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Dynamics of necroptosis
in kidney ischemia-
reperfusion injury
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Necroptosis, a pathway of regulated necrosis, involves recruitment and

activation of RIPK1, RIPK3 and MLKL, leading to cell membrane rupture, cell

death and release of intracellular contents causing further injury and

inflammation. Necroptosis is believed to play an important role in the

pathogenesis of kidney ischemia-reperfusion injury (IRI). However, the

dynamics of necroptosis in kidney IRI is poorly understood, in part due to

difficulties in detecting phosphorylated MLKL (pMLKL), the executioner of the

necroptosis pathway. Here, we investigated the temporal and spatial activation of

necroptosis in a mouse model of unilateral warm kidney IRI, using a robust

method to stain pMLKL. We identified the period 3-12 hrs after reperfusion as a

critical phase for the activation of necroptosis in proximal tubular cells. After 12

hrs, the predominant pattern of pMLKL staining shifted from cytoplasmic to

membrane, indicating progression to the terminal phase of necroptotic cell

death. Mlkl-ko mice exhibited reduced kidney inflammation at 12 hrs and lower

serum creatinine and tubular injury at 24 hrs compared to wild-type littermates.

Interestingly, we observed increased apoptosis in the injured kidneys of Mlkl-ko

mice, suggesting a relationship between necroptosis and apoptosis in kidney IRI.

Together, our findings confirm the role of necroptosis and necroinflammation in

kidney IRI, and identify the first 3 hrs following reperfusion as a potential window

for targeted treatments.

KEYWORDS
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1 Introduction

Ischemia-reperfusion injury (IRI) is a pathological process that

occurs when the blood supply to an organ is temporarily reduced

and then restored (1). Cellular damage occurs during both the

ischemic period and subsequent reperfusion of the kidney. During

ischemia, there is a switch from aerobic to anaerobic metabolism

(2), resulting in acidosis (3). Cellular ion transport mechanisms are

compromised, with increased intracellular calcium, sodium and

water causing cellular oedema (4–6). During reperfusion aerobic

metabolism is restored and pH is normalised, but reactive oxygen

species (ROS) are generated, damaging functional cellular

components and ultimately inducing cell death (7–9). The kidney,

a highly vascular and metabolically active organ, is particularly

susceptible to IRI which may occur during episodes of hypotension,

vascular surgery, sepsis, cardiac events or during kidney retrieval for

transplantation (10). Kidney IRI causes inflammation (11, 12),

immune system activation (13–15), microvascular dysfunction

(16–19) and fibrosis (20, 21). IRI has both immediate and early

clinical consequences (acute kidney failure) (22, 23) and contributes

to progressive long term fibrosis and chronic kidney disease (CKD)

(24). Kidney IRI causes significant patient morbidity and mortality,

contributing to increasing healthcare costs (25–31). One of the

hallmarks of kidney IRI is acute tubular necrosis, which occurs

predominantly in the proximal tubules (9).

Recent studies have established that necrosis can occur in a

regulated manner via several pathways including necroptosis (32),

ferroptosis (33), pyroptosis (34, 35), mitochondrial permeability

transition (MPT)-driven necrosis (36), and parthanatos (37, 38). In

contrast to apoptosis, these forms of regulated necrosis lead to cell

membrane rupture and release of damage-associated molecular

patterns (DAMPs), resulting in inflammation and immune

activation [reviewed in (39)]. Necroptosis is a caspase-independent

regulated necrosis pathway triggered by a range of extracellular

stimuli, including death receptor ligands (e.g. TNF) or pathogen

patterns (e.g. LPS) binding to their respective cell surface receptors, or

intracellular stimuli such as viral nucleic acids binding to the

intracellular receptor ZBP1 (reviewed in (40, 41). In scenarios

where the pro-NF-kB activity of the cIAP E3 ubiquitin ligase

family and the pro-apoptotic function of Caspase-8 protease are

diminished, the intracellular kinases Receptor Interacting Protein

Kinase 1 (RIPK1) and Receptor Interacting Protein Kinase 3 (RIPK3)

assemble into a high molecular weight intracellular platform termed

the necrosome via their RIP homology interaction motifs (RHIMs)

