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Strategies for enhancing CAR T
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Chimeric Antigen Receptor (CAR) T cell therapies are tremendously successful in

hematological malignancies and show great promise as treatment and curative

strategy for HIV. A major determinant for effective CAR T cell therapy is the

persistence of CAR T cells. Particularly, antigen density and target cell abundance

are crucial for the engagement, engraftment, and persistence of CAR T cells. The

success of HIV-specific CAR T cells is challenged by limited antigen due to low

cell surface expression of viral proteins and the scarcity of chronically infected

cells during antiretroviral therapy. Several strategies have been explored to

increase the efficacy of CAR T cells by enhancing expansion and persistence

of the engineered cells. This review highlights the challenges of designing CAR T

cells against HIV and other chronic viral infections. We also discuss potential

strategies to enhance CAR T cell expansion and persistence in the setting of low

antigen exposure.
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1 Introduction

While Chimeric antigen receptor (CAR) T cell therapy has emerged as a potent

treatment against several hematological malignancies (1–5), it was initially developed as a

strategy for durable control of HIV. Although the concept was proved safe and engineered

cells could be detected 10 years after infusion, results from early clinical trials did not show

any impact of HIV-specific CAR T cell therapy on the latent viral reservoir (6–12).

Subsequent improvements to the design of the CAR, specifically inclusion of an

intracellular co-stimulatory signaling domain along with the CD3z domain, have proved

vital to increase the efficacy of CAR T cells (13, 14). After the clinical success of CAR T cells

targeting CD19 or BCMA in B cell malignancies, the field has expanded substantially and

interest in CAR T cells as treatment for other diseases has been renewed. CAR T cells are

now being explored against a range of diverse conditions, including solid tumors,

rheumatological disease and chronic viral infections (15–19). However, the
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immunological landscape varies in these conditions giving rise to

new challenges for effective CAR T cell therapy. Following the initial

trials with HIV-specific CAR T cells and the considerable advances

to the CAR design achieved in hematological indications, there is a

renewed interest in using CAR T cells as a curative approach for

HIV. Several HIV-specific CAR T cells are now being evaluated in

published (20) and ongoing clinical trials (NCT04648046 and

NCT03617198). HIV-specific CAR constructs are typically based

on the CD4 ectodomain or single-chain variable fragments (scFv)

derived from broadly neutralizing anti-Envelope (Env) antibodies.

Several studies have further engineered the CAR T cells to become

resistant to HIV infection through HIV co-receptor disruption or

expression of entry inhibitors (20–28). However, one key obstacle to

effective anti-HIV CAR T cell therapy is the persistence of the

engineered cells in vivo.

Persistence of CAR T cells has been identified as a major

determinant for treatment response (3, 4, 29). Several studies

have demonstrated that the antigen density and subsequent CAR

engagement with the antigen are crucial for CAR efficacy and

engraftment (30–32). During ART-suppressed chronic HIV

infection, infected cells typically have low levels of HIV antigen

on their surface and in addition, latently infected cells are rare (33–

36). These properties are in stark contrast to the high tumor burden

and high antigen density observed in B cell malignancies. This gives

rise to a barrier in ensuring persistence of CAR T cells directed

towards HIV. In this mini-review, we address strategies to enhance

the expansion and persistence of CAR T cells that are required for
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effective HIV-specific CAR T cell therapies in chronic HIV

infection (Figure 1).
2 Importance of persistence to
treatment response

A major determinant for treatment response to CAR T cell

therapies in B cell malignancies is the expansion and persistence of

the CAR T cells (3, 4, 29). Several trials have demonstrated that the

presence of CAR T cells in circulation months after infusion is

associated with long-term treatment response (3, 29, 37). Both the

cumulative CAR T cell expansion and peak numbers of CAR T cells

after the initial expansion phase have been found to be significantly

higher for patients responding to anti-CD19 CAR T cell therapy

compared to non-responders (29, 38, 39). Additionally, patients

with long-term persistence of CAR T cells have a greater initial peak

of CAR T cell levels than patients without persistence of the CAR T

cells (29, 37). Due to the essential role of target antigen density,

patients with higher pre-treatment tumor burden and higher target

antigen density have been shown to have a greater peak and

accompanying expansion of the CAR T cells (38, 40). However,

high pre-treatment tumor burden is generally associated with worse

outcome. These studies demonstrate that the ability of the infused

CAR T cells to expand and persist are crucial for the

treatment success.
B
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FIGURE 1

