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Purpose of review: C1q/TNF-related proteins (CTRPs) are involved in the

modulation of the development and prognosis of atherosclerosis (AS). Here,

we summarizes the pathophysiological roles of individual members of the CTRP

superfamily in the development of AS. Currently, there is no specific efficacious

treatment for AS-related diseases, therefore it is urgent to develop novel

therapeutic strategies aiming to target key molecules involved in AS.

Recent findings: Recently, mounting studies verified the critical roles of the

CTRP family, including CTRP1-7, CTRP9 and CTRP11-15, in the development and

progression of AS by influencing inflammatory response, modulating glucose

and lipid metabolism, regulating endothelial functions and the proliferation of

vascular smooth muscle cells (VSMCs).

Conclusions: CTRP family regulate different pathophysiology stages of AS.

CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15 play a clear protective role in AS,

while CTRP5 and CTRP7 play a pro-atherosclerotic role in AS. The remarkable

progress in our understanding of CTRPs’ role in AS will provide an attractive

therapeutic target for AS.

KEYWORDS

atherosclerosis, inflammation, metabolism, endothelial function, VSMCs
Abbreviations: AS, atherosclerosis; CAD, Coronary artery disease; EAT, Epicardial adipose tissue; STAT6,

Signal transducer and activator of transcription 6; TNF, Tumor necrosis factor; CTRPs, C1q complement/

tumor necrosis factor (TNF)–associated proteins; TLR, Toll-like receptor; NF-kB, Nuclear factor kappa B;

Ox-LDL, Oxidized low-density lipoproteins; IL, Interleukin; MMP, Matrix metalloproteinase; TGF,

Transforming growth factor; AMP, Adenosine monophosphate; ICAM, Intercellular adhesion molecule;

VCAM, Vascular cell adhesion molecule; PDGF, platelet-derived growth factor; VSMC, Vascular smooth

muscle cells; BMI, Body mass index; AMPK, AMP protein kinase; ABC, ATP-binding membrane cassette

transporter; PKA, protein kinase A; BH4, tetrahydrobiopterin; GCH1, GTP cyclohydrolase 1.
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1 Introduction

Atherosclerosis (AS) is the main pathological basis of coronary

artery disease (CAD). AS is a complex and progressive disease

involving inflammation, glucose and lipid metabolic disorder,

endothelial dysfunction, proliferation and migration of vascular

smooth muscle cells (VSMCs) (1). Atheroma was initiated by

endothelial activation with recruitment of monocytes to the

arterial intima (2), together with accumulation of lipids, adhesion

of inflammatory cells to the arterial intima (3, 4). Lipid-loaded

macrophages express scavenger receptors, taking up oxidized low-

density lipoprotein (ox-LDL) particles and leading to foam cell

formation (5, 6). VSMCs switch from “contractile” phenotype to a

highly migratory and proliferative “synthetic” phenotype.

Extracellular matrix synthesized by “synthetic” VSMCs forms a

fibrous cap (7, 8).

The term C1q tumor necrosis factor-related protein (CTRP),

originally introduced by Harvey Lodish and coworkers, describes a

new family of secreted proteins highly conserved to adiponectin (9).

The CTRP family contains 15 members. Recently, increasing

evidences suggest that CTRP family plays a multiple role in

inflammation regulation, glucose and lipid metabolism,

endothelial functions. Thereby, CTRP family possesses a major

influence on a variety of AS-related cells including endothelial cells

dysfunction, the formation of foam cells and the proliferation of

VSMCs. However, each CTRP displays varied alterations in the

serum levels of atherosclerosis patients (Table 1) and exerts a

unique influence on the progression of the disease (32).
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2 CTRPs as potential diagnostic and
prognostic biomarker for AS

2.1 Markers with dual action on AS

CTRP1 was marked expressed in vascular wall tissue. Clinically,

CTRP1 levels were higher in serum, endarterectomy specimens and

aortic atherosclerotic plaques from CAD patients compared to

controls (10–12). CTRP1 is positively correlated with interleukin-

6 (IL-6), high-sensitivity C-reactive protein (hs-CRP) levels and the

incidence of major adverse cardiovascular events (MACE) (13).

CTRP2 is up-regulated in obesity and is positively correlated with

body mass index (BMI) (16). CTRP2 over-expression improves

insulin and lipid tolerance in diet-induced obese mice (33).

Moreover, plasma triglyceride (TG) was significantly elevated in

CTRP2-Knockout mice (16).

