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Introduction: Scurfy mice have a complete deficiency of functional regulatory

T cells (Treg) due to a frameshift mutation in the Foxp3 gene. The impaired

immune homeostasis results in a lethal lymphoproliferative disorder affecting

multiple organs, including the liver. The autoimmune pathology in scurfy mice is

in part accompanied by autoantibodies such as antinuclear antibodies (ANA).

ANA are serological hallmarks of several autoimmune disorders including

autoimmune liver diseases (AILD). However, the underlying pathogenesis and

the role of Treg in AILD remain to be elucidated. The present study therefore

aimed to characterize the liver disease in scurfy mice.

Methods: Sera from scurfy mice were screened for ANA by indirect

immunofluorescence assay (IFA) and tested for a wide range of AILD-associated

autoantibodies by enzyme-linked immunosorbent assay, line immunoassay, and

addressable laser bead immunoassay. CD4+ T cells of scurfymicewere transferred

into T cell-deficient B6/nude mice. Monoclonal autoantibodies from scurfy mice

and recipient B6/nudemice were tested for ANA by IFA. Liver tissue of scurfy mice

was analyzed by conventional histology. Collagen deposition in scurfy liver was

quantified via hepatic hydroxyproline content. Real-time quantitative PCR was

used to determine fibrosis-related hepatic gene expression. Hepatic immune cells

were differentiated by flow cytometry.

Results: All scurfy mice produced ANA. AILD-associated autoantibodies,

predominantly antimitochondrial antibodies, were detected at significantly

higher levels in scurfy sera. CD4+ T cells from scurfy mice were sufficient to

induce anti-dsDNA autoantibodies and ANA with an AILD-related nuclear

envelope staining pattern. Liver histology revealed portal inflammation with
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bile duct damage and proliferation, as in primary biliary cholangitis (PBC), and

interface hepatitis with portal-parenchymal necroinflammation, as found in

autoimmune hepatitis (AIH). In scurfy liver, TNFa and fibrosis-related

transcripts including Col1a1, Timp1, Acta2, Mmp2, and Mmp9 were

upregulated. The level of proinflammatory monocytic macrophages (Ly-6Chi)

was increased, while M2-type macrophages (CD206+) were downregulated

compared to wildtype controls. Despite severe hepatic inflammation, fibrosis

did not develop within 25 days, which is close to the lifespan of scurfy mice.

Discussion: Our findings suggest that Treg-deficient scurfy mice spontaneously

develop clinical, serological, and immunopathological characteristics of AILD

with overlapping features of PBC and AIH.
KEYWORDS

regulatory T cells, Treg, scurfy mice, autoimmune liver disease, overlap syndrome,
primary biliary cholangitis, autoimmune hepatitis
1 Introduction

Regulatory T cells (Treg) represent a distinct subset of CD4+

lymphocytes which play a pivotal role in the maintenance of

peripheral tolerance by actively preventing autoimmunity (1). The

development and suppressive functions of Treg are essentially

regulated by constitutive expression of the transcription factor

Forkhead Box 3 (FoxP3) (2). As such, a disruption of the

encoding gene gives rise to rampant expansion of autoreactive

CD4+ T cells, which then infiltrate several organs, exacerbate and

perpetuate tissue insult by recruiting other inflammatory cells. The

consequence is a lethal systemic autoimmune disorder with multi-

organ failure, as manifested by immune dysregulation,

polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in

humans and genetically equivalent Foxp3mutant scurfy mice (3, 4).

Due to a complete deficiency in functional Treg, hemizygous male

scurfy mice spontaneously develop a lymphoproliferative disease

with systemic inflammation, particularly involving the skin,

kidneys, lung, and the liver, and resulting in death within four

weeks of age (5, 6). The loss of immune homeostasis does not only

rely on T-cell dependent mechanisms but is also orchestrated by B

cells via production of autoantibodies, including antinuclear

antibodies (ANA) (7–11).

ANA represent serological biomarkers of a variety of systemic

autoimmune disorders such as connective tissue disease (CTD) and

autoimmune liver diseases (AILD) (12). Based on clinical,

histopathological, and serological findings, three major immune-

mediated liver diseases can be distinguished, i.e., autoimmune

hepatitis (AIH), primary biliary cholangitis (PBC), and primary

sclerosing cholangitis (PSC). Although most cases match criteria of

one of these entities, features of multiple categories may rarely occur

concomitantly within the spectrum of AILD, a clinical phenotype

referred to as “overlap syndrome” (13). Despite well-defined

diagnostic parameters, the current therapeutic armamentarium is
02
predominantly limited to non-specific immunosuppression and/or

anti-cholestatic agents. Hence, if insufficiently treated, chronic

inflammation and protracted repair mechanisms in AILD can

lead to liver fibrosis and ultimately to cirrhosis, the strongest

predisposing factor for hepatocellular carcinoma (14, 15). Of

note, liver dysfunction was also reported in patients with IPEX

syndrome, which is mostly fatal within the first two years of

life (16).