Strategies for enhancing CAR T cell persistence. (A) CAR design. The design of the CAR with inclusion and choice of co-stimulatory domain has
great impact on persistence. (B) T cell phenotype. A less differentiated memory like phenotype of infused CAR T cells is favorable.
(C) Preconditioning. Effective lymphodepleting preconditioning prior to CAR T cell infusion can increase CAR T cell persistence. (D) Receptor
engagement. Target antigen encounter is crucial for the CAR T cells to persist after infusion. In the setting of low antigen exposure CAR engagement
can be ensured by either vaccination (yellow box) or antigen supplementation (red box). Another approach to accommodate low level target antigen
is engagement of the native TCR (blue box). Figure created with BioRender.com.
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In order for CAR T cells to expand, the CAR or T cell receptor

(TCR) has to engage with the specific antigen. A native TCR is 100-

fold more sensitive to antigen than a CAR where it is estimated that

a threshold of 200 target antigen molecules per cell is required for

lytic activity of the CAR T cells and 10-fold higher for cytokine

production (31, 41). The requirement for high antigen exposure

poses a challenge for effective CAR T cell therapy in diseases where

the antigen density is low, such as HIV. The sole surface antigen

available for immune recognition of HIV-infected cells is the Env

composed of the glycoprotein subunits gp120 and gp41. However,

Env is expressed at very low levels both on virions and on the

surface of infected cells (33, 35). Additionally, during ART

suppression the Env expression decrease and latently infected

cells become exceedingly rare (36). Combined, the low antigen

density of HIV Env and the scarcity of latently infected cells

challenge the expansion and persistence of anti-HIV CAR T cells

due to insufficient CAR engagement.
3 Strategies for enhancing CAR T
cell persistence

3.1 Impact of CAR design on persistence

In the first generation of CARs, signaling through CD3z alone

did not induce an adequate treatment response. In subsequent

generations of CARs two or more co-stimulatory signaling domains

have been incorporated with greatly increased efficacy (11, 42)

(Figure 1A). The most common design is the second generation

CARs composed of an extracellular scFv fused to the intracellular

signaling domains of either CD28 or 4-1BB along with CD3z (43).

Several studies have compared the impact on proliferative capacity

and persistence of second generation CARs using either CD28 or 4-

1BB co-stimulatory signaling. Pre-clinical studies typically favor 4-

1BB CARs although differences in efficacy are not as evident in

clinical trials where other variations in CAR design and choice of

delivery vector might also affect the differences observed in CAR T

cell function (43–46).

Engagement of CD28-based CARs rapidly activates T cell

effector functions relying on glycolytic metabolism inducing an

effector phenotype. Engagement of 4-1BB-based CARs promotes a

less differentiated memory phenotype of the T cell relying on

oxidative metabolism and mitochondrial biogenesis. This leads to

an enhanced persistence of the 4-1BB-based CAR T cells (45, 47–

50). Additionally, the increased persistence of CAR T cells

incorporating 4-1BB is further hypothesized to be due to a slower

initial tumor clearance compared to CD28 CAR T cells. The slower

tumor clearance results in longer antigenic stimulus of the 4-1BB-

incorporating CAR T cells (51).

Furthermore, CD28-based CARs usually comes with an

increased incidence of cytokine release syndrome, neurotoxicity

and with higher rates of severe adverse events (13). For HIV-specific

CAR T cells, Maldini et al. explored the choice of co-stimulatory

domain in the CAR design in a murine study where 4-1BB-based
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CARs showed a proliferative advantage (23). However, T cells

transduced with both a CD28 and a 4-1BB-based CAR, showed

superior proliferation and mitigation of CD4+ T cell loss which was

not observed for third generation CARs composed of both CD28

and 4-1BB in the same construct (23). Similarly, Leibman et al.

showed in mice that 4-1BB-based CAR T cells reach greater

numbers in both HIV-infected and uninfected humanized

mice (22).

Further modifications of the CAR architecture could potentiate

the expansion and persistence of CAR T cells in the setting of low-

level antigen exposure (Figure 1A). The scFv linker, extracellular

hinge/spacer and transmembrane domain all have profound impact

on the functionality of the CAR T cells (52–56). Similarly,

mutations in the intracellular signaling domains to avert tonic

signaling have led to increased persistence and antitumor efficacy

(57, 58). Several other co-stimulatory signaling domains and

combinations thereof have been evaluated along with co-

expression of cytokines or gene circuits with promising results.