(42, 43). Recruitment of subcomplexes comprising RIPK3 and the

terminal effector in the pathway – the Mixed lineage kinase domain-

like (MLKL) pseudokinase – from the cytosol to the necrosome

prompts RIPK3-mediated phosphorylation of the MLKL

pseudokinase domain at T357/S358 in human MLKL and S345 in

mouse MLKL (44–46). Phosphorylation is the critical step in MLKL

activation, inducing MLKL to undergo a conformational change,

disengage from the necrosome, and assemble into pro-necroptotic

oligomers (47–50). MLKL oligomers are trafficked from the

necrosome to the plasma membrane, where they accumulate in

hotspots that perturb the membrane to kill cells once a phospho-
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MLKL (pMLKL) threshold is exceeded (50). Accordingly,

phosphorylation of MLKL has become synonymous with

necroptosis pathway and MLKL activation, and is considered a

hallmark of necroptosis pathway activation. Many of the

inflammatory molecules released during necroptosis promote

further necroptotic cell death and inflammation (51), creating an

auto-amplification loop termed necroinflammation (52).

Necroptosis is believed to play an important role in the

pathogenesis of kidney IRI (reviewed in (39) (53). Studies by

Linkermann et al. (54) and Newton et al. (55) showed lower

mortality of Ripk3-deficient mice compared to wild-type (WT)

mice. In the absence of mouse-specific inhibitors of MLKL, the

executioner protein of necroptosis, in vivo data for its role come

from studies of necroptosis-deficientMlkl knockout (Mlkl-ko) mice

(55, 56). Müller et al. used a bilateral renal pedicle clamping model

of IRI to demonstrate improved kidney function in Mlkl-ko mice

compared with wild-type (WT) mice at 48 and 72 hrs post-

reperfusion, but not at the earlier timepoints of 6, 12, and 24 hrs

(56). Although there was a time-dependent increase in total MLKL

protein expression in WT kidneys commencing at 12 hrs post-

reperfusion, the authors were unable to detect pMLKL by

immunostaining or Western blotting (56). This inability to

reliably detect pMLKL in mouse kidney sections has been a major

hindrance to understanding the dynamics of necroptosis in kidney

IRI. To address this problem, we developed a reproducible method

to stain pMLKL in formalin-fixed kidney tissue sections and used it

to track the temporal and spatial activation of necroptosis in the

kidneys of WT mice subjected to unilateral IRI. Mice were analyzed

at different timepoints post-reperfusion (0, 3, 12, 24, 48, 72 hrs, and

4 weeks). The pMLKL staining pattern at each timepoint was

correlated with kidney function, tubular injury, and the

expression of a range of genes relevant to kidney injury,

inflammation, and necroptosis. Finally, we compared Mlkl-ko

mice with WT littermate controls at each timepoint to assess the

degree and mechanism of protection from IRI afforded by deletion

of MLKL.
2 Materials and methods

2.1 Animal and ethical statement

Mlkl-ko mice on a C57BL/6J background (45) and WT

littermate controls were generated by heterozygous matings and

screened by PCR of tail tip genomic DNA by the Walter and Eliza

Hall Institute for Medical Research (WEHI) (45). Mice were housed

in microisolator cages in a pathogen-free facility with a 12-hour

light-dark cycle under standard conditions of temperature and

humidity and fed commercial mouse chow diet with free access

to drinking water. All animal experiments were conducted in

compliance with the Australian Code of Practice for the Care and

Use of Laboratory Animals for Scientific Purposes (Eighth edition,

2013) and the Prevention of Cruelty to Animals Act 1986, Victoria,

Australia. All experiments were carried out with the approval of the

Animal Ethics Committee of St. Vincent’s Hospital Melbourne.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1251452
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pefanis et al. 10.3389/fimmu.2023.1251452
2.2 Kidney ischemia-reperfusion
injury model