The precise pathogenesis underlying AILD and the specific role

of Treg in these diseases are still elusive. Thus, the present study

sought to characterize the hepatic disease spontaneously evolving in

scurfy mice. In this context, we screened sera of scurfy mice for the

existence of ANA by an indirect immunofluorescence assay (IFA),

analyzed the staining patterns, and tested for autoantibodies against

targets specific to or associated with AILD, i.e. antimitochondrial

antibodies with three major epitopes (AMA-MIT3), valosin-

containing protein/p97 (VCP), glycoprotein-210 (gp210), Kelch-

like protein (KL), hexokinase (HK), lamin B1, liver cytosol type 1

(LC1), soluble liver antigen (SLA), liver kidney microsome (LKM),

soluble protein 100 kDa (sp100), early endosomal antigen 1 (EEA1),

Ge-1, glycine-trytophan protein of 182 kDa (GW-182), and

argonaute protein (Ago2). We further examined histopathological

alterations, fibrosis-related transcripts, and the cellular components

of the inflammatory infiltrates in scurfy liver. Our findings indicate

that Treg-deficient scurfy mice harbor clinical and serological

features of AILD with overlapping characteristics of AIH and PBC.
2 Materials and methods

2.1 Mice

Female heterozygous B6.Cg-Foxp3sf/J (Scurfy) mice were purchased

from Jackson Laboratories (Bar Harbor, ME, USA) and bred to C57BL/
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6 wild-type (WT) male mice to generate hemizygous male B6.Cg-

Foxp3sf/Y (scurfy) offspring. B6.Cg-Foxn1nu/J (B6/nude) mice were

acquired from Jackson Laboratories. All mice were maintained under

specific pathogen-free conditions at the central animal facility of the

Interfaculty Biomedical Facility, University of Heidelberg, Germany.

Animal work was performed in line with the animal protocols (35-

9185.81/G-195/11, T13/16, and T58/16), approved by the animal care

committee (Regierungspräsidium Karlsruhe).
2.2 Screening for antinuclear antibodies

Serum samples taken from scurfy and WT mice at day 21 of life

were assessed for the presence of ANA by an IFA, as previously

described (10). Briefly, sera were diluted in PBS with 0.2% Tween 20

(Roth, Karlsruhe, Germany) and were added to slides precoated with

human epithelial cells (HEp-20-10) and primate liver tissue

(Euroimmun, Lübeck, Germany). Goat anti-mouse IgG Alexa Fluor

488 (dilution 1:500, Invitrogen, Carlsbad, CA, USA) served as

secondary antibody. For clarity, although some of the IFA patterns

were clearly cytoplasmic, here we collectively refer to both

cytoplasmic and nuclear patterns as ANA. IFA images were

generated by a fluorescence microscope (Zeiss Axioscop 40, Carl

Zeiss, Göttingen, Germany). Semiquantitative analysis was performed

in accordance with the manufacturer’s recommendations. ANA titers

≥ 1:100 were considered positive. Morphological fluorescence

patterns were classified and shown as designated from anti-cellular

(AC) 0 (negative) to AC-29, according to the recently updated

International Consensus on ANA Patterns (ICAP) (17, 18).
2.3 Detection of antigenic targets of ANA

A group of AILD-related autoantibodies (AMA-MIT3 (against

PDC-E2, BCOADC-E2, and OGDC-E2), LKM, sp100, gp210, SLA,

LC-1) were identified by Euroimmun Line Immunoassay (LIA;

Euroimmun, Lübeck, Germany), as previously reported (19).

Antibodies directed to HK and KL were measured by QUANTA Lite

enzyme-linked immunosorbent assay (ELISA) (Inova Diagnostics Inc.,

San Diego, CA, USA) (20). Autoantibodies to GW182, Ago2, Ge-1,

EEA1, VCP, and lamin B1 were detected using a laboratory developed

multiplexed addressable laser bead immunoassay (ALBIA), as

previously described (10, 19, 20). Briefly, 20 microliters (µls) of

suspended beads bearing the covalently coupled antigen analyte, 25

ml of sample diluent (Inova Diagnostics Inc., San Diego, CA, USA) and

5 ml of diluted mouse serum were added into the wells of 96-well plate.

The plate was incubated with agitation at 600 rpm for 30 min at room

temperature (RT), followed by incubation in goat anti-mouse IgG

phycoerythrin conjugated secondary antibody (0.5 mg/ml, Jackson

ImmunoResearch Lab. Inc., West Grove, PA, USA) for 30 min and

600 rpm in the dark. Plates were analyzed by using a Luminex-100

plate reader (Luminex Corp., Austin, TX, USA). Cutoff levels were

determined on positive and negative controls in each run and were set

at three standard deviations (SD) above the mean for WT mice.
Frontiers in Immunology 03
2.4 Hybridoma generation

Prior to the fusion, six scurfy mice were selected based on the

presence of ANA by IFA. Total lymph node and splenic cells were

pooled and fused with the murine myeloma cell line Sp2/0 (ATCC,

Manassas, VA, USA), according to the standard protocol (21).

Fused cells were selected by using hypoxanthine-aminopterin-

thymidine (HAT) and hypoxanthine-thymidin (HT) medium

(Sigma-Aldrich, St. Louis, MO, USA), and supernatants were

screened for ANA on HEp-20-10 and primate liver tissue by IFA.

