting FDR≤0.05 and FC≥4, a set of 152 DEGs, 7 up- and

145 down-regulated in the EARLY SCOV1 stage, and a set of 208, 9

up- and 199 down-regulated in the EARLY SCOV2 stage were

induced (see Supplementary Figures 5C.1, C.2) for the respective

heatmaps; consult a lso Supplement Fi le DEGs.xlsx/ ′
2_GSE148929_SCOV1_2-stage′//′2_GSE148929_SCOV2_2-stage

′). As in the previous experiments, MCL clustering was applied on

the respective down-regulated DEGs; 28 for SCOV1 (the two-stage

SCOV1 core molecular fingerprint for GSE148729), and 38 for

SCOV2 (the two-stage SCOV2 core molecular fingerprint for

GSE148729) were coherently grouped into two interconnected

clusters for SCOV1, and four interconnected clusters for SCOV2,

respectively (see Supplementary Figures 6 and 7). All 28 SCOV1

fingerprint genes are included in the respective set of 38 SCOV2

fingerprint genes. Furthermore, all genes in the union of SCOV1

fingerprint genes resulted from the experiments with GSE33267 and

GSE148729 datasets (31 genes down-regulated in the early SCOV1

stage) are included in the union of fingerprint genes resulted from

the experiments with GSE151513, GSE158930 and GSE148729

datasets (46 genes down-regulated in the early SCOV2

stage; consult Supplement File DEGs.xlsx/ ′2,1_finger.
Genes_UNION_COMMON′). In addition, 80% (12/15) of the

common fingerprint genes resulted from the experiments with

GSE33267 and GSE148729 datasets (genes down-regulated in the
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early SCOV1 stage) are included in the list of common fingerprint

genes resulted from the experiments with GSE151513, GSE158930

and GSE148729 datasets (18 genes down-regulated in the early

SCOV2 stage), namely: IFI27, IFIT1/2/3, ISG15, MX1/2, OAS1/2/3,

RSAD2 and XAF1. Similar results hold for the enriched entries,

83.3% biological processes, 76.5% REACTOME pathways, 62%

KEGG pathways and 88.9% hallmark signatures of the union of

entries from the experiments with GSE33267 and GSE148729

(down-regulated in the early SCOV1 infection stage) are included

in the respective union of down-regulated in the early SCOV2

infection stage enriched entries resulted from the experiments with

GSE33267, GSE158930 and GSE148729 datasets. The respective

percentages for the common SCOV1 enriched entries (resulted

from the experiments with GSE33267 and GSE148729 datasets) and

the common SCOV2 enriched entries (resulted from the

experiments with GSE151513, GSE158930 and GSE148729) are

75%, 100%, 66.7%, 66.7%. It is indicative that the respective

common (and down-regulated in the respective early infection

stages) hallmark entries are all related with IFN signaling,

immune/antiviral responses and induction of ISGs, namely:

‘Interferon alpha/beta signaling’, ‘Interferon Signaling’, ‘Cytokine

Signaling in Immune system’, ‘Immune System’, ‘Antiviral

mechanism by IFN-stimulated genes’, ‘Interferon gamma

signaling’, ‘OAS antiviral response’, ‘ISG15 antiviral mechanism’,

‘DDX58/IFIH1-mediated induction of interferon-alpha/beta’.
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In their original publication (60) the providers of the GSE33267

dataset focus mainly on the differences between the transcriptional

interferences and their effects in subsequent host immune responses

caused by the wild-type SCOV1 (icSARS) or its mutant that does

not express ORF6 protein (icSARS-DORF6). They highlight the

critical role of SCOV1’s ORF6 accessory protein in antagonizing

interferon signaling by blocking karyopherin-mediated nuclear

import processes that enhances SCOV1 replication at the later

infection stages. Even if they do not seek for differential genes and

molecular processes that directly contrast between early and late

SCOV1 infection stages, and so, they cannot be straightly compared

with our findings, they report limited differences in differential host

gene expression during the early infection stages (on 24 hpi) for

both viruses. This indicate that SCOV1 (as other CoVs) invade the

host cell “silently” (mainly by blocking double-stranded RNA

replication intermediates and their recognition by specific pattern

recognition receptors/PRRs). Regarding the original publication of

the GSE148729 dataset (61), the authors report a stronger,

compared to SCOV1, induction of ISGs for SCOV2 on the

intermediate 12 hpi time-point, but they do not contrast between

extreme infection stages (i.e., early/4 hpi vs. late/24 hpi in the

setting). In that sense, the reported findings cannot be straightly

compared with our findings. Even though, the authors refer and

highlight the induction of IFIT1/2, OAS and IFNB1 genes (on 12

hpi), all included in the list of common genes between the two-stage
A

B

C

FIGURE 6

[GSE33267]. (A) Network of the 15 coherently clustered DEGs down-regulated in the early SCOV1 stage (the two-stage SCOV1 core molecular
fingerprint for GSE33267); circled black dots indicate the 12 (from 15) genes shared with the common down-regulated genes included in the SCOV2
two-stage core molecular fingerprints resulted from the experiments with GSE151513 and GSE158930 datasets. (B) Expression levels of the 15 genes
that contrast between the respective EARLY/LATE SCOV1 stages (the shaded circles at the left of the figure as in the previous figures). (C) Enriched
entries found as down-regulated in the EARLY SCOV21 infection stage; cyan color indicates down-regulation; notice the down-regulation of KEGG
COVID-19 pathway indicated with blue color.
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SCOV2 fingerprints resulted from the experiments with

GSE151513, GSE158930 and GSE148729 datasets (the 18 genes

down-regulated in the early SCOV2 stage). The limited extend of

the reported genes, especially IFNs, is an indication for the

adequacy of our findings compared to published results.