Previous studies showed contrary results on the association of

serum CTRP4 levels and the CAD occurrence and severity. Gao J.,

et al. found increased serum CTRP4 levels were positively correlated

with CAD occurrence and severity. CTRP4 combined with glycated

hemoglobin has a better predictive value for CAD in type 2 diabetes

mellitus (19). Dai, Y., et al. also demonstrated serum CTRP4

concentration was increased in patients with acute coronary

syndrome (20). However, Liu, Z., et al. showed that serum

CTRP4 were decreased in T2DM patients with Carotid

atherosclerosis (CAS) compared to those without CAS, indicating

that serum CTRP4 levels were negatively related to the risk of CAS

in T2DM (21). Therefore, more clinical studies with large sample
TABLE 1 The correlation between CTRPs and atherosclerotic risk factors.

CTRPs Variation of
serum level

in AS

BMI Inflammatory
factors

Reverse
Cholesterol
transport

Athersoclerosis
(CMT, baPWV)

T2DM
incident

CAD
incident

and
severity

References

CTRP1 Increase Positive Inhibit Positive Positive Positive (10–15)

CTRP2 Increase Positive Promote Positive (16)

CTRP3 Decrease Negative Negative Promote Negative Negative Negative (17, 18)

CTRP4 Increase Positive (19, 20)

CTRP4 Decrease Negative (21)

CTRP5 Increase Positive (14)

CTRP6 Increase Positive Promote Positive (22)

CTRP7 No related study Positive Positive Promote Positive (23, 24)

CTRP9 Decrease Promote Positive (25)

CTRP12 Decrease Negative Negative Positive (26–29)

CTRP13 Increase Negative Negative Promote (30)

CTRP15 Increase Promote Positive Positive (31)
Positive, Positive correlation between CTRP and atherosclerotic risk factors; Negative, negative correlation between CTRP and atherosclerotic risk factors; CMT, carotid intima-media thickness;
baPWV, brachial ankle pulse wave velocity.
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size are necessary to obtain more accurate results. The expression of

CTRP6 in fat tissues was enhanced in obese and diabetic humans

and mouse models (22).
2.2 Pro-atherosclerotic markers

CTRP1 and CTRP1/CTRP5 ratio were markedly higher in male

AS patients with T2DM compared to controls, indicating that these

CTRPs might have a causal role for cardio-metabolic risk in T2DM.

In addition, the ratio of CTRP1 to CTRP5 in plasma is positively

correlated with carotid intima-media thickness in the whole

population (14). Lei, X. et al. found the positive association

between elevated expression of CTRP2 and BMI in obesity (16).

Ilbeigi, D., et al. demonstrated that serum levels of CTRP2 in CAD

patients were independently associated with the progression of

CAD, which indicates that CTRP2 might be considered as a novel

biomarker for assessing the risk of CAD (34).
2.3 Anti-atherosclerotic markers

CTRP3 is a potent anti-inflammatory adipokine that inhibits

pro-inflammatory pathways in monocytes and microcells during

the development of CAD (32, 35, 36). Serum CTRP3 concentrations

were significantly lower in CAD patients compared to controls.

CTRP3 levels were significantly negatively correlated with glucose,

BMI, smoking and hs-CRP levels, while positively related to HDL-

C, adiponectin levels and CTRP3 gene expression adjusted for age

and gender (17). Fadaei, R. et al. demonstrated that CTRP3 was

significant independently negative associated with the presence of

CAD (30). Moreover, Liu et al. and Wagner et al. found a difference

in CTRP3 expression levels in male and female patients (26, 37).

Hormonal status is speculated to underlie this sex-related

difference. These results suggest that CTRP3 might be a new

potential predictive biomarker in CAD (38).

CTRP9 was initially discovered as a well-known cardiovascular

protective factor (39). CAD patients had a markedly lower serum

CTRP9 level (25), indicating CTRP9 might be an independent

protective factor of CAD. However, serum CTRP9 was higher in

T2DM patients with AS by measuring brachial ankle pulse wave

velocity (baPWV), suggesting that CTRP9 might be important in the

regulation of arterial stiffness in humans (40). Several studies reported

that CTRP12 levels were significantly lower in patients with CAD than

those without CAD, and were independently associated with the risk of

CAD (26–29). Liu Y et al. showed serum CTRP13 level was

independently associated with HDL-C, insulin, HOMA-IR, HbA1c,

TNF-a and BMI (30). The positive correlation between CTRP13 and

HDL-C levels suggested a possible protective effect on lipid

metabolism. Erbas IM, et al. also demonstrated that CTRP13 may

serve as a novel biomarker for dyslipidemia in childhood obesity (41).

On the contrary, Fadaei R et al. found that CTRP13 had negative

correlation with pro-inflammatory cytokines such as TNF-a and IL-6,

and it led to decreases in obesity and inflammation (30). In addition,

higher serum levels of CTRP15 in CAD patients and the relation of

CTRP15 with disease severity, pathogenic conditions such as insulin
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resistance and inflammation were demonstrated in previous study (31).