ANA positive clones were chosen and grown in Dulbecco’s

modified Eagle’s medium (DMEM; Lonza, Verviers, Belgium) and

subcloned repeatedly to assure monoclonality.
2.5 Passive transfer of CD4+ T cells into
nu/nu mice

CD4+ T cells were isolated from lymph nodes and spleens of

scurfy mice and WT controls through magnetic activated cell

sorting with CD4 MicroBeads (Miltenyi Biotec, Bergisch

Gladbach, Germany). CD4+ T cells (2 x 106; purity >95%) in 100

µL of PBS were transferred into 4- to 6-week-old B6/nude mice via

tail vein injections, as previously reported (11). Four weeks after

injection, monoclonal antibodies from hybridoma supernatants

derived from splenocytes of recipient B6/nude mice were

subjected to IFA to measure the production of ANA and anti-

dsDNA autoantibodies using HEp-20-10/primate liver tissue and

Crithidia luciliae substrate (1:10 dilution; Euroimmun, Lübeck,

Germany), respectively. Fluorescence intensity was scored as

follows: 0, no specific staining; 1, weakly positive staining; 2,

intermediate positive staining; 3 strongly positive staining, as

described previously (9).
2.6 Histologic analysis of
hepatic inflammation

Liver tissues were obtained from scurfy mice and WT

littermates at day 21 of life during routine necropsies and fixed in

4% neutral buffered formalin at 4°C overnight and then embedded

in paraffin. 5 µm thick sections were stained with hematoxylin and

eosin (H&E), according to standard protocols. For histological

evaluation, periportal/periseptal interface hepatitis and portal

inflammation were scored using the following criteria, originating

and adapted from the modified Histological Activity Index (HAI)

grading system by Ishak et al. (22): For periportal/periseptal

interface hepatitis; grade 0 (absent), grade 1 (mild; focal, few

portal areas), grade 2 (mild/moderate; focal, most portal areas),

grade 3 (moderate; continuous around <50% of tracts or septa),

grade 4 (severe; continuous around >50% of tracts or septa). For

portal inflammation; grade 0 (none), grade 1 (mild; some or all

portal areas), grade 2 (moderate; some or all portal areas), grade 3

(moderate/marked; all portal areas), grade 4 (marked; all portal
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areas). The final inflammation grade (0-4) was dictated by the

higher score of both categories.
2.7 Collagen quantification

75 mg of liver tissue were taken from the left lobe between 15

and 25 days of life. Samples were hydrolyzed in screw-capped

polypropylene tubes (Greiner Bio-One, Frickenhausen, Germany)

in 6 N HCl (1.25 mL per liver) at 110°C overnight, followed by

centrifugation to remove solids and the supernatant collected.

Triplicates of 5 µl of the supernatant were placed in a 96 well-

plate and mixed with 50 µl of 0.1 M citrate buffer, pH 6.0, and 100 µl

of 150 mg chloramine T dissolved in citrate buffer (0.1 M, pH 6.0)

for a 30-min incubation at RT. Next, 100 µl of Ehrlich´s (1.25 g of

dimethyl-benzaldehyde dissolved in distilled water) was added to

the reaction mixture and incubated at 65°C for 30 min. Absorbance

was measured at 550 nm in an Infinite M200Pro spectrophotometer

(Tecan, Crailsheim, Germany). A standard curve using L-

hydroxyproline standard (Merck, Darmstadt, Germany) was

prepared to determine hydroxyproline (HYP) concentration (23).
2.8 Real-time quantitative PCR

Total RNA was isolated using the RNeasy Mini kit (Qiagen,

Hilden, Germany) and 1 µg of total RNA was reverse transcribed

into cDNA with the qScript cDNA SuperMix (Quanta Biosciences,

Gaithersburg, MD, USA) according to the manufacturer’s

recommendations. Quantitative real-time PCR (qRT-PCR) was

conducted using validated Taqman gene expression sets for

mouse procollagen a1(I) (COL1A1) (Mm00801666_g1), a-
smooth muscle actin (a-SMA, ACTA2; Mm00725412_s1), tissue

inhibitor of metalloproteinases 1 (TIMP-1; Mm01341361_m1),

transforming growth factor beta 1 (TGFb1; Mm01178820_m1),

tumor necrosis factor a (TNFa; Mm00443258_m1), interferon-g
(IFNg; Mm01168134_m1), matrix metalloproteinase 2 (MMP-2;

Mm00439498_m1), matrix metalloproteinase 9 (MMP-9;

Mm00442991_m1), and matrix metalloproteinase 13 (MMP-13;

Mm00439491_m1) (Life Technologies, Carlsbad, USA) on a Step

One Plus Real-Time PCR System (Life Technologies, Carlsbad, CA,

USA). Beta-2 microglobulin (B2m) served as an endogenous control

for internal normalization (24). Data were analyzed using the DD-Ct
method, as described (25). The fold change was calculated as

2-DDCt.
2.9 Isolation of hepatic non-
parenchymal cells

Liver tissues were obtained from scurfy mice and WT controls

between 15 and 25 days of life. Livers were minced and cells were

treated with collagenase buffer (0.4% collagenase type IV, Sigma-
Frontiers in Immunology 04
Aldrich, St. Louis, MO, USA), 154 mM NaCl, 5.6 mM KCl, 5.5

mM glucose, 20.1 mM HEPES, 25 mM NaHCO3, 2 mM CaCl2, 2

mM MgCl2, 1.6 nM DNase I (Applichem, Darmstadt, Germany)

(pH 7.4) and dispersed with a gentle MACS dissociator (Miltenyi

Biotec, Bergisch-Gladbach, Germany). Homogenates were

incubated at 37°C for 30 min, passed through a 100 mm cell

strainer (BD Bioscience, San Jose, CA, USA) and centrifuged at 21

×g for 4 min in ice cold PEB buffer (PBS, 2 mM EDTA, 0.5% BSA).