10–12-week-old male mice were anaesthet ised by

intraperitoneal injection of ketamine (100 mg/kg) and xylazine

(15 mg/kg), followed by right nephrectomy prior to left renal

pedicle clamping for 18 min using a microvascular clamp (Roboz,

Rockville, MD). After removal of the clamp, the kidney was assessed

for even reperfusion prior to abdominal wound closure. Mice

received 200 µL warm normal saline (37°C) i.p. post-operatively,

and core body temperature was maintained at 35.5 - 36.5°C

throughout. Sham mice had a right nephrectomy but the left

renal pedicle was not clamped. Separate cohorts of mice were

euthanised by anesthetic overdose (ketamine/xylazine) and

exsanguination immediately following injury (baseline), at 3, 12,

24, 48, 72 hours or 4 weeks after reperfusion. Blood and kidney

samples were obtained to assess kidney function, kidney injury,

inflammation, and necroptosis. Group sizes varied depending on

availability of homozygous Mlkl-ko and WT littermates during

experimental procedures. Specific group sizes are specified in all

figure legends.
2.3 Analysis of kidney function

Serum creatinine was measured using a kinetic colorimetric

assay on a COBAS Integra 400 Plus analyser (Roche, Castle Hill,

NSW, Australia).
2.4 Assessment of tubular injury

Kidney tissue blocks were fixed overnight in 10% formalin and

embedded in paraffin wax. 3 µm sections were cut and de-waxed

prior to Periodic Acid Schiff (PAS) staining (57). Each section was

divided into 12 regions. A representative area of each region was

viewed under 400X magnification, with a focus on the

corticomedullary junction. A score was derived by calculating the

number of damaged proximal tubules as a percentage of total

proximal tubules manually counted in each area (58). Markers of a

damaged tubule included tubular atrophy, tubular dilatation, tubular

cast formation, vacuolization, and tubular cell degeneration with loss

of brush border or thickening of tubular basement membranes. An

average of the 12 scores obtained per section was calculated. Scoring

was performed under blinded conditions by personnel trained by an

experienced veterinarian pathologist.
2.5 Immunohistochemical analysis

3 µm paraffin sections were de-waxed prior to antigen retrieval

in a citrate buffer (pH 6.0) using a pressure cooker at 125°C for 90 s

(pMLKL staining) or 180 s (cC3 staining), and left to cool to room

temperature. Slides were then washed on a shaker prior to
Frontiers in Immunology
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incubation in 10 mL 3%H2O2 v/v in double-distilled water for 5 min

and blocked with 50 mL 10% swine serum for 1 hr at room

temperature. Sections were then incubated with rabbit

monoclonal anti-phospho-MLKL (pSer345) (ab196436, 1:100,

Abcam, Melbourne, Australia) or rabbit monoclonal anti-human/

mouse cleaved Caspase-3 (cC3) (Asp175) (IC835G, 1:200, RD

Systems, Noble Park, Australia) in 2% swine serum at 4°C

overnight. After incubation with DAKO anti-rabbit IgG HRP

secondary antibody (Envision+ System, K4003, 1:1, Dako, Santa

Clara, USA) for 1 hr, sections were developed using DAB and

counterstained with hematoxylin. pMLKL- or cC3-stained sections

were scanned using an Aperio ScanScope (Leica Biosystems) to

generate a digitized image of the whole section. 12 representative

areas of the cortex were analysed (4 upper pole, 4 mid pole and 4

lower pole) at X400 magnification. A score was manually calculated

by counting the number of tubules with pMLKL or cC3 staining as a

percentage of the total number of tubules in the section.
2.6 Reverse transcription-quantitative PCR

Harvested kidneys were stored in RNA Later® at 4°C for 24-

48 h, followed by storage at -80°C until processing. Total RNA was

extracted using the ReliaPrep ™ RNA Tissue Miniprep system

(Promega Australia, Alexandria, NSW, Australia) according to

manufacturer’s instructions. RNA concentration and quality were

measured using a Fluorostar Omega multimode microplate reader

(BMG Labtech, Mornington, Austra l ia) . F irs t-strand

complementary DNA (cDNA) was generated in a reaction

volume of 22 µL containing 1 µg oligo (dT), 1 µg random

hexamers (Invitrogen, Carlsbad, CA), 12 µg of RNA and sterile

Milli-Q H2O. The reaction was incubated for 10 min at 70°C.