These results suggest a possible compensatory response to the

pathogenic conditions in CAD patients.
3 The mechanisms for the pleiotropic
effects of CTRPs on AS

As an adiponectin paralog, CTRPs signals participate in a

variety of pathophysiological processes. CTRP1-7, CTRP9 and

CTRP11-15 can influence both the development and progression

of AS by influencing inflammatory response (Figure 1), modulating

glucose and lipid metabolism (Figure 2), regulating endothelial

functions (Figure 3) and the proliferation of VSMCs (Figure 4).
3.1 The relationship of CTRPs with
inflammation

AS is a chronic inflammatory disease of the arterial wall driven

by innate and adaptive immune response (42, 43). Inflammation

tunes each stage of the life cycle of atherosclerotic plaques (44).

Atheroma initiation involves endothelial activation with

recruitment of leucocytes to the arterial intima. VSMCs and

infiltrating leucocytes can proliferate, but they also undergo

various forms of cell death, leading to the formation of a lipid-

rich ‘necrotic’ core. Inflammatory mediators participate in both the

cell proliferate and cell death.

3.1.1 CTRP1
Recombinant CTRP1 facilitated the secretion of IL-6, TNF-a,

IL-1b, and monocyte chemoattractant protein-1 (MCP-1) in

primary human macrophages stimulated with ox-LDL (45).

CTRP1 also dramatically increased the mRNA levels of IL-6,

ICAM-1, and MCP-1 in human aortic smooth muscle cells

(hASMCs) (46). Lu et al. found that CTRP1 activated the p38

mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-kB

signaling pathway to promote the expression of adhesion molecules

and synthesis of inflammatory cytokines (ICAM-1, VCAM-1 and

E-selectin), leading to increased interaction between human

peripheral blood monocytes and human ECs. These authors

further demonstrated that loss of CTRP1 in apoE-/- mice reduced

atherosclerotic lesion area, along with a significant decrease in

ICAM-1, VCAM-1, and E-selectin expression and macrophage

infiltration within the plaques (10).

3.1.2 CTRP3
CTRP3 expression was inhibited in ApoE-/- mice compared to

control mice. CTRP3 alleviates ox-LDL-induced inflammatory

response by reducing pro-inflammatory factors CRP, TNF-a, IL-6,
CD40, and CD40L inmouse aortic endothelial cells stimulated with ox-

LDL. CTRP3 also inhibits ox-LDL induced endothelial inflammation

by promoting phosphatidylinositol-3 kinase protein kinase B/

endothelial nitric oxide synthase (PI3K/Akt/eNOS) pathway (47).

Over-expression of CTRP3 elevated cell activity and decreased

lactated hydrogenase release, accompanied by a marked reduction in
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cell apoptosis induced by ox-LDL (47). Furthermore, CTRP3 exhibited

potent anti-inflammatory properties in adipocytes by inhibiting the

binding of lipopolysaccharides (LPS) to toll-like receptor 4 (TLR4) (48).

3.1.3 CTRP4
Adenovirus-mediated hypothalamic CTRP4 over-expression

suppressed hypothalamic inflammation induced by high-fat diet

in mice, which restored the impaired leptin signaling and decreased

food intake (49). Additionally, CTRP4 over-expression alleviated

the inflammatory cytokine storm by demoting of TLR4

internalization, which leading to NF-kB activation (50).

Therefore, we can conclude that CTRP4 over-expression acts as

an anti-inflammatory factor.

3.1.4 CTRP5
CTRP5 exerts its pro-inflammatory effects by promoting the

transport and oxidation of LDL by increasing 12/15-lipoxygenase

(LOX) expression. CTRP5 facilitated the growth, migration, and

inflammation of VSMCs through multiple pathways, leading to in-

stent restenosis after coronary stent implantation (51).

3.1.5 CTRP6
CTRP6-overexpressing mice or CTRP6-treated adipocytes had

reduced insulin-stimulated Akt phosphorylation and glucose

uptake. In addition, CTRP6 promoted a chronic state of low-level
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inflammation. On the contrary, CTRP6 deficiency reduced

circulating inflammatory cytokines and pro-inflammatory

macrophages in adipose tissue, while enhancing the activation of

insulin-stimulated Akt in adipose tissue (22). Therefore, we

speculated that CTRP6 was a novel metabolic/immune regulator

linking obesity with adipose tissue inflammation and

insulin resistance.
3.1.6 CTRP9
CTRP9 could stabilize the mature plaques by reducing pro-