Our findings demonstrate a similar core molecular fingerprint

that underlies and governs the progression of both SCOV1 and

SCOV2 infections, with this profile to be characterized by the

blocking of core IFN-Is/ISGs during the early stages of both

infections. This may be also confirmed by contrasting between

the colored KEGG COVID-19 pathways of SCOV1/Figure 7A and

SCOV2/Figure 7B. Coloring of genes was done with the ‘KEGG

Mapper – Color’ service of the KEGG server (www.genome.jp/kegg/

mapper/color.html), and it is based on the FC values of all (up- and

down-regulated) induced DEGs from the respective SCOV1/2

experiments with the GSE148729 dataset. An almost identical

molecular regulatory imprint between the two infections may be

observed and verified.
3.1.3 INFL/H1N1, compared to SCOV1/2, induce a
more robust antiviral response in the early
infection stages

Influenza (INFL) is the most common and long-standing viral

infection worldwide with a well-established epidemiological profile and

an extensive scientific literature devoted to its physiological and

molecular background (116). Various studies show that symptoms
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from INFL infection occur already from the first day after infection,

peak on the second to third day, and diminishing after five to six days

(117). Severe disease outcomes are more frequent in high-risk

individuals (i.e., older people with comorbidities or even younger

individuals not exposed to INFL infections) and include,

hospitalization, pneumonia, acute respiratory distress syndrome

(ARDS), and even death. In contrast, symptoms from SCOV2

infection begin after an incubation period of about five days (at least

for the strains at the early period of the COVID-19 pandemic) with the

majority of cases to show symptoms for about two weeks afterward

(14). According to estimates, highest transmissibility of SCOV2 occurs

over a period of about four days, two days before and one day after

onset of symptoms; mainly from pre-symptomatic individuals (118). A

recent study documents that SCOV2 infection induces a delayed,

compared to INFL-A and H1N1, transcriptional IFN responses, with

slower viral replication and much lower repair responses (119). The

aforementioned observations provide additional evidence to the

postulate that longer incubation and manifestation periods of

SCOV2, as well as longer shedding rates, result into more pre- or

asymptomatic cases, making SCOV2 considerably more transmissible

than INFL. The similar molecular profiles of SCOV2 and SCOV1

during the early infection stages, as showcased and highlighted in the

previous section, allows us to contrast SCOV1 with INFL and draw

conclusions that apply to the SCOV2 case as well, at least for the key

genes and the core molecular processes underlying the two infections.

Designation of infection stages for the GSE47960 dataset (see

section 2.1.1/Tasks, datasets and set-up of experiments/′Task3′) was
A B

FIGURE 7

Colored KEGG COVID-19 pathways for up-/down-regulated genes in the EARLY SCOV1 (A) and SCOV2 (B) stages, both for the GSE148729 dataset −
the coloring-index pallet at the top-right of the images indicate the coloring of genes according to their up-/down-regulation status and reflect
(standard) deviations for the low/high values from the mean of the respective genes’ fold-changes.
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done separately for H1N1 and SCOV1 samples and then, the gene-

expression profiles of samples assigned to the early stages of the two

infections were contrasted. Following the same methodology as in the

previous experiments, H1N1 samples in 6 and 12 hpis (n=6) were

assigned to the EARLY H1N1 infection stage, and SCOV1 samples in

0, 12 and 24 hpis (n=12) to the EARLY SCOV1 infection stage (see

Supplementary Figure 8 for details); all samples at intermedia hpi time-

points were discarded. The designation of the early/late stages of the

two infections was done by carefully inspecting the respective PCA

plots (Supplementary Figures 8B.1, B.2), with the samples assigned to

the respective EARLY H1N1 and SCOV1 stages to be separable

(Supplementary Figures 8C.1, C.2). Setting FDR<=0.05 and FC≥4,

DEG analysis contrasting between the early stages of the two infections

resulted in a set of 193 DEGs, 191 up- and 2 down-regulated in the

early H1N1 stage, with the reverse being true for the early SCOV1 stage

(see Supplement File DEGs.xlsx/′3_GSE47960: H1N1_SCOV1_early′).
Applying MCL clustering on the up-regulated DEGs, and after

checking for duplicate probes and for gene-probes with approved

HGNC gene symbols, 161 (of the 193) unique genes were subjected to

MCL clustering. As a result, 29 genes were coherently grouped into two

interconnected clusters [the core molecular fingerprint for H1N1

infection, (Figure 8A)]. (Figure 8B) shows the average expression

level of the 29 genes in the respective early infection stages. The

over-expression of these genes in the early H1N1, compared to the

early SCOV1 stage, may be easily observed. Of the 29 genes being over-

expressed in the early H1N1 infection stage, 25 (86.2%) also belong to
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fingerprint genes resulted from the experiments with GSE151513,

GSE158930 and GSE148729 datasets (46 genes down-regulated in

the respective early SCOV2 infection stages, consult Supplement File

DEGs.xlsx/′2,1_finger.Genes_UNION_COMMON′); indicated with

circled black dots in (Figure 8A). Similar results hold for the

respective enriched entries (Figure 8C).

Here we should make a special note regarding gene IFNB1 which,

even if it is in the fingerprint genes being up-regulated in the early

H1N1 infection stage, it is not found to be commonly shared with the

aforementioned 46 fingerprint genes being down-regulated in the

early SCOV2 infection stage. It is has been shown that IFNB1

induction is significantly weaker in SCOV2 infection, with its

induction in the H1N1 case occurring earlier in the infection

progress and higher peaks being strongly correlated with infectious

titers (119). IFNB1 is found to be associated with an increased

neutrophil to lymphocyte ratio, a marker for COVID-19 late severe

outcomes (120). Its production stimulates further the expression of

many of the IFN-I/IFNa genes (121), enhance immune response and

strongly support the resolution of viral infections and the

improvement of memory responses (e.g., T and B cells), making the

early up-regulation of IFNB1 beneficial for better clinical outcomes

(36). Notably, IFN-Is, and particularly IFNB1, are already approved

for use in the treatment of certain viral infections (hepatitis B and

hepatitis C), with their administration in the early infection stages

being the key for their effectiveness (120). Closely related to IFNB1 is
A

B

C

FIGURE 8

(A) Network of 29 up-regulated genes up-regulated (compared to their down-regulation in SCOV1/2 infections) in the EARLY H1N1 stage; circled
black-dots indicate genes shared with the union of genes across the two-stage SCOV1/2 molecular fingerprints identified from all previous
experiments (i.e., identified with the GSE151513, GSE158930, GSE33267 and GSE148729 dataset), and were found as down-regulated in early SCOV1/
2 infection stages. (B) The expression levels of the 29 genes. (C) Enriched entries in the early H1N1 infection stage (notice the up-regulation of both
Influenza/A and Coronavirus disease pathways); circled black dots indicate enriched entries shared with the union of the respective enriched entries
found down-regulated in the early SCOV1/2 stage from all previous experiments (i.e., identified with the GSE151513, GSE158930, GSE33267 and
GSE148729 datasets).
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IL22RA1, which was also found up-regulated in the early H1N1

infection stage in our experiments. Cell-line experiments have shown

that IL22RA1 is induced early in H1N1 infection with its upregulation

to be mediated by IFNB signaling through STAT1 (122).