Supernatants were centrifuged at 300 ×g for 10 min and cell pellets

were resuspended in PEB buffer. Red blood cells were lysed by

adding 10 volumes of 150 mM NH4Cl, 10 mM KHCO3, 1 mM

EDTA·2Na. Non-lysed immune cells were washed twice and

suspended in PEB buffer, as previously described (26).
2.10 Flow cytometry

Non-parenchymal liver cells were blocked with the 2.4G2 anti-Fc

receptor antibody (BD Bioscience, San Jose, CA, USA) and stained

with antibodies recognizing CD11b, CD11c, CD45, F4/80, Gr-1, Ly-

6C (BD Bioscience, San Jose, CA, USA; Biolegend, San Diego, CA,

USA; eBioscience, San Diego, CA, USA). For intracellular staining,

cells were fixed in Fix/Perm buffer (BD Bioscience, San Jose, CA,

USA), washed in PBS containing 2% goat serum and incubated in

Perm/Wash buffer (BD Bioscience, San Jose, CA, USA) with an anti-

CD206 antibody serving as M2macrophagemarker (eBioscience, San

Diego, CA, USA). Cell acquisition was conducted on a fluorescence-

activated cell sorting (FACS) Canto II (BD Bioscience, San Jose, CA,

USA) and analyzed with the FLOWJO software (TreeStar, Ashland,

OR, USA), as previously reported (26). The gating strategy was as

follows: Neutrophil subsets were enriched from viable CD45+ and

Ly6G+ immune cells. Total hepatic macrophages were obtained by

subsequent enrichment of viable subset of CD45+ and Ly6G- immune

cells and were separated into monocytic and resident macrophage

subsets by gating separately for CD11b and F4/80. Monocytic

macrophages from CD11bhi F4/80int subset were again subdivided

regarding their expression of Ly-6C. Resident macrophages from

CD11bint F4/80hi subset were further subdivided by the expression of

CD11c and CD206 (Supplementary Figure 1A).
2.11 Statistical analysis

Results are expressed as mean ± SD. Differences were analyzed

by Mann-Whitney U test, if not indicated otherwise. Significance

was determined using Prism (GraphPad Software, La Jolla, USA)

and p < 0.05 were considered significant. (∗) represents p < 0.05,

(∗∗) represents p < 0.01, (∗∗∗) represents p < 0.001 and (∗∗∗∗)
represents p < 0.0001. Rank-based non-parametric trend analysis of

independent samples was performed with Jonckheere-Terpstra test

using R Statistical Software (v4.3.1, URL: https://r-project.org) via

clinfun package, and the corresponding figure was created using the

ggbeeswarm and ggpubr packages.
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3 Results

3.1 Scurfy mice produce ANA against AILD-
specific and related antigenic targets

ANA are serological hallmarks of a wide range of autoimmune

diseases including those that manifest AILD, most importantly AIH

(27). Therefore, we initially screened sera of scurfy mice for the

existence of ANA by IFA. All scurfy mice (n=20) produced ANA

with end-point titers ranging from 1:100 to 1:1000, whereas ANA

were found in only 15% of healthy littermates (3/20) (Figures 1A,

B). In scurfy mice, the most frequently (in 80%) observed IFA

staining pattern on HEp-20-10 cells was the nuclear coarse speckled

pattern designated AC-5 according to ICAP nomenclature (17),

followed by AC-18 (cytoplasmic discrete dots/GW body-like, in

60%) as well as AC-15 and AC-16 (cytoplasmic fibrillar linear and

cytoplasmic fibrillar filamentous, in 30%, respectively) (Figure 1C).

In the majority of scurfy sera, multiple IFA patterns occurred

simultaneously (in 85%, data not shown), which suggests a
Frontiers in Immunology 05
polyclonal humoral response. In order to further distinguish

specific patterns, hybridoma cell lines of activated plasma cells

from scurfy mice (n=2) were generated and tested for ANA

positivity until a singular IFA staining pattern was reached by

repeated subcloning. Consistently, AC-15 and AC-18 patterns were

detected (Figure 1D), which are found to be associated with AIH-1

and PBC, respectively (28, 29).

As each AILD entity is characterized by a distinct serological

profile, we subsequently determined the target antigens of AILD-

specific autoantibodies. Interestingly, autoantibodies against all

these targets were observed at significantly higher levels in scurfy

sera compared with WT sera (Figure 2; Supplementary Table 1).