Following this, a 28 µL mix comprising 2.5 µL 10 mM dNTPs, 1 µL

SuperScript III recombinant reverse transcriptase, 1 µL RNaseOUT

recombinant ribonuclease inhibitors, 2.5 µL 0.1 M DTT, 10 µL 5 x

first strand buffer (Invitrogen, Carlsbad, USA) and 11 µL Milli-Q

H2O was added to the first reaction. Reverse transcription was

performed at 42°C for 1 hr and 70°C for 10 min. The cDNA was

stored at -20°C. Quantitative real-time PCR was performed using

the TaqMan Universal PCR Master Mix system and TaqMan Gene

Expression Assays for Kidney injury molecule 1 (Kim1)

(Mm00506686_m1), Neutrophil gelatinase-associated lipocalin

(Ngal) (Mm01324470_m1), Tumour necrosis factor alpha (Tnfa)

(Mm00443258_m1), Interleukin 1 beta (Il1b) (Mm00434228_m1),

Interleukin 33 (Il33) (Mm00505403_m1), Interleukin 6 (Il6)

(Mm00446190_m1), Macrophage inflammatory protein-2 (Mip2)

(Mm00436450_m1), Receptor interacting protein kinase 1 (Ripk1)

(Mm00436354_m1), Receptor interacting protein kinase 3 (Ripk3)

(Mm00444947_m1), Mixed lineage kinase domain-like protein

(Mlkl) (Mm01244222_m1), Toll-like receptor 2 (Tlr2)

(Mm0 0 4 4 2 3 4 6 _m1 ) , T o l l - l i k e r e c e p t o r 4 (T l t 4 )

(Mm00445273_m1), and Glyceraldehyde 3-phosphate

dehydrogenase (Gapdh) (Mm99999915_g1) (Applied Biosystems,

Carlsbad, CA), using a 7400Fast Real-Time PCR System

(Applied Biosystems).
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2.7 Statistical analysis

Descriptive statistics were used to summarise the kinetic

changes at different time points after reperfusion. Results were

expressed as mean ± SEM unless otherwise indicated. A Kruskal-

Wallis test and Dunn multiple comparisons test were used when

comparing > 2 groups. Comparisons between 2 groups were

performed using a Mann-Whitney U-test. Statistical analyses were

performed using GraphPad Prism version 9.3 (GraphPad, San

Diego, CA) with p<0.05 considered significant.
3 Results

3.1 Kinetics of kidney injury and pro-
inflammatory gene expression in WT mice
following IR

C57BL/6J WT mice were subjected to right nephrectomy and

clamping of the left renal pedicle for 18 min, and cohorts were

analyzed at 7 timepoints post-reperfusion (0, 3, 12, 24, 48, 72 hrs,
Frontiers in Immunology 04
and 4 weeks). Kidney injury was assessed by measuring kidney

function (serum creatinine), tubular injury (semi-quantitative

morphological analysis), and mRNA expression of the genes for

the kidney injury markers KIM-1 and NGAL. Serum creatinine

(Figure 1A) and tubular injury (Figure 1B; Supplementary Figure 2)

were elevated at 3 hrs, although these increases did not reach

statistical significance and there was no change in expression of

Kim1 (Figure 1C) or Ngal (Figure 1D) at this early timepoint. By 12

hrs, creatinine levels and tubular injury were significantly increased,

and expression of both Kim1 and Ngal was massively upregulated.

All parameters remained elevated at 24, 48 and 72 hrs before

returning to baseline by 4 weeks.

We then examined the expression of several pro-inflammatory

genes relevant to necroptosis and/or kidney IRI. TNFa is the best

characterized activator of necroptosis (53) and has been described

as a necroptosis-associated alarmin (59). Tnfa expression was

significantly increased at 12, 48 and 72 hrs, and remained high at

4 weeks (Figure 2A). Interleukin-6 (IL-6) is an acute inflammatory

cytokine that is upregulated in necrotic cells but not in apoptotic

cells (60). Il6 expression was elevated earlier than Tnfa (3 hrs) and

returned to baseline levels by 72 hrs (Figure 2B). IL-1b and IL-33
A B

DC

FIGURE 1

Time course of kidney injury after IR in WT mice. (A): serum creatinine; (B): tubular injury score; (C): mRNA expression of Kim1; (D): mRNA
expression of Ngal. Kruskal-Wallis test with Dunn multiple comparisons test with * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 compared to
baseline control. Data presented as mean ± SEM.
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are released by necroptotic cells (61, 62). Il1b expression was

upregulated at 12, 24 and 48 hrs (Figure 2C), whereas Il33 was

increased later, from 24 hrs (Figure 2D). Signalling via Toll-like

receptor 4 (TLR4) can activate necroptosis, whereas TLR2 has not

been shown to play a role in necroptotic cell death (53). Both Tlr4

(Figure 2E) and Tlr2 (Figure 2F) were upregulated relatively late (48

and 72 hrs, respectively), with Tlr2 expression remaining high at 4

weeks. Macrophage inflammatory protein-2 (MIP-2) is a neutrophil

chemoattractant/activator that is upregulated in kidney IRI (63).