In their original publication (63) the providers of GSE47960

dataset utilize both proteomic and transcriptomic datasets, coupled

with other -omics resources (e.g., relevant transcription factors from

the TRANSFAC database), and use the CLR relevance-based

algorithm (123), to construct gene relevance networks for both

SCOV1 and INFL/H1N1infections. They rank genes based on their

topological positions within each of these network (e.g., centrality of a

gene/node), and prioritize them based on their degree of conservation

across different pathogenic infection models. Even if they do not

directly compare the gene-expression profiles of samples between

different infection stages, the authors report a set of 37 and 24 genes as

basic regulatory features for SCOV1 and H1N1 infections,

respectively, with these genes to show functional enrichment in

innate immune processes. These genes share just three genes with

the 29 genes in the core molecular fingerprint of H1N1 infection

induced by the experiment with GSE47960 dataset, namely: IFNB1

(common with the 37 SCOV1 genes) and DDX58/RIG-I, ISG20

(common with the 24 H1N1 genes). So, compared to our analysis

methodology and findings, the aforementioned gene relevance

network methodology fails to identify not only an extended

spectrum of key IFN/ISGs that differentiate between H1N1/SCOV1

early stages, but also, their up/down regulation status in the course of

the infection progress. Such a fail indicates the adequacy of our finding

compared to the published results.

Our findings demonstrate that, in contrast to SCOV1/2 infections,

H1N1 drives quite early to an antiviral-state, guided mainly by early

IFN-signaling and induction of antiviral ISGs. This may be attributed

to the fact that INFL/H1N1 infection results into rapid viral replication

leading to significant epithelial damage and to significantly greater

immune responses. In contrast, SCOV2 is characterized by slower

replication rates, a fact that explains the longer incubation periods of

SCOV2 infection, and so, limited changes in the morphology and

composition of the epithelial structure. As a result, repair responses are

much weaker in SCOV2 compared to H1N1 infected cells (119). So,

the question is if and how viral-load levels engage with the standard (as

demonstrated by the previous experiments) two-stagemolecular profile

of SCOV2 infection.

4 How viral-load and early host
response relate to the two-stage
SCOV2 infection profile?

4.1 Low viral-loads associate with
suppressed immune response in the early
SCOV2 infection stage

The ways that SCOV2 acquires high viral-loads, even without

the presence (or too mild) symptoms, still remain unclear. One

study, already from the early period of the onset of COVID-19,

suggested that the diagnostic value of SCOV2 viral-load is higher in
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duration of symptoms and the severity of the disease (124). A recent

report from the IMPACC prospective longitudinal study

documented that SCOV2 viral-load and its persistence are clearly

associated with severe disease outcomes (125). Lower SCOV2 viral-

loads have also been shown to be associated with longer disease

duration (118). Various relevant explanations and physiological

models are reported for this, including the synergy between the

initial number of foci-of-infection (FOI) and the varying dynamics

of CD8+ T-cell responses (126) that drive lymphocytopenia and

lead to severe and critical clinical outcomes (127). It is established

that for SCOV2, like other airborne infections, the nasal

microenvironment plays a central role in the early infection

phases and guides the modulation of subsequent immune/defense

responses (128), with a recent study showing that upper respiratory

symptoms (sore throat, nasal discharge, dysosmia, dysgeusia) are

good prognostic factors, in contrast to lower respiratory symptoms

(cough, sputum production, dyspnea) (129). Relevant studies

demonstrate the presence of high viral-loads at the nasal

epithelium and mucosa during the early infection stage and after

the onset of symptoms, with higher loads detected in the nose than

in the oral cavity (130). Based on the aforementioned observations,

the following experiments aim to contrast between the molecular

fingerprints underlying different SCOV2 viral-load levels, and

associate them with the two-stage progression profile of

the infection.

Following a DEG analysis on the GSE152075 dataset (see section

2.1.1/Tasks, datasets and set-up of experiments/′Task4′), and setting

FDR≤0.05 and FC≥2, a set of 301 DEGs were induced, of which 18 were

up- and 283 down-regulated for the LOW viral-load class (consult

Supplement File DEGs.xlsx/′4_GSE152075_SCOV2_ViralLoad′).
Applying MCL clustering on the network of the 283 down-regulated

DEGs, a set of 26 genes were coherently grouped into three

interconnected clusters [the SCOV2 core molecular fingerprint for

the low viral-load level for GSE152075, (Supplementary Figure 9A)],

with the expression levels of these genes to significantly differentiate

between the corresponding viral-load levels (Supplementary Figure 9B).

In addition, a series of biological processes, pathways and hallmark

genes were found to be significantly enriched to IFN-signaling and

innate immune/defense responses (Supplementary Figure 9C). To

further confirm our findings, we performed DEG analysis on the

GSE156063 dataset (see section 2.1.1/Tasks, datasets and set-up of

experiments/′Task4′). Setting FDR≤0.05 and FC≥4, a set of 56 DEGs

were found to be down-regulated for the LOW viral-load class (no up-

regulated genes were induced), with 19 of these genes to be coherently

grouped into three interconnected clusters after applying MCL

clustering [the SCOV2 core molecular fingerprint for the low viral-

load level for GSE156063, (Supplementary Figure 10A)], with the

expression levels of these genes to differentiate between the

corresponding viral-load levels (Supplementary Figure 10B).

Enrichment results are shown in (Supplementary Figure 10C). The

two coremolecular fingerprints for the low viral-load level resulted from

the previous experiments share 15 down-regulated genes in common;

their MCL coherent clustering is shown in (Figure 9A). All of them
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(100%) belong to the set of 46 genes formed from the union of SCOV2

fingerprint genes down-regulated in the early stage. resulted from

experiments with GSE151513, GSE158930, and GSE148729 datasets.

Similar results hold for the respective enriched entries (Figure 9B).

In their original publication (64) the providers of GSE152075

dataset report a set of 363 DEGs that differentiate between high and

low viral-load levels, with the 100 most differentiable (FC≥2) to be

down-regulated for the low viral-load cases. MCL clustering of the

100 genes resulted into 23 genes grouped into two coherent clusters

(data not shown), with 10 of them (43.5%) to be shared with the 26

genes that compose the SCOV2 core molecular fingerprint of the

low viral-load level for GSE152075. But, in the remaining 16

fingerprint genes there are genes with critical antiviral roles, e.g.,

IFITM1 and ISG15 (refer to Table 2 for their antiviral activities).