AMA were the most prevalent autoantibody specificity in scurfy

mice (in 82.6%), followed by anti-VCP (in 65.22%) and anti-gp210

autoantibodies (in 52.2%). Since AC-18 was the second most

common pattern, we additionally performed a serological analysis

for associated autoantibodies against EEA1, Ge-1, GW182, and

Ago2 (“cytoplasmic dot profile”). Similarly, a significantly higher

production was noted for all four autoantibodies in scurfy
B

C

A

D

FIGURE 1

Scurfy mice produce ANA in the absence of Treg. (A) Representative images by IFA on HEp-20-10 cells and primate liver tissue with WT (upper
panel) and scurfy (lower panel) serum. Scale bars, 50 µm. (B) Semiquantitative IFA analysis with ANA titers in sera of WT and scurfy mice
****p<0.0001 (Mann-Whitney U test). (C) Analysis of ANA patterns in WT and scurfy sera by using designated codes from AC-0 (negative) to AC-29,
according to ICAP nomenclature (scurfy n=20, WT n=20). (D) Representative images by IFA on HEp-20-10 cells with hybridoma supernatants
directly obtained scurfy mice. Cytoplasmic fibrillar linear pattern (AC-15, middle panel), cytoplasmic discrete dots/GW-body like pattern (AC-18, right
panel), and negative control (left panel) are shown. Scale bars, 50 µm (larger images) and 20 µm (close-up views).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1253649
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yilmaz et al. 10.3389/fimmu.2023.1253649
mice, especially for anti-EEA1 autoantibodies (Figure 3;

Supplementary Table 2).
3.2 Autoreactive CD4+ T cells from scurfy
mice induce ANA production with AILD-
associated fluorescence pattern in B6/
nude mice

To assess if autoreactive CD4+ T cells are sufficient to induce

production of AILD-related autoantibodies through T-cell dependent

B-cell activation, CD4+T cells of scurfymicewere adoptively transferred

into T cell-deficient nu/nu mice. Remarkably, hybridoma supernatants

obtained from splenocytes of all recipient nu/nu mice (n=6) revealed
Frontiers in Immunology 06
ANA positivity, whilst only one mouse showed anti-dsDNA

autoantibodies (Figures 4B–D). Of note, one of the recipient mice

yielded a nuclear envelope staining pattern (AC-11/12) (Figure 4A),

which is strongly associated with AILD, particularly PBC (30).
3.3 Scurfy mice spontaneously develop
portal inflammation with interface hepatitis
and cholangitis

The histopathology of a liver biopsy is a major diagnostic criterion

for most AILD as defined by disease-specific alterations of hepatocytes

and/or biliary epithelium. Accordingly, we analyzed histomorphologic

features of liver samples obtained from scurfy mice and WT controls.
FIGURE 2

Scurfy mice exhibit AILD-associated autoantibodies. Detailed analysis of autoantibodies against antigenic targets associated with or related to AILD
by using LIA, ELISA, and ALBIA. For ALBIA, titers are expressed in median fluorescent units (MFU). For LIA and ELISA, values are expressed in
absorbance units (AU). Dashed lines represent cutoff values established at three SD over the mean of WT controls (scurfy n=23, WT n=16). **p<0.01,
****p<0.0001 (Mann-Whitney U test). Data are expressed as mean ± SD.
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Notably, all scurfy mice revealed significant lymphoplasmacytic

infiltration of enlarged portal tracts and degeneration and

proliferation of interlobular bile ducts (Figures 5B, C), a feature

typically seen in PBC. Moreover, AIH-like interface hepatitis and

necroinflammatory activity in hepatic parenchyma were present

(Figures 5B, C). Multifocal interspersed erythroblastic islands were

also detected in hepatic parenchyma, indicating extramedullary

hematopoiesis (Figure 5C), as previously reported (31). In line with

previous findings (31), no granulomas were found. Overall, one scurfy

mouse (8.33%) displayed a severe hepatic inflammation (grade 4),

whereas grade 3 and grade 2 inflammation was observed in seven

(58.33%) and four (33.33%) scurfy mice, respectively (Figure 5D). In

contrast, no relevant inflammatory or degenerative anomalies were

observed in the liver of WT mice (Figure 5A). A rank-based trend

analysis revealed no significant correlation between serum levels of

AILD-associated autoantibodies and histopathologic liver disease score

in scurfy mice (Supplementary Figure 2), which might be attributed to

the small sample size (n=12).
3.4 Profibrogenic transcripts are
upregulated in the liver of scurfy mice

Liver fibrosis is characterized by the formation of a fibrous scar

due to progressive accumulation of extracellular matrix (ECM)

proteins, predominantly collagens (32). The gold standard to assess

collagen deposition in fibrotic liver is through quantification of
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hydroxyproline (HYP), an amino acid unique to collagen (33, 34).

In this regard, we measured HYP levels in scurfy und WT mice and

found no significant changes in the total hepatic collagen content

(Figure 6B), although the liver weights of scurfy mice were

significantly increased (Figure 6A).