Mip2 expression was significantly increased at all timepoints except

48 hrs, peaking at 12 hrs (Figure 2G).
Frontiers in Immunology 05
3.2 Kinetics of necroptotic pathway gene
expression in WT mice following IR

Although elevated expression of the necroptotic pathway genes

Ripk1, Ripk3 and Mlkl does not necessarily equate with increased

necroptosis in vivo (53), it may indicate an increased propensity for

this form of cell death. We therefore measured IRI-associated

changes in the expression of these genes in the kidney at different

times post-reperfusion. All 3 genes were significantly upregulated at

most timepoints, with the highest expression observed at 48

hrs (Figure 3).
A B

D

E F G

C

FIGURE 2

Time course of pro-inflammatory gene expression in the left kidney after IR in WT mice. (A): Tnfa; (B): Il6; (C): Il1b; (D): Il33; (E): Tlr4; (F): Tlr2. (G):
Mip2. Kruskal-Wallis test with Dunn multiple comparisons test with * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 compared to baseline control.
Data presented as mean ± SEM.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1251452
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pefanis et al. 10.3389/fimmu.2023.1251452
3.3 Temporal and spatial pattern of pMLKL
staining in kidneys of WT mice following IR

Sections were cut from formalin-fixed left kidney tissue of WT

mice from each cohort and stained for pMLKL using a rabbit

monoclonal antibody [ab196436, EPR9515 (2)] This antibody has

previously been used to detect pMLKL in methanol-fixed mouse

dermal fibroblast cell lines (64) and in formalin-fixed mouse cecal

tissue (65). Reproducible staining was achieved after optimization

of the antigen retrieval step based initially on a method described by

He et al., 2021 (65). Mlkl-ko mice subjected to IRI were used as a

control to validate the antibody; Mlkl-ko kidneys showing

substantial morphological injury were negative for pMLKL

staining at each timepoint (Supplementary Figure 3). pMLKL was

not detected in WT/IRI kidneys at 0 or 3 hrs post-reperfusion

(Figures 4A, B). At 12 hrs, numerous tubules containing cells

displaying dense punctate cytoplasmic staining were observed
Frontiers in Immunology 06
(Figure 4C). Interestingly, the tubules at this timepoint were

either completely positive or completely negative. At 24 hrs, the

pattern of staining had changed from cytoplasmic to predominantly

membrane/intraluminal i.e., on the apical surface of tubular

epithelial cells (Figure 4D). At 48 hrs, strong staining of

proteinaceous casts within the tubules was observed, along with

patchy intraluminal staining (Figure 4E). At 72 hrs (Figure 4F) and

4 weeks (Figure 4G), staining was weaker and mainly restricted

to casts.

We performed a semi-quantitative analysis by counting the

number of pMLKL-positive tubules as a percentage of the total

number of tubules. The degree of positivity was highest at 12 hrs

and remained significantly elevated at 24 and 48 hrs (Figure 4H).

The data were further stratified into cytoplasmic and intraluminal

staining, likely representing the activation and execution phases of

necroptosis, respectively. On this basis, maximum activation of

necroptosis was observed at 12 hrs, while the terminal stage of
A B

C

FIGURE 3

Time course of necroptotic pathway gene expression in the left kidney after IR in WT mice. (A): Ripk1; (B): Ripk3; (C): Mlkl. Kruskal-Wallis test with Dunn
multiple comparisons test with * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 compared to baseline control. Data presented as mean ± SEM.
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necroptotic cell death was relatively constant at 12, 24 and 48 hrs,

and returned to close to baseline by 72 hrs (Figure 4H).
3.4 Effect of MLKL deletion on kidney IRI

Compared to WT mice, Mlkl-ko mice showed reduced kidney

injury at 24 hrs post-reperfusion, evidenced by significant decreases

in serum creatinine (Figure 5A) and tubular injury score (Figure 5B).