These additional CARmodifications have been reviewed extensively

elsewhere (59–61).
3.2 Producing CAR T cells of less
differentiated memory phenotypes

The phenotype of engineered CAR T cells greatly influence the

potency and proliferative capacity of the cells (Figure 1B). CAR T

cells produced from less differentiated memory phenotypes, e.g.,

naïve and stem cell memory T cells, compared to either bulk or

more differentiated phenotypes have higher antileukemic potency

and greater proliferation in pre-clinical trials (62–67). Analyses of

responders to anti-CD19 CAR T cell therapy in clinical trials

further reveal that a less differentiated memory phenotype

positively impact the efficacy and persistence of the CAR T cells

(68–71). CAR T cells with a specific phenotype can be attained by

either enrichment of cells with the desired phenotype or by

supplementing the cell culture medium with specific cytokines

known to modulate the phenotype of T cells (72–76). By

expanding the CAR T cells in the presence of a combination of

IL-7, IL-12, IL-15 and IL-21, cells exhibiting a less differentiated

phenotype are retained resulting in a more durable antitumor

response and greater persistence (72–74). Alternatively, anti-HIV

CAR T cells derived from hematopoietic stem and progenitor cells

(HSPC) have shown long-term persistence in NHPs (77–80). The

regenerative nature of HSPCs makes these a promising choice for

producing CAR T cells with long-term persistence although

obtaining sufficient HSPCs from adult patients will be limiting

with current technologies.
3.3 Preconditioning prior to CAR T
cell infusion

Several clinical trials have shown enhanced persistence of CAR

T cells when patients are preconditioned with effective
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lymphodepleting most often using cyclophosphamide and

fludarabine (40, 46, 81–83) (Figure 1C). Lymphodepleting

preconditioning could have an additional beneficial effect when

HIV-specific CAR T cells are used as a curative strategy as a means

of lowering the size of the latent viral reservoir. Published cases of

HIV-1 cure after CCR5D32/D32 HSPC transplantation have all

received lymphodepleting preconditioning which is known to

drastically reduce the size of the viral reservoir by eliminating

host CD4+ T cells (84–91). However, careful consideration and

optimization of the pre-CAR T cell lymphodepletion regimens to

lessen adverse effects are required before use in otherwise healthy

people with HIV.
3.4 Receptor engagement

Due to the crucial role of target antigen density for CAR T cell

persistence, multiple strategies for ensuring receptor engagement

have been employed. CAR engagement can be facilitated by

increasing the level of available antigen. Increased HIV antigen

can be achieved through the use of latency reversing agents (LRAs)

which is a thoroughly studied concept in HIV cure trials. Several

LRAs have been evaluated in clinical trials where they are safe and

can induce viral reactivation in ART-suppressed participants (92–

96). Target antigen density and subsequent CAR engagement can

also be increased through vaccination or antigen supplementation

(Figure 1D). An alternative approach is to engage the native T cell

receptor (Figure 1D). In this section, these concepts will

be discussed.

3.4.1 CAR engagement by vaccination
In indications with low CAR-specific antigen densities,

sufficient antigen levels can be achieved through vaccination with

the CAR-specific antigen (Figure 1D). CAR engagement through

vaccination has the advantage of having the CAR-specific antigen

presented by antigen presenting cells (APC) in lymphoid tissues

and thus providing additional immunostimulatory signaling. Ma

and colleagues (97) evaluated an amphiphile CAR T cell ligand that

traffics to draining lymph nodes upon injection where it decorates

the surface of APCs. Mice receiving a low dose of 5 x 104 CAR T

cells followed by vaccination with the amphiphile CAR T cell ligand

had significantly more CAR T cells in the peripheral blood 14 days

after vaccination than mice receiving a 20-fold higher dose of 10 x

106 CAR T cells (97). Likewise, Reinhard and colleagues (98)

developed a lipid nanoparticle (LNP) RNA vaccine encoding the

CAR-specific antigen. Similar to Ma et al, mice receiving a low dose

of 1 x 103 CAR T cells followed by LNP-RNA vaccination achieved

greater CAR T cell levels 11 days after CAR T cell dosing than mice

receiving a 1000-fold higher dose of 1 x 106 CAR T cells but not the

vaccine. Finally, the authors hypothesize that administration of a

lower initial dose of CAR T cells followed by serial vaccination will

lead to CAR T cell levels in the optimal therapeutic range while

avoiding dose limiting toxicities observed by high dose

administration and insufficient therapeutic activity observed when

CAR T cells fail to persist (98).
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3.4.2 CAR engagement by
antigen supplementation

Another approach to increase CAR engagement is to engineer

cells to express the CAR-specific antigen and thus provide antigen

supplementation (Figure 1D). Two studies have explored antigen

supplementation to enhance HIV-specific CAR T cell persistence in

the absence of HIV viremia (23, 99). Uninfected BLT humanized

mice or ART-suppressed non-human primates (NHP), respectively,

were administered a cell line, K562, engineered to express HIV Env.