Regarding GSE156063, the providers of the dataset report a set of

121 genes that differentiate between ARIs caused by SCOV2, other

or no-virus infections, with 116 of them to exhibit an FC≥2 (across

the different pairwise comparisons). They also report the slopes of

the regression fitting-lines for the scatter plots of normalized gene

counts as a function of SCOV2 viral-load, with higher slope values

to indicate the down-regulation status of the respective genes for the

low viral-load cases. In addition, they report a slope of 0.58 for gene

IRF7 which, among other leading-edge interferon response genes,

lag expression in SCOV2 infection compared with other ARIs. A set

of 25 genes are in common between the aforementioned 116 genes

and the ones with slopes over 0.58. The 25 genes share just 9 (36%)
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fingerprint for the low viral-load cased induced from the

experiment with GSE156063 dataset. Again (as in the case of

GSE152075), in the remaining 10 genes of the fingerprint there

are genes with critical antiviral roles, e.g., IFITM1, MX2 and

UBE2L6. The above indicate again the adequacy of our findings

compared to published results.

Our findings showcase that the molecular profile of SCOV2 low

viral-load level is related to the molecular profile that characterize

the early stage of the infection. As the acquisition of viral-loads, for

both of the above experiments, was done at the early stages of the

infection, the findings indicate an association between low viral-

loads and suppressed immune responses during the early SCOV2

infection stage. This is in accordance with results presented in other

relevant studies. In particular, in a study that links SCOV2 viral-

load at the upper respiratory tract with disease clinical outcome it

was found that patients with mild symptoms showed significantly

highest viral-loads compared to severe patient cases that showed the

least (131). However, it is shown that disease severity is not

associated with viral-load (132), but rather to IFN responses

being significantly lower in severe cases during the early infection

stage compared to the mild/moderate ones (132). This drives us to

the question if early immune/defense responses to the infection, as

may be indicated by the early onset of symptoms, is linked with

viral-loads, and how it relates to the two-stage SCOV2

infection profile.
A B

FIGURE 9

(A) The 18 down-regulated genes in the low viral-load cases shared with the down-regulated genes in the early SCOV2 infection stage resulted from
the union of the respective two-stage core molecular fingerprints resulted from the experiments with GSE151513 and GSE158930 datasets.
(B) Enriched down-regulated biological processes, pathways and hallmark genes common between the low viral-load cases and the union of the
respective enriched down-regulated entries in the early SCOV2 infection stage resulted from the experiments with GSE151513 and GSE158930 – the
percentages of the respective common entries are also indicated.
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4.2 Early responders exhibit a
robust antiviral immune response
in the early stages of infection
which inverses the standard
two-stage SCOV2 infection profile

It has been established that different individuals may exhibit

different response profiles during the SCOV2 infection course. This

is attributed to different factors including viral-load. It is shown that

high viral-loads induce robust IFN responses at the early stage of

the infection, with protective results against severe outcomes (131).

Furthermore, many studies demonstrate that cross-immunity from

the infection with other CoVs is beneficial for the disease outcome

(133–136). In addition, it has been also shown that COVID-19

patients with mild/moderate disease exhibit IFN-I responses at the

early infection stages (39, 137).

To explore the response profiles of individuals we used the

GSE166190 dataset (see section 2.1.1/Tasks, datasets and set-up of

experiments/′Task5′). Designation of early response class: In the

original publication of the study for GSE166190 dataset (70), the

authors report that direct gene-expression comparisons between

children and adults show stronger and persistent innate

inflammatory responses in adults in the first two weeks (0-5 and

6-14 DPOS), with specific B-cell responses to be significantly

overexpressed in children. As a final conclusion the authors state

that children and adults follow similar innate responses to the

infection but with a faster resolution in children, as indicated by B-

cell responses during the later infection stages. The up-regulation of

biological processes related to B-cell responses is also confirmed by

our analysis when directly contrasting the RNAseq profiles of the

two age groups (data not shown). But the stronger and persistent

IFN responses is not so profound. The comparison of the different

DPOS intervals (1, 2, 3 and 4) with the last interval of the infection

course (i.e., 36-81 post infection days), as performed in the

aforementioned study, is not adequate for the exposition of the

key molecular mechanisms underlying the infection during its

active state; as it is natural to assume that 36 DPOS the infection

is already in retreat. In the light of the aforementioned observations

we followed a cautious process in order to identify groups of

infected individuals that exhibit different immune/defense

immune profiles during the early infection stage, regardless of

their age. To this end, we focus on individuals (both adults and

children) with early onset of symptoms (i.e., with 0-5 DPOS, n=16,

9 adults and 7 children). Applying k-means clustering on these

samples (see Supplementary Figure 11 for details) we were able to

identify one cluster (consisting of 178 genes) being heavily enriched

in immune/defense biological processes (see Supplementary

Figure 11B) for the heatmap of these genes over the 16 samples).

By manually inspecting the heatmap, the samples with contrasted

expression profiles were assigned to two groups: earlyDOWN (n=9;

5 children/CHILD_1,2,4,5,7 and 4 adults/ADULT_1,2,4,6) and

earlyUP, i.e., the early responders (n=7; 2 children/CHILD_3,6

and 5 adults/ADULT_3,5,7,8,9) with down/up-regulated gene

expression profiles, respectively (in Supplementary Figure 11B)

the green/dark-green and red/dark-red patterns designate the
Frontiers in Immunology 21
respective earlyDOWN/earlyUP groups; the enriched GO

biological processes of this cluster are also shown). The clear

separation of the two groups is confirmed by the PCA plot of the

respective samples (Supplementary Figure 11C); the ages of the

individuals assigned to the two groups are also shown). DEG/

Enrichment analysis: Applying DEG analysis to contrast between

the two groups, and setting FDR≤0.05, FC≥2, a set of 161 DEGs, all

up-regulated in the earlyUP group, were induced (with no down-

regulated genes being induced). See Supplementary Figure 11D) for

the respective heatmap, and consult also Supplement File

DEGs.xlsx/′5_GSE166190_ SCOV2_EarlyResponse′). MCL

clustering of the 161 genes resulted into a complex of 28 genes

grouped in to three interconnected coherent clusters [the SCOV2

early responders’ core molecular fingerprint for GSE166190,

Supplementary Figure 12A)]. The contrasted expression levels of

the 161 genes are shown in (Supplementary Figure 12B), and the

respective enriched entries in (Supplementary Figure 12C). The

findings demonstrate that there are SCOV2 infected individuals

which, regardless of their age, exhibit robust immune/defense

responses during the early infection stages.