Kidney function and injury were not significantly different at the

other timepoints. Expression of Kim1 (Figure 5C) and Ngal

(Figure 5D) were reduced at the earlier timepoint of 12 hrs,

although only the former was statistically significant. Expression of
Frontiers in Immunology 07
the pro-inflammatory cytokine genes Tnfa, Il1b and Mip2 was also

significantly lower at 12 hrs in Mlkl-ko mice compared to WT mice,

whereas expression of Il6, Il33, Tlr2 and Tlr4, and of the necroptosis

pathway genes Ripk1 and Ripk3, was generally similar inMlkl-ko and

WT mice at all timepoints (Supplementary Figure 1). As expected,

Mlkl expression and pMLKL staining were undetectable in kidneys

from Mlkl-ko mice (data not shown).

To investigate the mode of IRI-associated cell death in a

necroptosis-deficient setting, kidney sections from the 24 hr

timepoint were stained for cleaved Caspase-3 (cC3) as a marker

of apoptosis. While WT kidneys showed a significant but modest

increase in apoptotic tubules compared to sham kidneys, Mlkl-ko

kidneys showed a major increase (Figure 6), suggesting a greater
A B

D

E F

G H

C

FIGURE 4

Time course of pMLKL staining in the left kidney after IR in WT mice. Representative sections from 0 hrs (A), 3 hrs (B), 12 hrs (C), 24 hrs (D), 48 hrs
(E), 72 hrs (F), and 4 weeks (G) post-reperfusion. (H): percentage of proximal tubules staining positive for pMLKL, stratified according to cellular
location (dark blue = cytoplasmic; light blue = membrane/intraluminal). Examples of cytoplasmic, membrane and proteinaceous cast staining are
indicated by arrowheads and short and long arrows, respectively. Kruskal-Wallis test with Dunn multiple comparisons test with * p<0.05, *** p<0.001
compared to baseline control. Image magnification x 400.
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role for apoptosis in this model when necroptosis is inactivated. The

pattern of cC3 staining in Mlkl-ko tubules at 24 hrs was like that of

pMLKL staining in WT tubules at 12 hrs (Figure 4C) i.e., tubules

were either completely positive or negative.
4 Discussion

Although several studies employing mouse models have

implicated necroptosis in the pathogenesis of kidney IRI (54, 55,

66, 67), this is the first study to definitively demonstrate activation of

the terminal stage of the necroptotic pathway (i.e., phosphorylation of

MLKL) in this setting and to explore the dynamics of the process. We

performed a time course analysis in a mouse model of unilateral

warm IRI to detail the kinetics of kidney injury, inflammation and

necroptosis. Our data suggest that the critical phase lies within 3-12

hrs following reperfusion. During this period, there was major

activation of necroptosis as evident by strong pMLKL staining

within proximal tubular cells (PTCs) at 12 hrs. Some of the PTCs

exhibited pMLKL staining at the cell surface, suggesting progression

to the pre-lytic/lytic phase of necroptosis. At the same time, there was

upregulated expression of the necroptosis pathway genes Ripk1,
Frontiers in Immunology 08
Ripk3 and Mlkl and the pro-inflammatory cytokine genes Tnfa, Il6,

Il1b and Mip2. This, together with activation of the NLRP3

inflammasome by pMLKL (68), would be expected to create

favourable conditions for further necroptosis and inflammation via

DAMP release, driving the cycle of necroinflammation.

Of interest was the pattern of pMLKL staining. Epithelial cell

injury associated with kidney IR is most apparent in the proximal

tubules (1), as PTCs have low anaerobic glycolytic capacity and are

located in areas with low partial pressure of oxygen such as the

outer medulla and inner cortex (9). Consistent with this, we

observed that tubular injury was focused in the proximal tubules

in the cortico-medullary region. Necroptosis, as indicated by

pMLKL staining, was also restricted to PTCs. This is in contrast

to the findings of a recent single-cell analysis suggesting that

necroptosis in kidney IRI occurs mainly in non-PTC cell types,

with secondary effects on PTCs (69). Furthermore, injured tubules

were clustered together, and necroptosis appeared to be activated in

all cells within affected tubules. This suggests either a location-

dependent effect, or communication between adjacent cells

undergoing necroptosis resulting in the spread of necroptosis

from cell to cell within affected tubules. pMLKL staining from 24

hrs appeared polarised, with staining of the apical but not basal
A B

DC

FIGURE 5

Comparison of kidney injury time course after IR in Mlkl-ko and WT mice. (A): serum creatinine; (B): tubular injury score; (C): mRNA expression of
Kim1; (D): mRNA expression of Ngal. Mann Whitney U test comparing with Mlkl-ko and WT mice at each timepoint; * p<0.05, ** p<0.01. Data
presented as mean ± SEM.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1251452
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pefanis et al. 10.3389/fimmu.2023.1251452
surface of PTCs. The precise mechanism by which pMLKL

clustering at the apical surface may promote cellular

communication within the lumen of affected tubules remains to

be further explored, with roles for pMLKL in promoting plasma

membrane remodelling at intercellular junctions (50) and

generation of extracellular vesicles (70, 71) previously proposed.