inflammatory cytokines (IL-6, TNF-a, INF-g and MCP-1) both in

THP-1 macrophage foam cells (52) and the macrophages in the

ApoE-/- mice model (53). In addition, CTRP9 prevented adverse

remodeling in the ischemic mouse heart by reducing MMP9

activation, which was associated with plaque vulnerability (54).
3.1.7 CTRP12
Previous study showed CTRP12 could reduce the expression of

pro-inflammatory cytokines and decrease macrophage

accumulation within adipose tissue in obese mice. Clinical study

reported that CTRP12 inhibited the secretion of inflammatory

cytokines IL-6 and TNF-a in CAD patient (28, 55). These results

indicate CTRP12 has anti-inflammatory and insulin sensitizing

effects in the development and deterioration of CAD.
FIGURE 1

CTRPs and inflammation. ①CTRP1 increases the synthesis of inflammatory cytokines by activating MAPK/NF-kB signaling pathway. ②CTRP1 facilitates
the secretion of inflammatory cytokines in macrophages stimulated with Ox-LDL. ③CTRP9 reduces the secretion of inflammatory cytokines in
macrophages stimulated with Ox-LDL. ④CTRP13 accelerates macrophages autophagy through activating autophagy-lysosome pathways. ⑤CTRP3
inhibits endothelial inflammation by promoting PI3K/Akt/eNOS pathway. ⑥CTRP3 inhibits inflammatory properties in adipocyte cells by inhibiting the
binding of LPS to toll-like receptor 4 (TLR4). ⑦CTRP12 reduces the expression of pro-inflammatory cytokines. ⑧CTRP6 reduces insulin-stimulated
Akt phosphorylation and glucose uptake in adipocytes. ⑨CTRP4 alleviates the inflammatory cytokine storm by demoting of TLR4 internalization.
⑩CTRP5 facilitates the growth, migration, and inflammation of VSMCs by multiple pathways.
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FIGURE 2

CTRPs and metabolism. ①CTRP1 promotes lipid accumulation through the miR-424-5p/FoxO1 pathway. ②CTRP4 suppresses food intake by inducing
the activation of STAT3 signaling in mice. ③CTRP3 and CTRP 12 suppress gluconeogenesis by activating PI3K-Akt signaling pathway. ④CTRP5
promotes transcytosis and oxidation of LDL in endothelial cells via up-regulation of 12/15-LOX. ⑤CTRP13 increases cholesterol efflux in macrophage
via autophagy-lysosome-dependent degradation of CD36. ⑥CTRP13 ameliorates insulin resistance in hepatocytes through suppression of the SAPK/
JNK stress signaling. ⑦ CTRP13 reduces glucose output in hepatocytes by inhibiting the mRNA expression of gluconeogenic enzymes. ⑧CTRP13
stimulates glucose uptake in adipocytes, and hepatocytes via activation of the AMPK signaling pathway. ⑨CTRP9 promotes cholesterol efflux
through AMPK/mTOR signaling pathway. ⑩Impaired adipogenesis is caused by a CTRP11-mediated decrease in p42/44-MAPK signaling. ⑪CTRP15
enhances RCT efficiency via the T-cadherin/miR-101-3p/ABCA1 pathway.
FIGURE 3

CTRPs and vascular endothelial functions. ①CTRP1 mediates vascular barrier dysfunction via activation of VEGFR2. ② CTRP3 decreases the Ang II,
ICAM-1, and VCAM-1 expression in ECs. ③CTRP3 facilitates the activation of the PI3K/Akt/eNOS pathway in ECs. ④CTRP6 causes a significant
decrease in AngII expression, further endothelial inflammation and apoptosis by improving PPARg activation. ⑤CTRP9 inhibits endothelial cell
senescence through the AMPKa/KLF4 signaling pathway. ⑥⑦CTRP9 reverses Ox-LDL-evoked decreases in antioxidant enzymes and eNOS in ECs.
⑧CTRP13 preserves endothelial function by regulating GCH1/BH4 axis-dependent eNOS coupling.
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3.1.8 CTRP13
CTRP13 inhibited the proliferation and migration of

macrophages by down regulating lipid uptake, and then inhibited

the plaque formation and AS development. Furthermore, CTRP13

delayed inflammatory responses during AS by promoting CD36-

degradation through autophagy-lysosome pathways in

macrophages, and thereby reduced the number of macrophages

in lesions (56).
3.2 Effects of CTRPs on glucose and lipid
metabolism

Glucose and lipid metabolism are the two major processes that

increase the risk and severity of AS. Abnormal metabolism affects

the activity of regulatory pathways, degree of inflammation, and the

formation of coronary-plaque, thus contributing to the

development of AS related disease (57). For instance, the

formation of macrophage foam cells stimulated by ox-LDL is

deemed an important cause of AS (58).