This led to proliferation of the HIV-specific CAR T cells in both

models and prolonged time to viral rebound in the NHPs (23, 99).

K562 cells have been explored extensively as artificial APC given

their lack of HLA surface expression, ease of engineering, and good

safety profile (100–102). Antigen supplementation by artificial

APCs therefore also represents a potential “vaccination-like”

strategy for expanding CAR T cells in vivo in the absence of high

antigen levels.

3.4.3 Engagement of the native T cell receptor
Most CAR T cells retain their native TCR which has been

exploited in an effort to enhance the persistence of the CAR T

cells (Figure 1D). Adoptive transfer of T cells with TCR-

specificity toward chronic viral infections can persist when

administered to recipients of allogeneic bone marrow

transplant and reconstitute the cellular immunity toward these

infections (103–105). By enriching virus-specific T cells these can

be engineering to express a CAR directed against a different

antigen while retaining the TCR specificity. The CAR T cells can

then expand through engagement with the TCR-specific antigen

in the absence of the CAR-specific antigen (106–111). Several

pre-clinical studies have demonstrated improved expansion and

persistence in vivo of CAR T cells engineered from virus-specific

T cells when vaccination directed to the TCR is administered

(112–114) Importantly, virus-specific CAR T cells does not

expand when a vaccine directed to a different TCR-specificity is

administered (112).

This indirect CAR T cell expansion approach has been

explored in clinical trials using Epstein-Barr virus (EBV)-

specific T cells engineered to express a CAR against a tumor

antigen (115–118). In a clinical trial from 2008, Pule and

colleagues (115) evaluated EBV-specific GD-2-CAR T cells in

11 participants. The EBV-specific GD-2-CAR T cells were

detectable twice as long as GD-2-CAR T cells without EBV-

TCR specificity. Additionally, CAR T cells sampled at different

time points up to 6 months after infusion were cultured with

autologous EBV-expressing B cells and the CAR transgene was

quantified by qPCR. Only EBV-specific GD-2-CAR T cells

expanded in response to EBV-TCR stimulation (115). In a 2019

clinical trial, Lapteva and colleagues (116) assessed EBV-specific

CD19-CAR T cells. They found that the EBV-specific CD19-CAR

T cells expanded and persisted in participants with reactivation of

EBV leading to engagement of the native EBV-specific TCR

(116). Lastly, Cruz and colleagues (117) performed a clinical

trial assessing the safety of infusing virus-specific allogeneic

CD19-CAR T cel ls to recipients of al logeneic HSPC
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transplantation. No graft-versus-host reaction was observed,

which the authors hypothesized was due to the virus-specificity

of the TCR. Two study participants had viral reactivation of EBV

which coincided with an increase in the EBV-specific CD19-CAR

T cells suggesting that EBV-TCR engagement induced an

expansion of the EBV-specific CAR T cells (117). Lastly, Guan

and colleagues (114) evaluated HIV-specific CAR T cells made

from Cytomegalovirus (CMV)-specific T cells with CMV

vaccination during HIV-suppressive ART. They observed that

for the same dose of HIV CAR T cells, only the CAR T cells with

CMV-specific TCR expanded after administration of a CMV

vaccine (114).

Although TCR-engagement can lead to substantial CAR T cell

expansion, TCR and CAR cross-talk have important implications

for the functionality of CAR T cells (119). Yang and colleagues

(120) demonstrated that CAR T cells produced from T cells with

TCR specificity to the ubiquitously expressed male minor

histocompatibility antigen HY have diverse in vivo activity in the

presence of TCR- or CAR antigens (120). In the presence of TCR

antigen, CD8+ CAR T cells did not expand and had diminished

efficacy while CD4+ CAR T cells expanded and retained their

effector functions (120). Furthermore, the indirect CAR T cell

expansion strategy require the presence of the native TCR. Recent

efforts in allogeneic CAR T cell development have targeted CAR

integration to the TCR alpha constant locus (TRAC) (121). This

results in disruption of the native TCR while driving the CAR from

the endogenous TRAC promoter leading to greater antitumor

activity (121). Disruption of the native TCR would thus preclude

the indirect CAR T cell expansion method but may become an “off-

the-shelf” CAR T cell product by bypassing the need for individual

cell engineering.
4 Conclusion

Ensuring long-term persistence of HIV-specific CAR T cells is

key to achieving durable control of the infection in the absence of
Frontiers in Immunology 05
ART. Here, we have described strategies to enhance the expansion

and persistence of CAR T cells. We argue that successful CAR T cell

trials in HIV will likely require combinations of the described

approaches to ensure persistence of the CAR T cells and

ultimately achieve a cure for HIV.
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