Subsequently, transcript levels of genes associated with hepatic

fibrosis were assessed via qRT-PCR, which revealed a significant

upregulation of fibrosis-related transcripts encoding proteins such

as procollagen a1(I), TIMP-1, a-SMA (ACTA2), MMP-2, and

MMP-9 in the livers of scurfy mice. Furthermore, a significant

expression of TNFawas observed in the scurfy liver, contributing to

the inflammatory environment in the hepatic tissue (Figure 6C).
3.5 Scurfy liver exhibits a proinflammatory
phenotype with increased numbers of
monocytic macrophages (Ly-6Chi)

Monocyte-macrophages are not only key regulators in the

maintenance, progression, and reversal of liver fibrosis, but also

contribute to the pathogenesis of AILD (35). Therefore, we next

focused on the cellular composition of the inflammatory infiltrates

in liver of scurfy mice. Flow cytometry analysis revealed a

proinflammatory phenotype in the absence of collagen

accumulation. The number of monocytes and neutrophils was

markedly elevated in scurfy liver tissue, whereas macrophages

were detected at lower levels compared to WT controls
FIGURE 3

Production of autoantibodies against GW bodies in scurfy mice. Assessment of “cytoplasmic dot profile” by ALBIA in sera of WT and scurfy mice.
Values are expressed in median fluorescent units (MFU). Dashed lines represent cutoff values established at three SD over the mean of WT controls
(scurfy n=23, WT n=16). *p<0.05, ***p<0.001, ****p<0.0001 (Mann-Whitney U test). Data are expressed as mean ± SD.
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(Figure 7A). Importantly, we identified increased inflammatory

monocytic macrophages (Ly-6Chi) and reduced restorative

monocyte populations (Ly-6Clo) in livers of scurfy mice

(Figure 7B). Regarding liver-resident macrophages, increased

proinflammatory M1 (CD11c+) and reduced M2 (CD206+)

macrophages were detected in scurfy mice (Figure 7C;

Supplementary Figure 1).
4 Discussion

AILD are immune-mediated chronic inflammatory disorders

characterized by an abrogation of peripheral tolerance against

hepatocytes and biliary epithelium (36). Screening for disease-

related autoantibodies is essential to facilitate the diagnosis of

AIH and PBC, whilst being of relatively minor importance in

PSC. Although AIH is widely considered a T-cell mediated

disease and the pathogenic role of autoantibodies remains ill-

defined, several autoantibodies have been linked to different

clinical phenotypes. As such, type 1 AIH (AIH-1, classic type) is

associated with ANA and anti-SMA, whereas the rarer, yet more

aggressive forms AIH-2 and AIH-3 are defined by the existence of

anti-LKM/anti-LC1 and anti-SLA autoantibodies, respectively (12,

37–39). Considering the severe course of disease in scurfy mice, it is

important to note that a significantly increased production of anti-
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LKM, anti-LC1, and anti-SLA autoantibodies was detected in sera

of scurfy mice, along with ANA (Figures 1, 2).

AMA, a serological hallmark of PBC, were by far the most

prevalent AILD-associated autoantibodies in scurfy mice (in 82.6%,

Figure 2), supporting previous findings (31). This is in accord with

the predominant cholangitis in scurfy liver (Figure 5), while

interface hepatitis and necroinflammatory activity in hepatic

parenchyma, as seen in AIH, were observed to a lesser extent

(Figure 5). Scurfy mice also revealed significantly elevated levels

of anti-gp210 autoantibodies, which are reported to be associated

with worse prognosis and higher risk at hepatic failure in PBC (40,

41). More recent evidence suggests that patients with anti-gp210

antibodies were more likely to develop interface hepatitis and

lobular inflammation, akin to that in scurfy mice and PBC-AIH

overlap syndrome (20, 31, 40). This concurs well with a study

demonstrating that the prevalence of anti-gp210 autoantibodies was

significantly higher in PBC-AIH overlap syndrome than in PBC and

AIH (42). Furthermore, two recently identified biomarkers for PBC,

anti-KL and anti-HK autoantibodies, were detected in almost half of

scurfy sera (Figure 2). To date, little is known about

clinicopathological correlations of these novel autoantibodies,

a l though there is increasing evidence that anti-HK1

autoantibodies may be affiliated with poorer prognosis in PBC

(43). Since cytoplasmic dot staining was frequently observed in

scurfy sera by IFA, we opted for determination of autoantibodies
B

C D

A

FIGURE 4

Transfer of scurfy CD4+ T cells induces production of ANA and anti-dsDNA autoantibodies in recipient B6/nude mice. (A) Representative images by
IFA on HEp-20-10 cells and primate liver showing the nuclear envelope pattern (AC-11/12, right panel) in hydridomas from B6/nude mice after
transfer of scurfy CD4+ T cells, while sera of PBC-treated nude mice were negative for ANA (left panel). Scale bars, 100 µm (left panel and right
lower panel), 50 µm (right upper panel), 10 µm (close-up view). (B) Representative IFA staining on Crithidia luciliae substrate of monoclonal antibody
from hybridomas derived from B6/nude mice transferred with scurfy CD4+ T cells, demonstrating anti-dsDNA positivity (right panel). No anti-dsDNA
production was induced in nude mice by PBS injection (left panel). Scale bars, 50 µm. (C) Screening of monoclonal autoantibodies from hybridoma
supernatants derived from splenocytes of recipient B6/nude mice for ANA and anti-dsDNA (n= 6). (D) Tabular summary of the IFA screening of
hybridoma supernatants from recipient B6/mice after transfer of scurfy CD4+ T cells.
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against distinct cytoplasmic domains known as GW (G (glycine) W