3.2.1 CTRP1
Hyperglycemia is a well-known risk factor of AS. Plasma

CTRP1 levels are higher in T2DM than controls in male. CTRP1

plays an important role in regulating body energy homeostasis and

sensitivity to insulin, loss of CTRP1 disrupts glucose and lipid

homeostasis (15). CTRP1 also improves glucose metabolism and

insulin resistance in obese and STZ-induced diabetic mice. CTRP1

up regulates the protein level of leptin in blood, thermogenic gene

expression in brown adipose tissue, and the gene expression
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responsible for lipolysis and glycolysis in white adipose tissue,

thus reducing food intake and enhancing energy expenditure

(59). Moreover, CTRP1 knockout mice fed a high-fat diet showed

reduced liver and serum triglyceride and cholesterol levels due in

part to increased hepatic AMP-activated protein kinase activation

and decreased expression of lipid synthesis genes (15).

Recent study showed a novel mechanistic insight into its pro-

atherosclerotic action. CTRP1 attenuated miR-424-5p levels and

then augmented FoxO1 expression in the nucleus, which led to the

reduced expression of ATP binding cassette transporter A1

(ABCA1). The primary function of ABCA1 is to mediate

cholesterol efflux to apolipoprotein A-I (apoA-I) for generation of

nascent high-density lipoprotein (HDL) particles. Briefly, CTRP1

decreased ABCA1 expression and promoted lipid accumulation

through the miR-424-5p/FoxO1 pathway in THP-1 macrophage-

derived foam cells (60).

3.2.2 CTRP2
CTRP2, as the most similar to biological activities to those of

adiponectin (61), is important in the regulation of whole body

metabolism. Previous studies have revealed that mice over

expressing CTRP2 exhibited improved insulin resistance and were

better able to cope with acute lipid challenges than the control mice

(33). On the contrary, Lei et al. found that the plasma TG and

VLDL-TG in CTRP2 knockout mice were significantly elevated,

and the absence of CTRP2 promoted hepatic TG secretion (16).

Thus, we speculate that CTRP2 exerts its effects on the progression

of AS through modulating glucose and lipid metabolism.

3.2.3 CTRP3
Peterson et al. found that administration of recombinant

CTRP3 to ob/ob mice could significantly reduce blood glucose

levels by activating the Akt signaling pathway and inhibiting

gluconeogenic enzymes in the liver (18).

3.2.4 CTRP4
CTRP4 is a novel nutrient-responsive central regulator of food

intake and energy balance (62). Serum CTRP4 levels are increased

in leptin-deficient obese (ob/ob) mice. Central administration of

recombinant CTRP4 inhibited food intake by inducing the

activation of signal transducer and activator of transcription 3

(STAT3) signaling (63), and then altered the whole-body energy

balance in both chow-fed and high-fat diet-fed mice. Serum CTRP4

concentrations decreased in patients with newly diagnosed T2DM

(64), indicating CTRP4 is negatively associated with the risk

of T2DM.

3.2.5 CTRP5
CTRP5 activated signal transducer and activator of

transcription 6 (STAT6) signaling, which in turn up-regulated the

expression of 12/15-lipoxygenase (LOX). 12/15-LOX is a key

enzyme which mediates LDL trafficking and oxidation. Genetic or

pharmacological inhibition of 12/15-LOX dramatically reduced the

deposition of ox-LDL in the sub-endothelial space and the
FIGURE 4

Roles of CTRPs in VSMCs. ①②CTRP1 and CTRP9 inhibit VSMCs
growth through increasing cAMP levels. ③④CTRP1 and CTRP9
attenuate VSMCs proliferative activity and ERK phosphorylation in
response to PDGF-BB. ⑤⑥⑦CTRP5 promotes inflammation,
migration and proliferation in VSMCs with activation of Notch1,
TGF-beta and hedgehog signaling pathways. ⑧CTRP6 inhibits
homocysteine-induced proliferation and migration of VSMCs
through PPARg/NLRP3 pathway.
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development of AS. In short, CTRP5 is a novel pro-atherogenic

cytokine, which promotes transcytosis and oxidation of LDL in

endothelial cells via up regulating 12/15-LOX (65).

3.2.6 CTRP7
In obese humans and Metabolic Syndrome (MetS) patients,

circulating CTRP7 levels were significantly elevated and positively

correlated with BMI, glucose, insulin, insulin resistance index,

hemoglobin A1c, and triglyceride levels, which may be a novel

biomarker related to metabolic diseases (23, 24). Expression of

CTRP7 in liver was also significantly upregulated in obese humans,

and was positively correlated with gluconeogenic genes. In mice, the

expression of CTRP7 was differentially modulated in various tissues

by fasting and refeeding, and by diet-induced obesity (66).