To confirm our findings, we used the GSE161731 dataset (see

section 2.1.1/Tasks, datasets and set-up of experiments/′Task5′). As
in the previous experiments, we applied k-means clustering in order

to designate groups of samples that contrast between the

onset_hosp classes (see Supplementary Figure 13 for details).

Designation of early-mid response class: With a careful inspection

of the respective samples’ PCA plot, two separable groups of

samples could be identified (Supplementary Figure 13B), one with

EARLY_YES and MID_YES samples (denote as ′EarlyMid_YES′,
n=11 samples), and one with MID_NO and LATE_NO samples

(denoted as ′MidLate_NO′, n=25 samples). The EARLY_NO cases

were discarded as they are mixed between the two groups.

(Supplementary Figure 13C) shows the PCA plot of the samples

when assigned to the EarlyMid_YES and MidLate_NO groups; PC1

indicates a significant separation between the two groups (p=1.40e-

6). Here we have to make an important note that relates to the

infection’s clinical outcome. The hospitalization of patients in the

EarlyMid_YES group does not necessarily mean that these patients

are in risk for severe disease outcomes. We postulate that it is

mainly their early response to the infection and their putative

elevated symptomatology that leads to this medical decision.

Under this interpretation, the key question concerns the

underlying molecular background that guides and governs

patients with early response to the infection, in contrast to

patients which, even if they were not hospitalized, exhibit a late

response to the infection, with putative milder symptoms at the

early stage. DEG/Enrichment analysis: DEG analysis was performed

by contrasting between the EarlyMid_YES and MidLate_NO

groups. Setting FDR≤0.05 and FC≥2, a set of 311 DEGs were

induced, 250 up- and 61 down-regulated in the EarlyMid_YES

cases. Applying MCL clustering on the 250 up-regulated genes, a set

of 22 genes were coherently clustered into two interconnected

groups (the SCOV2 early-mid responders’ core molecular

fingerprint for GSE161731; Supplementary Figure 14A), consult

also Supplement File DEGs.xlsx/′5_GSE161731_SCOV2_
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EarlyResponse′). The 22 genes exhibit higher expression levels in

EarlyMid_YES cases compared to the MidLate_NO ones

(Supplementary Figure 14B). The respective enriched up-

regulated entries are shown in (Supplementary Figure 14C). The

22 fingerprint genes share 86.4% (19/22) genes with the 28

fingerprint genes for the earlyUP group induced from the

previous experiment with GSE166190 dataset (indicated with

circled black-dots in (Supplementary Figure 14A); consult also

Supplement File DEGs.xlsx/′5:UNION_COMMON′), namely:

BST2, EIF2AK2, HERC5, IFI6/35, IFIT1/2/3/5, IFITM1, IRF7,

ISG15, MX1, OAS1/2/3/L, RSAD2 and XAF1, with all of them to

fall in the union of SCOV2 fingerprint genes resulted from the

experiments with GSE151513, GSE158930 and GSE148729 datasets

(46 genes down-regulated in the early SCOV2 stage), and 84.2%

(16/19) of them to be shared with the union of fingerprint genes

resulted from the experiments with GSE152075 and GSE156063

datasets (30 genes down-regulated for the LOW viral-load cases),

namely: BST2, EIF2AK2, HERC5, IFI6, IFIT1/2/3/5, IFITM1,

ISG15, MX1, OAS1/2/3/L, RSAD2.

In their original publication (70) the providers of GSE166190

dataset report enriched blood transcriptional modules (BTMs) that

differentiate between the response profiles of children and adults in

the early infection stage (0-5 DPOS). In particular, they report three

such BMTs that include genes being related to IFN antiviral

responses and which, are up-regulated in adults, namely: antiviral

IFN signatures (BTM: M75), IFN-I response (M127) and viral

sensing & immunity; IRF2 targets network (II) (M11.1)7. A set 35

genes compose the union of genes included in these BTMs with,

31.4% (11/35) to be shared with the 28 genes that compose the

SCOV2 core molecular fingerprint for early responders (up-

regulated for the earlyUP group) identified from the experiment

with GSE166190 dataset. From the list are missing genes with

critical antiviral activity, as for example: IFI6, ISG15, MX1/2,

UBE2L6 and XAF1. As for GSE161731, in their original

publication (71) the providers of the dataset present a set of 28

ISGs that, even if their expression profiles in the early infection

stages display a similarity to those of other viral ARIs, they are

muted is the case of SCOV2 infection compared to other seasonal

CoVs. These genes share 15 (53.6%) in common with the 22

fingerprint genes found in the experiment with GSE161731

dataset. Again, from the list are missing genes with critical

antiviral activity, e.g., IFIH1, IFITM1/3, IRF7, ISG20, MX2,

STAT1/2, UBE2L6 and USP18, which are included in the list of

22 fingerprint genes for early-mid responders resulted from the

experiments with GSE161731 dataset. Again, the above indicate the

adequacy of our findings compared to published results.

Our findings demonstrate that early responders: (i) are able to

inverse the standard two-stage SCOV2 infection profile, with key

antiviral genes and molecular processes to be up-regulated during

the early infection stage, and (ii) their molecular immune/defense

profile resembles the respective profile of high viral-load cases. As
7 Genes in BMTs are listed in ′btm_annotation_table.xls′ file acquired from

https://www.ncbi.nlm.nih.gov/ pmc/articles/ PMC3946932/bin/

NIHMS540680-supplement-26.zip
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the published data of the two studies with GSE166190 (70) and

GSE161731 (71) do not refer to the viral-load of the infected

individuals, our last statement should be kept as an evidenced

hint. Even if pre-existing cross immunity by other HCoVs (human

coronaviruses) to SCOV2 infection is debatable, there is

accumulated evidence that HCoV-specific SCOV2 cross-reactive

CD4+ T cells may trigger and enhance humoral immune responses

in SCOV2 infection (138). As more than 90% of the population is

HCoV sero-positive, the above may provide an explanation for the

early immune antiviral responses displayed by early responders to

the infection. We have already mentioned that early response to the

infection could be proved beneficial for the retreat of the infection,

as the controlled regulation of ISGs in the later stages allows host

tolerance processes to take over. In other words, early responders,

even with elevated symptoms, may have a good prognosis regarding

the clinical outcome of the infection.
5 SCOV2 diagnostic and
prognostic modelling: a
machine learning approach