(tryptophan)-containing) bodies. These comprise unique

cytoplasmic foci which exert critical functions in mRNA

processing in the microRNA pathways and have been recently

proposed as complementary biomarkers for PBC found in 5-10%

of affected patients (19, 29, 44–46). In our study, scurfy mice yielded
Frontiers in Immunology 09
a significant production of autoantibodies against several GW

bodies, i.e., GW182/TNRC6, Ago2, and Ge-1 (Figure 3).

Interestingly, these structures do not possess a surrounding

membrane, which may make them readily targetable by

autoantibodies (19), as opposed to most of the other intracellular

autoantigens in AILD which might only be released upon
B

C

D

A

FIGURE 5

Scurfy mice spontaneously develop portal inflammation and interface hepatitis. (A) H&E staining of normal liver tissue of WT mice. (B) Severe
lymphoplasmacytic infiltrates in enlarged portal tracts are shown. Necroinflammatory activity in hepatic parenchyma (asterix, left panel), interface
hepatitis (black arrow, right panel), and lymphocytic infiltration of biliary epithelium of an irregular bile duct (blue arrow, right panel) were presented.
(C) Marked inflammation of the portal tract including degeneration of the interlobular bile duct (blue arrow, right panel). Multifocal interspersed
erythroblastic islands in hepatic parenchyma (black arrow, right panel). Scale bars, 200 µm (left panel) and 100 µm (right panel). (D) Grading of
inflammation in scurfy and WT liver (scurfy n=12, WT n=18), ****p<0.0001 (Mann-Whitney U test). Data are expressed as mean ± SD.
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hepatocyte damage. By comparison, EEA-1 is part of the endosome/

phagosome pathways with an IFA staining pattern that can

resemble that of GW bodies, but comparatively little is known

about its clinical associations (47).

Overlap syndromes are estimated to account for up to 20% of

patients with PBC, the majority displaying features of both PBC and

AIH (48, 49). Previous reports indicate that PBC-AIH overlap

syndrome differs from isolated forms concerning disease course,

prognosis, and therapeutic responses (50). Serologically, PBC-AIH

overlap syndrome is generally defined by the presence of key

autoantibodies of PBC and/or AIH, i.e. AMA and anti-SMA

autoantibodies, and usually higher levels of transaminases and

relative therapy resistance according to the Paris criteria (51).

Recent studies, however, suggest that the serological profile of

PBC-AIH overlap syndrome seems to be much more complex.

Not only were other AILD-associated autoantibodies detected in

this entity, including those against GW bodies, LKM, SLA, HK,

gp210, KL, and sp100, but also distinct disease-specific serological
Frontiers in Immunology 10
patterns were reported (20). In this regard, anti-dsDNA

autoantibodies have generated considerable interest since the

concomitant existence of AMA and anti-dsDNA has been

proposed to be highly specific for AIH-PBC overlap syndrome

(52). This corroborates with our transfer experiments showing that

autoreactive CD4+ T cells from scurfy mice were sufficient to

activate B cells of recipient B6/nude mice to produce anti-dsDNA

autoantibodies along with the AILD-associated AC-11/12

fluorescence pattern (Figure 4). Anti-dsDNA autoantibodies are

typically regarded as serological biomarkers of systemic lupus

erythematosus (SLE) (53) . While i t i s assumed that

autoantibodies in PBC-AIH overlap syndrome might target

unique dsDNA epitopes, there is also evidence indicating an

association between PBC and SLE as these entities overlap in

some patients (20, 54). A higher incidence of CTD in AIH was

also reported (55). We have previously shown that scurfy mice

exhibit features of CTD, including SLE, scleroderma, and mixed

connective tissue disease (9, 10, 56). Further studies are required to
B

C

A

FIGURE 6

Upregulated profibrogenic transcripts in the absence of collagen accumulation in scurfy mice. (A) Assessment of liver weight in scurfy and WT mice.
(B) HYP content per 100 mg liver (relative HYP, left panel) and per whole liver (total hepatic HYP, right panel) in scurfy and WT mice. (C) Levels of
fibrosis-related transcripts in liver tissue of scurfy and WT mice (scurfy n=9, WT n=12). ns: not significant, **p<0.01, ***p<0.001 (unpaired Student's
t-test). Data are expressed as mean ± SD. Results are representative of ≥2 independent experiments.
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investigate the role of functional Treg deficiency as a common

pathway in patients with concurring AILD and CTD. Given that

anti-dsDNA autoantibodies were only detected in one out of six

recipient B6/nude mice (16.67%) in the current study, the results

should be interpreted with caution and need to be validated by

future studies. Nevertheless, the proportion of B6/nude mice with

anti-dsDNA production seems to reflect the proportion of

autoreactive CD4+ T cells transferred from scurfy mice which are

able to induce autoantibody production in the recipient B cell

population, as anti-dsDNA autoantibodies were previously found

to be prevalent in 15% of scurfy mice (10).