Bioinformatics analysis revealed that CTRP7 was closely related

to metabolism-related genes and signal pathways, further

illustrating the association of CTRP7 with whole-body metabolism.

3.2.7 CTRP9
In an AMPK/mTOR signaling pathway-dependent manner,

CTRP9 promotes cholesterol efflux and inhibits foam cell

formation by activating autophagy in ox-LDL-induced THP-1

macrophages (67).

3.2.8 CTRP11
CTRP11 is mainly expressed in white and brown adipose, and

its expression is acutely regulated by changes in metabolic state.

Impaired adipogenesis was caused by a CTRP11-mediated decrease

in p42/44-MAPK signaling and inhibition of mitotic clonal

expansion. These results implicate that CTRP11 is a novel

secreted regulator of adipogenesis (68). Interestingly, CTRP11

deficiency affects metabolic parameters in a sexually dimorphic

manner. Significantly higher fasting serum ketones and reduced

physical activity were only found in Ctrp11-KO female mice, which

can be reversed by refeeding (69). Although it is unclear whether sex

hormones directly modulate CTRP expression levels, these sexually

dimorphic patterns are observed in several other CTRP family

members, such as CTRP5, CRTP9 (70), CTRP11, CTRP13 (71)

and adiponectin.

3.2.9 CTRP12
In apoE-/- mice fed a Western diet, CTRP12 reduced the area of

atherosclerotic lesion by increasing the plasma level of HDL-C,

promoting reverse cholesterol transport (RCT) and alleviating

inflammatory response (29). CTRP12 also directly activated the

PI3K-Akt signaling pathway to inhibit gluconeogenesis and

promote glucose uptake in the obese and diabetic mouse (72).

3.2.10 CTRP13
CTRP13 is a secreted adipokine that can ameliorate abnormal

glucose and lipid metabolism (56). CTRP13 has been verified to

stimulate glucose uptake in adipocytes, myotubes, and hepatocytes

in vitro by activating the AMPK signaling pathway. CTRP13

diminishes lipid-induced insulin resistance in hepatocytes
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through inhibiting the SAPK/JNK stress signaling that damages

the insulin signaling pathway. In addition, CTRP13 reduces glucose

output in hepatocytes by inhibiting the mRNA expression of

gluconeogenic enzymes, glucose-6-phosphatase and the cytosolic

form of phosphoenolpyruvate carboxykinase. Taken together, these

results indicate that CTRP13 plays an important role in glucose

homeostasis (71).

Previous studies showed that upregulation of CD36 inhibited

cholesterol efflux through the activation of PKCq (73). Additionally,
CTRP13 inhibited AS via autophagy- lysosome-dependent

degradation of CD36, leading to the increase of cholesterol efflux

in macrophage (56). Furthermore, CTRP13 hydrolyzed cholesterol

droplets stored in macrophages, which attenuates cholesterol influx

and promotes reverse cholesterol transport, thus inhibiting the

formation of foam cells by decreasing the uptake of Ox-LDL (56)

and the progression of AS (74, 75).
3.2.11 CTRP15
CTRP15 over-expression significantly decreased atherosclerotic

plaque lesions through increasing reverse cholesterol transport

(RCT) efficiency and circulating HDL-C levels in ApoE-/- mice.

Consistently, in vitro, over-expression of CTRP15 inhibited

intracellular lipid accumulation and promoted cholesterol efflux

from macrophages (76). Mechanism study verified that CTRP15

enhanced RCT efficiency and increased plasma HDL-C levels via

the T-cadherin/miR-101-3p/ABCA1 pathway. Targeting CTRP15

may serve as a novel and promising therapeutic strategy for

atherosclerotic diseases.
3.3 Roles of CTRPs in regulating vascular
endothelial functions

Endothelial cell dysfunction, as a hallmark of AS, is

characterized by decreased bioavailability of nitric oxide (NO),

increased production of reactive oxygen species (ROS), impaired

vasodilation and decreased angiogenesis potential (77). Ox-LDL

accumulation is one of the critical determinants in endothelial

dysfunction. The endothelial apoptosis in response to ox-LDL

promotes the lipids deposition, foam cell formation, and the

development of atherosclerotic plaque (78, 79).