In the absence of necroptosis (i.e., in Mlkl-ko mice), early

inflammation and kidney injury were reduced, providing further

evidence that necroptosis and the associated inflammation play a

role in kidney damage following IR. The absence of pMLKL staining

at 3 hrs in WT mice indicated that the initial injury did not involve

necroptosis. It is therefore unsurprising that there was no difference in

serum creatinine [which is a delayed marker of kidney injury (72)]

between WT andMlkl-ko mice at 3 hrs. The inability ofMlkl-ko mice

to activate necroptosis in the critical 3-12 hr phase is likely to account

for the subsequent reduction in kidney inflammation at 12 hrs, and

lower serum creatinine and tubular injury scores at 24 hrs.

Interestingly, Mlkl-ko mice were protected from kidney IRI at 24 hrs

but not at 48 or 72 hrs. This contrasts with an earlier study where

protection was noted at 48 and 72 hrs but not at 24 hrs (56). Model

differences, including the type (unilateral versus bilateral) and degree of

ischemia (18 min versus 35 min), anesthesia (ketamine/xylazine versus

the more IRI-protective isoflurane), and WT controls (littermates

versus non-littermates), may account for this discrepancy.

While we have further defined the role of necroptosis in kidney

IRI, the stimulus that triggers necroptosis in this setting remains
Frontiers in Immunology 09
unclear. Engagement of death receptors such as TNF receptor 1,

activation of TLRs, interferon signalling, and intracellular stimuli in

response to viruses, are all able to initiate necroptosis (73). A recent

in vitro study using a genetically manipulated myeloid cell system

confirmed TNF as an alarmin molecule released following

necroptotic cell death to drive further inflammation (59). We

suggest that TNF released by inflammatory cells triggers

necroptosis during the 3-12 hours post-reperfusion, while TNF

and DAMP release following necroptotic cell death stimulate

subsequent waves of necroptosis. We showed upregulation of

Tnfa gene expression in WT mice, which was reduced in Mlkl-ko

mice, leading us to hypothesise that TNF activates necroptosis and

drives ongoing necroinflammation in kidney IRI.

The concept that one regulated cell death pathway can compensate

for another in acute kidney injury has previously been proposed for

necroptosis and ferroptosis, although treatment ofMlkl-ko mice with a

ferroptosis inhibitor did not provide further protection from kidney IRI

(56). In our model, apoptosis appeared to become the dominant cell

death pathway in the absence of necroptosis, suggesting a relationship

between necroptosis and apoptosis in kidney IRI. However, a limitation

of our study was that it focused on the role of necroptosis without

investigating the contribution of other regulated necrosis pathways,

notably ferroptosis.

Our study is the first to describe the dynamics of necroptosis

and necroinflammation in a mouse model of kidney IRI. Our results

suggest that treatments targeting the key necroptosis component,
A B

D

C

FIGURE 6

Comparison of cleaved Caspase-3 staining in WT and Mlkl-ko mice at 24 hrs post-reperfusion. (A): WT; (B): Mlkl-ko; (C): sham; (D): semi-
quantitative analysis. Mann Whitney U test with * p<0.05 compared to sham procedure and # p<0.05 compared to WT mice. Data presented as
mean ± SEM. Image magnification x 200.
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MLKL, may reduce kidney injury following IR, although it should

be noted that no specific inhibitors of mouse MLKL are currently

available. In addition, our results suggest that such treatments may

be effective even if given 3 hrs after reperfusion. This is

advantageous in a clinical setting, as in many instances IRI is

unpredictable and cannot be treated prophylactically. Finally,

combination therapy with inhibitors of MLKL and apoptosis may

provide additive protection, with the ultimate aim of preventing

acute and chronic kidney disease following kidney IR.
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