Risk assessment for COVID-19 infected individuals about

severe/critical clinical outcomes is crucial not only for the early

identification of patients that require urgent clinical care but also,

for the determination of the most appropriate and effective

treatment to be followed in order to avoid fatal outcomes. In

addition, risk-stratification decision aids may provide valuable

support for the most appropriate allocation of the needed

specialized clinical wards (e.g., emergency units and ICUs). So,

the devise and assessment of reliable and robust COVID-19

prognostic models raise as a major need, especially in periods of

high infection rates where the national and regional healthcare

systems reach their limits. Most of the COVID-19 prognostic

models reported in the literature, especially for hospitalized

patients, base their predictions on demographics (with age and

sex as the most determinant variables), comorbidities (with special

focus on hypertension, cardiovascular disease, hypertension and

diabetes), laboratory indicators (e.g., lymphocyte/platelet counts,

creatinine, interleukin 6 (IL-6), procalcitonin (PCT), d-dimer,

ferritin etc.) (139, 140) and medical imaging (141). In a recent

systematic and extensive review about the various COVID-19

prognostic models presented in the literature, the divergence

between the reported performance statistics is highlighted (142).

Actually, in 60 studies that refer to the severity or criticality of the

disease, AUC (an indicator of the prediction robustness) ranges

from 0.57 to 0.99, with sensitivity and specificity to range between

7.1% -100% and 19.5% -100%, respectively. The large deviations

between predictions should be attributed to the heterogeneous

criteria for disease severity/criticality followed by the different

studies, a fact that puts a strong bias on the selection and

stratification of patients. In addition to the above approaches, a

series of studies aim to tackle the task of COVID-19 prognosis on

the basis of patients’ transcriptomic/gene-expression profiles, both

at the early pandemic period (78) and at the later periods (76, 143–
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145). In terms of COVID-19 diagnosis and gene-expression

profiling the relevant efforts focus mainly on the differentiation

between acute respiratory illness/ARI caused by SCOV2 or other

viral/non-viral infections (65, 72, 73).
8 https://www.geeksforgeeks.org/binning-in-data-mining/
5.1 Fingerprint genes as
classifier descriptors

In the previous sections we identified a set of key-genes,

dominated by IFN related genes and ISGs as the core molecular

fingerprints underlying, either the early/late SCOV2 infection stages

or, the different SCOV2 infection phenotypes (low/high viral-load,

early/late responders). Taking advantage of these findings, we

followed an intuitive approach for the devise of the classifiers’

predictor set of genes with the aim to serve and support diagnostic

and prognostic decision making. The set is formed solely by the core

molecular fingerprint genes induced from the tasks being directly

correlated, on one hand, from the infection’s progression molecular

profile, and on the other, from the host’s viral-load and response

molecular profiles. So, seven fingerprint gene sets were utilized from

the following tasks and respective experiments: (a) the two-stage

SCOV2 progression profile, i.e., 23, 33 and 38 fingerprint genes

(down-regulated in the early SCOV2 infection stage) from the

experiments with GSE151513, GSE158930 and GSE148729 datasets,

respectively (sections 3.1.1, 3.1.2); (b) the low SCOV2 viral-load

molecular profile, i.e., 26 and 19 fingerprint genes (down-regulated

for the low viral-load class) from the experiments with GSE152075

and GSE156063 datasets, respectively (section 4.1); and (c) the

molecular profile of SCOV2 early responders, i.e., 28 and 23

fingerprint genes (up-regulated for the early responders to the

infection) from the experiments with GSE166190 and GSE161731

datasets, respectively (section 4.2). The union over the seven gene sets

consists of 52 unique genes which are used as predictors for the devise

of both diagnostic and prognostic classifiers (consult Supplement File

DEGS.xlsx/′6_CLASSIFIER_Descriptors_Enrich′ for all the details).

MCL clustering of the 52 descriptor genes is shown in (Figure 10A);

five interconnected coherent clusters. Their enrichments, provided by

STRING’s local network clusters annotations, are shown in

(Figure 10B), and indicate that the utilized descriptors are "well

informed" about the core molecular events taking place during

SCOV2 infection. A special note should be made concerning gene

IFI27. IFI27 is found as differentially expressed in most of the core

molecular fingerprints induced by the conducted experiments in the

previous sections, and so, its role is central not only to the

pathogenesis but also, for the diagnosis and prognosis of the

disease. Further evidence for the crucial role of IFI27 is provided in

a large-scale nested case-control diagnostic accuracy study where,

IFI27 is suggested as a marker for the early detection of SCOV2

infection and for "abortive infection" events (146).

For the devise of both the diagnostic and prognostic classifier

models we used theWeka open-source machine-learning environment

(www.cs.waikato.ac.nz/ml/weka). Extensive experimentation showed

that Random Forests (RF) classifiers exhibit the best performance

and so, the reported performance figures for our proposed classifiers

refer to the respective RF-based models.
Frontiers in Immunology 23
5.2 Diagnostic classifiers

The diagnostic task refers to the gene-expression based

differentiation of acute respiratory illness (ARI) caused either by

SCOV2 (POS class) or other viral/non-viral infection (NEG class).

In three studies, the results of which are reported in (65, 72, 73),

different classifiers are devised to differentiate between ARIs caused

by SCOV2 (POS) or other viral/non-viral (NEG) cases. We built an

RF-based classifier utilizing the aforementioned 52 signature genes

for each of the three datasets used in the aforementioned studies

(GSE156063, GSE188678 and GSE163151, see Table 3), and

contrast their performance with the corresponding performance

figures reported in the respective publications. SMOTE (Synthetic

Minority Oversampling Technique) (147) was applied on each

dataset in order to overcome the class imbalance between POS

and NEG samples. The gene-expression values were discretized

separately for each dataset in three intervals that reflect the low,

medium and high expression state of each gene; an equal width

binning discretization process was followed8. Each classifier was

assessed according to the different cross-validation procedures

followed in the respective studies (i.e., 5-fold, 70% vs. 30% or 80%

vs. 20% random splitting), and taking the average over 100

iterations of 5-fold or random-splitting runs. The results are

summarized in Table 3, and showcase that the proposed

classifiers outperform in most of the cases the figures reported in

the respective studies, achieving robust performance, mainly

indicated by the AUC figures across the majority of performance

metrics; relative lower performance for specificity/SP (in some

cases) and NPV may be attributed to the application of the

SMOTE class balancing process.
5.3 Prognostic classifiers

We explored the power of prognostic classifiers to differentiate

between the diverse of SCOV2 clinical outcomes (e.g., severe/critical

vs. mild-moderate/non-critical) or phenotypes (e.g., symptomatic

vs. asymptomatic). Utilizing the aforementioned 52 signature genes,

we built classifiers for the datasets and the respective differentiations

undertaken in four indicative studies: GSE152418 (74), GSE178967

(75), GSE172114 (76) and GSE177477 (77) (see Table 4). SMOTE

was applied on each dataset, and the gene-expression values were

also discretized, separately for each dataset. The performance of the

classifiers was assessed via 5-fold cross-validation, taking the

average over 100 iterations of 5-fold runs. The performance

results are presented Table 4. The proposed classifiers achieve a

very good and robust performance for all performance metrics

across all datasets and respective differentiation tasks.