3.3.1 CTRP1
Endothelial hyper-permeability is a main determinant factor

that contributes to the accelerated development of atherosclerotic

lesions at hemodynamically disturbed sites. CTRP1 expression was

significantly elevated in vascular endothelial cells under disturbed

flow compared to steady laminar flow in mouse aorta (80). The

activation of vascular endothelial growth factor receptor 2

(VEGFR2) by CTRP1 might be related to vascular hyper-

permeability. CTRP1 is a mechanically sensitive pro-

inflammatory factor that mediates disturbed flow-induced

vascular barrier dysfunction. Inhibition of CTRP1 may inhibit the

pathogenesis of AS at early stage.
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3.3.2 CTRP3, CTRP5 and CTRP6
Over-expressed CTRP3 caused a decrease in Angiotensin II

(AngII), ICAM-1, and VCAM-1 expression, which regulated the

balance between ET-1 and NO. Incremental CTRP3 increased the

expression of p-PI3K, p-Akt and p-eNOS, indicating that CTRP3

facilitated the activation of PI3K/Akt/eNOS pathway (47). CTRP3

ameliorated uric acid-induced endothelial inflammation and

oxidative stress, possibly by inhibiting TLR4-mediated

inflammation and down-regulating oxidative stress (81). Globular

form CTRP5 is a novel molecule that leads to vascular EC

dysfunction through Nox1-mediated mitochondrial apoptosis in

diabetes, which indicates that interventions blocking gCTRP5 may

protect diabetic EC function (82). AngII has been regarded as a

major contributor to the incidence of vascular endothelial

dysfunction (83). Over-expression of CTRP6 improved

peroxisome proliferator-activated receptor gamma (PPARg)
activation, which caused a significant decrease in AngII

expression, and vascular endothelial inflammation and apoptosis

(83). On the contrary, silencing CTRP6 inhibited PPARg activation
and exacerbated AngII-mediated vascular endothelial dysfunction

and apoptosis.
3.3.3 CTRP9
CTRP9 exerts a significant protective role in endothelial cells.

CTRP9 attenuates palmitic acid-induced endothelial cell senescence

via increasing autophagy (84). Sun, H et al. found that CTRP9

treatment reversed ox-LDL-evoked decreases in antioxidant

enzymes as well as eNOS. CTRP9 ameliorates ox-LDL-induced

endothelial dysfunction via activation of proliferator-activated

receptor g co-activator 1a (PGC1-a)/adenosine monophosphate-

activated protein kinase (AMPK)-mediated antioxidant enzyme

induction (85). CTRP9 also exerts vasculoprotective effects via the

adiponectin receptor 1/AMPK/eNOS dependent/NO mediated

signaling pathway (86). Moreover, CTRP9 might protect

endothelial oxidative damage via AdipoR1-SIRT1-PGC1-alpha

signaling pathway (87) and inhibit endothelial cell senescence

through the AMPKa/KLF4 signaling pathway under high glucose

(88). The endothelial cells generate more ROS production under a

high glucose environment, along with decreased mitochondrial

biogenesis. In contrary, the treatment of CTPR9 significantly

increased the activity of cytochrome c oxidase, indicating an

induction of mitochondrial biogenesis (87).
3.3.4 CTRP13
Previous study showed CTRP13 supplement rescued the

impaired endothelium-dependent relaxation ex vivo in the db/db

mouse aortae and in high glucose-treated mouse aortae. CTRP13

preserves endothelial function in diabetic mice by increasing GTP

cyclohydrolase 1 (GCH1) expression and tetrahydrobiopterin (BH4)

levels to ameliorate eNOS coupling (89). More importantly, CTRP13

rescued high glucose-induced inhibition of protein kinase A (PKA)

activity. GCH1 transcription was activated by the phosphorylation

and recruitment of PPARa, thus improved the endothelial relaxation.

Together, these results suggested that CTRP13 preserves endothelial
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function in diabetic mice by regulating GCH1/BH4 axis-dependent

eNOS coupling.

3.3.5 CTRP14
CTRP14 is synthesized and secreted mainly by the brain and

adipose tissues. The globular domain of C1ql1/Ctrp14 and C1ql4/

Ctrp11 proteins directly stimulate the angiogenesis of endothelial

cells activation of ERK1/2 signal pathway (90). However, Guan et al.

illustrated that CTRP14 was largely dispensable for AS formation in

ApoE-deficient (apoE-/-) mice and does not improve atherosclerotic

plaque formation in the aorta (91).
3.4 Roles of CTRPs in VSMCs migration
and proliferation

Accumulation of VSMCs is an important event in atherogenesis

(92). VSMCs go through a phenotypic switching in AS. Under basal

conditions, VSMCs are in the quiescent stage, which is less proliferative

and has a relatively low turnover rate (93). Upon vascular injury, the

contractile VSMCs switch to synthetic phenotype and undergo

proliferation, as well as migration from vascular media to the injury

site, to propagate wound repairing (93). VSMCs may also adopt to

other phenotypes, including foam cells within atherosclerotic plaques

that masquerade as macrophages (94).