The reported results demonstrate the feasibility of applying

gene-expression profiling for the induction of reliable and robust

SCOV2 diagnostic and prognostic models, especially when the
frontiersin.org

http://www.cs.waikato.ac.nz/ml/weka
https://www.geeksforgeeks.org/binning-in-data-mining/
https://doi.org/10.3389/fimmu.2023.1251067
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Potamias et al. 10.3389/fimmu.2023.1251067
utilized gene signature descriptors are well-informed about the core

molecular fingerprints underlying SCOV2 infection.
6 Discussion

In this paper, we performed differential expression and

enrichment/pathway analysis utilizing a diverse of public-domain
Frontiers in Immunology 24
gene-expression datasets from respective well-documented studies

associated with SCOV2 infection. We posted some challenging

biological questions to uncover the molecular landscape

underlying and governing the infection. We attempt to provide

answers to these questions and tackle the respective tasks following

a multi-step Bioinformatics pipeline realized by the utilization of

state-of-the-art gene-expression and pathway analysis

methodologies, services and tools. To this end, our in-silico quest
A B

FIGURE 10

(A) Coherent clusters of the 52 unique fingerprint genes used as descriptors for the devise of diagnostic and prognostic classifiers. (B) Enrichments
of the 52 genes according to the STRING/local network clusters annotations.
TABLE 3 Diagnostic classifiers.

Dataset/ref/#Genes/Classifier AUC ACC SE SP PPV NPV

GSE156063/(65)/27/RF¹ 0.981 92.3% 95.7% 95.0% 92.1% 96.9%

Proposed2 0.984 94.1% 93.6% 94.5% 94.5% 93.7%

GSE188678/(72)/10/SVM3 0.934 nr* 88.9% 92.8% 81.5% 95.1%

Proposed4 0.982 93.5% 93.3% 93.7% 93.8% 93.4%

GSE163151/(73)/1014,66,19/SVM5 0.933 86.5% 78.6% 93.5% nr

Proposed6 0.980 90.9% 94.9% 86.8% 87.9% 94.6%

Average (study datasets) 0.949 89.4% 87.7% 93.8% 86.8% 96.0%

Average (proposed) 0.982 92.8% 93.9% 91.7% 92.1% 93.9%
¹RF, Random Forest; A 5-fold cross validation performance assessment is followed in the original publication [consult (65)]; the reported figures refer to the 27-genes classifier models with the
following cutoffs thresholds used: 0.4 or 0.5 for ACC, 0.4 for SE and NPV, 0.5 for SP, PPV. 2The proposed method is also based on RF; SMOTE was applied to take-care class imbalances; the
reported figures are the averages over 100 iterations of 5-fold runs; the reported performance figures refer to the POS (i.e., SCOV2 infection) class.
3SVM, support vector machines; A 70%/30% train/test splitting for performance assessment is followed in the original publication (consult [72)]; the reported figures refer to 10 genes resulted
from the union of all 2-gene classifier models reported in the original publication; the performance figures for AUC and SE corresponds to the {IFI6, RGINA} 2-gene model, for SP and PPV to
{IFI6, GBP2} and for NPV to the {IFI6, C15orf48}. 4The proposed method is also based on RF; SMOTE was applied to take-care class imbalances; the reported figures are the averages over 100
iterations of 70%/30% random splits; the reported performance figures refer to the POS (i.e., SCOV2 infection) class.
5A 80%/20% train/test splitting for performance assessment is followed in the original publication [consult (73)]; the reported figures refer to the combined classifier [layer-I (POS/SCOV2 vs.
NEG/non-viral ARIs) followed by layer-II (POS/SCOV2 vs. NEG/viral ARIs)] with, ACC and AUC to correspond to the full gene panel (1014 genes), SP to the full or the medium gene panel (66
genes), and SE to the small gene panel (19 genes). 6The proposed method is also based on RF; SMOTE was applied to take-care class imbalances; the reported figures are the averages over 100
iterations of 80%/20% random splits; the reported performance figures refer to the POS (i.e., SCOV2 infection) class.
*nr, not reported.
Performance of diagnostic classifiers built with the set of 52 fingerprint genes and their comparison with published results (refer to section 5/′Fingerprint genes as classifier descriptors′). The
devise and performance assessment of the proposed classifiers follows the same methodology followed by the respective comparison publications, i.e. 5-fold (for GSE156063), 70% vs. 30% (for
GSE188678) and 80% vs. 20% random splitting (for GSE163151); the reported figures for the proposed classifiers are the averages over 100 iterations of each 5-fold run or random split. SMOTE
2760 was applied on all datasets in order to take-care for class imbalances. Bold figures indicate superior performance. AUC: Area Under the Curve; ACC: Accuracy; SE: Sensitivity; SP: Specificity;
PPV: Positive Predictive Value; NPV: Negative Predictive Value.
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provide the following contributions: (i) an elaborate analytical

methodology to segregate SCOV2 early and late infection stages,

providing a set of, down-regulated in the early stages of the

infection, key IFN/ISG genes and respective biological processes,

pathways and hallmarks signatures that present the core molecular

fingerprint of the two-stage SCOV2 infection profile; (ii) provide

strong evidence and support the hypothesis that SCOV1 follows a

similar to SCOV2 infection progression profile; (iii) contrast and

differentiate between INFL/H1N1 and SCOV1/2 infections at their

early progression stages and showcase a more robust, compared to

SCOV1/2, antiviral host response for the case of H1N1 during the

early infection stage; (iv) link low viral-load levels with the two-

stage SCOV2 progression profile, providing evidence that low viral-

loads at the early infection stage are associated with suppression of

key IFN/ISGs; (v) designate and characterize the molecular profile

of different SCOV2 severity phenotypes according to the infection’s

time-onset and duration of symptoms, and link early responders

with the up-regulation of key IFN/ISGs during the early infection

stages, providing evidence for their better clinical outcome; and (vi)

highly performing and robust machine-learning classifier models,

founded on a set of 52 key IFN/ISGs, to aid and support (a) the

diagnosis of SCOV2 infection when contrasted with acute

respiratory illness events caused from other viral/non-viral

infections, and (b) prognosis of COVID-19 severity (e.g., severe/

critical vs. mild-moderate, symptomatic vs. asymptomatic).

Our results are more competent when compared with the results

reported in the original studies of the datasets used in our

experiments. Furthermore, our findings are in accordance with the

conclusions of several relevant studies. A central conclusion of our

study is that the molecular ‘norm’ governing SCOV2 infection

follows a two-stage progression profile characterized by the

inhibition of IFN-I genes and the blocking of key antiviral ISGs

during the early infection stages. This leaves a critical time-window

for virus replication (41) that has been shown to correlate with the

two-stage SCOV2 infection profile (148). In agreement, in the top 10

articles announced by “Nature News” for the science discoveries in

2020, there are studies that demonstrate a strong association between

IFN-Is and COVID-19, with robust secretion of IFN-Is to be an

essential factor for the suppression of SCOV2 replication (109).

IFNs, especially IFN-Is and the induced ISGs, encode a variety of

antiviral effects throughout the whole viral life-cycle (entry,
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uncoating, genome replication, particle assembly and egress), with

delayed or dysregulated IFN-I responses to be linked with the

attraction of other immune components at the later infection

stages (neutrophils, monocytes, dendritic cells, and natural-killer/

NK cells) that guide to the accumulation of monocytes-macrophages

into SCOV2 infected lungs (28, 149). An additional putative cause

for the inhibition of IFN-Is at the early stages of SCOV2 infection is

attributed to the role of ACE2 as an IFN-I induced/stimulated gene

(150). In addition, recent reports suggest that detection of IFN-Is

gene expression is of great importance in order to assess the severity

of COVID-19 (151). Such an early failure of fundamental innate

immune and resistance mechanisms results to uncontrolled

hyperactivation of inflammatory reactions at the later stages of the

infection, with hyperinflammation leading to the so-called ‘cytokine

storm’, and finally to severe pneumonia, lung failure, and multiple

organ damage, with potentially fatal outcomes. Indeed, a number of

recent reports clearly indicate that such an aberrant antiviral

response is a major contributor to the severity of the disease (152),

with robust but non-tolerated IFN-mediated responses to occur in

severe cases (153). Well-defined studies suggest that targeting early

post-entry life cycle events is a common mode of IFN-I/ISG action

(154). In particular, IFITMs (a specific ISG family) are included in

the list of genes of the core SCOV2 molecular fingerprints induced

by our experiments, inhibit the life-cycle of various viruses

(including Influenza A and H1N1, filoviruses such as Embola, and

SCOV1 as well) at their early steps, by blocking entry or viral particle

trafficking (115, 155–157). In addition, it is known that several ISGs

(including, IFI6, IFI27, IRFs, MX1, OAS1 and RSAD2/Viperin, also

in the core SCOV2 molecular fingerprints induced by our

experiments) reduce the activity of replicons (self-amplifying

recombinant RNA molecules acting as virus-like particles) in HCV

(hepatitis-C virus) (158). It is also shown that, in contrast to human

common-cold coronaviruses (HCoVs), SCOV1/2 and MERS-CoV

induce reduced IFN-I responses (52). As for the prophylactic and

therapeutic treatment of SCOV2 infection, ′Frontiers in

Immunology′ devote a special topic with three relevant key

publications (159–161). In the last publication the authors report

14 highly preserved IFN-I related genes that are directly linked to

different host response profiles, namely: BST2, IFIT1/2/3, IFITM1,

ISG15, MX1/2, OAS1/2/3/L, RSAD2, and STAT1, with all of them to

belong in the union of genes that compose the two-stage SCOV2
TABLE 4 Prognostic classifiers.

Dataset/Phenotype-1 vs. Phenotype-2 AUC ACC SE SP PPV NPV

GSE152418/SevereICU vs. Moderate 0.992 95.4% 96.8% 94.1% 95.7% 97.6%

GSE178967/Severe vs. Moderate 0.997 98.9% 99.1% 98.7% 98.8% 99.1%

GSE172114/Critical vs. NonCritical 0.940 90.3% 91.2% 89.4% 90.2% 91.9%

GSE177477/Symptomatic vs. Asymptomatic 1.000 95.7% 91.6% 100.0% 100.0% 93.3%

Average (study datasets) 0.982 95.1% 94.7% 95.6% 96.2% 95.5%
Performance of prognostic classifiers built with the set of 52 fingerprint genes (see section 5/`Fingerprint genes as classifier descriptors`). Performance assessment of the proposed SCOV2 RF-
based prognostic classifiers follows a 5-fold cross-validation assessment; the respective performance figures are the averages over 100 iterations of each 5-fold run and correspond to the severe
class, i.e., SevereICU, Severe, Critical and Symptomatic for GSE152418, GSE178967, GSE172114 and GSE177477 datasets, respectively. Bold figures indicate superior performance. SMOTE was
applied on all datasets in order to take-care for class imbalances. AUC, ACC, SE, SP, PPV and NPV as in Table 3.
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molecular fingerprints found by our experiments as down-regulated

during the early stage of the infection (section 3.1.1).

The above supports in a great extend the soundness of our findings

and strengthens their validity. As for future research, of major concern

in the biomedical research community is the development of new

COVID-19 vaccines with better long-standing effectiveness and

enhanced ability to contain transmission. As it is reported in a recent

meta-analysis study (162), the effectiveness of vaccines were

particularly lower for the omicron SCOV2 variant compared to

earlier variants, with the booster doses that covered mainly the

omicron variant to drop from 70% against infections and 89%

against hospitalization, to 43% and 71%, respectively, four months or

more after vaccination. In another recent study (163), it is clearly stated

that vaccine effectiveness for all omicron infections remains sparse,

with the authors to report that about four months after immunization,

vaccine effectiveness decreased to about 26% and 35% for three and

four vaccine doses, respectively. It is established that higher IFN levels

occur in the lower respiratory tract of severe patients, with the inverse

to hold for the milder cases (164), and in this respect, mucosal

immunization present a promising direction for the development of

the new vaccines (165). We believe that our findings may provide

valuable hints and putative targets to aid relevant research and

development activities. Of course, translational research work and

wet-lab experiments are needed in order to validate, screen, deploy

and bring our findings from the bench to the bed side.
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