CTRP1 and CTRP9 prevent neointima formation by inhibiting

VSMCs growth through cyclic AMP (cAMP) -dependent pathway

(95, 96). Treatment of VSMCs with CTRP1 or CTRP9 protein

attenuated proliferative activity and ERK phosphorylation in

response to platelet-derived growth factor-BB (PDGF-BB).

CTRP1 or CTRP9 treatment also can increase cAMP levels.

Furthermore, compared to control WT mice, CTRP1-knockout

mice showed increased neointimal thickening and increased

numbers of proliferating cells in neointima following injury (95).

CTRP5 promoted inflammation, migration and proliferation in

hASMCs in wound-healing (51). CTRP5 activated Notch1, TGF-b
and hedgehog signaling pathways, thus concentration-dependently

induced the expression of MMP-2, cyclin D1 and TNF-a
in hASMCs.

CTRP6 inhibits VSMCs proliferation and migration induced by

PDGF-BB (97). Besides, CTRP6 also inhibited homocysteine

induced proliferation, migration, and dedifferentiation of VSMCs

through PPARg/NLRP3 pathway (98).
4 Conclusion and future directions

At present, enormous evidence has shown that CTRPs are

closely related to the risk factors of AS, such as obesity,

hyperlipidemia, hyperglycemia, inflammation. The level of CTRPs

in serum is expected to serve as a new type biomarker for AS, which

can be combined with other biomarkers to evaluate and predict the

occurrence and development of AS.

CTRPs influence vascular biology and atherosclerosis through

various highly specialized functions that regulate and coordinate
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inflammatory response, glucose and lipid metabolism, endothelial

functions and the proliferation of VSMCs (Supplementary Table 1).

Firstly, CTRP1 increases the synthesis and facilitates the secretion of

inflammatory cytokines in macrophages. CTRP5 facilitates the growth,

migration, and inflammation of VSMCs. In contrast, CTRP3 inhibits

inflammation in endothelial cells and adipocytes. CTRP6 relieves

endothelial inflammation and apoptosis by improving PPAR-g
activation. CTRP4, CTRP9 and CTRP12 reduce the secretion of

inflammatory cytokines in macrophages. CTRP13 accelerates

macrophages autophagy. Secondly, CTRP family ameliorates

abnormal glucose and lipid metabolism in a various ways and

mechanisms. In vitro studies showed that CTRP9 and CTRP13

increase cholesterol efflux in macrophages. Adipogenesis is impaired

by a CTRP11-mediated decrease in p42/44-MAPK signaling. CTRP3

and CTRP12 suppress gluconeogenesis in hepatocytes. CTRP13

ameliorates insulin resistance and reduces glucose output in

hepatocytes. In addition, CTRP13 stimulates glucose uptake in

adipocytes and hepatocytes. In vivo studies also demonstrated that

CTRP4 suppresses food intake in mice. On the contrary, some other

CTRPs were reported to accelerate AS by modulating glucose and lipid

metabolisms. For example, CTRP1 promotes lipid accumulation in

macrophages. CTRP5 promotes transcytosis and oxidation of LDL in

endothelial cells. CTRP6 reduces glucose uptake in adipocytes. Thirdly,

although CTRP1mediates vascular barrier dysfunction via activation of

VEGFR2, most CTRPs have been confirmed to exert protective roles

for endothelial cells. CTRP3 facilitates the activation of the PI3K/Akt/

eNOS pathway in ECs. CTRP9 reverses Ox-LDL-evoked decreases in

antioxidant enzymes and eNOS in ECs, further inhibits endothelial cell

senescence. CTRP13 preserves endothelial function by regulating

GCH1/BH4 axis-dependent eNOS coupling. Fourthly, CTRP1 and

CTRP9 attenuate VSMCs proliferative activity in response to PDGF-

BB. Furthermore, CTRP6 inhibits homocysteine-induced proliferation

and migration of VSMCs through PPARg/NLRP3 pathway.

Nevertheless, CTRP5 promotes inflammation, migration and

proliferation in VSMCs with activation of Notch1, TGF-beta and

hedgehog signaling pathways.

Since part of the CTRPs play a complex dual regulatory roles in

AS, and most of the current studies focus on the role of CTRPs in

cells in vitro, animal experiments are relatively few, it is difficult to

comprehensively evaluate whether a single CTRP plays a pro-

atherosclerotic or anti-atherosclerotic role in the progression of

AS in human. But in vitro researches demonstrated that some

CTRPs such as CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15,
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play a clear protective role in AS, while CTRP5 and CTRP7 play a

pro-atherogenic role in AS. Advances in the understanding of

CTRPs biology and their translation into therapeutic agents to

reduce the risk of AS are great needed. The remarkable progress in

our understanding of CTRPs’ role in AS will provide an attractive

therapeutic target for AS.
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