In this study, a wide range of AILD-related autoantibodies in

sera of scurfy mice was detected (Figures 2, 3). This finding can be

explained by a polyclonal humoral response due to the uncontrolled

expansion of CD4+ T cells in the absence of Treg, leading to

production of more than a single autoantibody. On the other

hand, the relationship between PBC and AIH in an overlapping

setting is believed to be multilayered, ranging from sequential

presentation of both entities, their simultaneous existence to

being part of a disease continuum (57). As such, detection of

multiple autoantibodies both in general and in the same patient

has been reported in PBC-AIH overlap syndrome (20, 52). An

important question to resolve for future research is why some

autoantibodies (e.g., AMA, anti-VCP, anti-EEA1) were produced in

the majority of scurfy mice, whereas others (e.g., anti-GW182, anti-

LKM) were relatively rare.
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As crucial effector cells of innate immunity, macrophages play

an important role in the hepatic microenvironment via polarization

to different phenotypes (classically activated M1-type and a

spectrum of alternatively activated M2-type macrophages) under

pathological conditions such as liver fibrosis, viral hepatitis, and

hepatocellular carcinoma (35). The past five years have witnessed a

renewed importance of macrophages in AILD as well. M1- and M2-

type peribiliary macrophages were shown to be increased in human

and murine PSC, while M1-type macrophages have been associated

with enhanced Notch signaling and self-renewing phenotypes of

hepatic progenitor cells (58, 59). In a concanavalin A (ConA)-

induced AIH mouse model, splenectomy and IL-34 were found to

drive M2 polarization which suppressed hepatic fibrosis and

inflammation (60, 61). Furthermore, Li et al. demonstrated that

cholangiocyte-derived exosomal long noncoding RNA H19

promoted M1 polarization and hepatic inflammation in PBC and

PSC (62). These results indicate that M1 polarization seems to

exacerbate AILD, whereas an M2-type polarization promotes

inflammation resolution [reviewed in (35)]. This substantiates our

findings in scurfy liver revealing a strong macrophage

differentiation towards the M1 phenotype and a decreased M2-

type polarization in a TNFa-dominated proinflammatory

microenvironment (Figures 6, 7) Surprisingly, this contrasts with

our previous research which showed M2-polarized macrophages

and a significant Th2 deviation in the skin of scurfy mice, as partly

found in scleroderma (56). An explanation for these rather
B C

A

FIGURE 7

Increased pro-inflammatory and reduced restorative monocytes and macrophages in scurfy mice. (A) Bar graph indicating percentage of
monocytes, macrophages and neutrophils in total living cells of WT and scurfy mice. (B) Representative FACS plots showing monocyte (CD11bhi F4/
80lo) and macrophage (CD11bint F4/80hi) population (left panel). Monocytes were further analyzed by the differential expression of Ly-6C (right
panel). Bar diagrams demonstrate the percentage of Ly-6Chi and Ly-6Clo population from monocytes. (C) Representative histograms showing the
expression of CD11c and CD206 in macrophages. Solid line indicates WT mice; dot line indicates scurfy mice. Bar diagrams show the percentage of
CD11c and CD206 in resident macrophages (*p<0.05, **p<0.01, ***p<0.001 unpaired Student’s t-test; scurfy n=6, WT n=6).
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divergent responses may be that scurfy mice possibly recapitulate

different stages of PBC-AIH overlap syndrome and CTD. This

finding can also be attributed to potential differences in the

cutaneous and hepatic inflammatory milieu. Further studies,

including single-cell profiling, are needed to determine the

heterogeneity and functional plasticity of macrophages in PBC-

AIH overlap syndrome and organ-specific inflammation patterns in

scurfy mice. Although a significant upregulation of profibrogenic or

ECM remodeling transcripts was observed in scurfy liver, no

collagen accumulation was detected (Figure 6). The finding that

total hepatic collagen accumulation, as quantified by liver HYP, was

not increased at sacrifice in scurfy mice, despite highly elevated

fibrosis-related transcript levels, can be explained by their short

lifespan, which necessitated their sacrifice at 15 to 25 days of age.

Thus, only chronic inflammation of “wounds that do not heal” will

lead from a Th1 T cell and M1-type fibrolytic immune cell response

to a less inflammatory Th2 T cell and M2-type macrophage

dominated response that drives tissue fibrosis (63–66). This

would likely have been the case in scurfy mice if they would live

longer than four weeks, as would be expected to occur in immune

deficient patients (63–66). This is also in line with previous findings

that fibrosis phenotypes, e.g., collagen accumulation, are

significantly detected, chemically or macroscopically, after four

weeks of age in most mouse models for liver fibrosis. In this

context, at least four weeks are required for a statistically

significant increase of collagen deposition in the carbon

tetrachloride (CCL4)- and thioacetamide (TAA)-induced fibrosis

model, which is the most representative mouse model for

panlobular fibrosis (23, 67). An even slower fibrosis progression

was noted for the biliary fibrotic Mdr2 knockout mice which

displays a significant hepatic collagen accumulation after ten

weeks of age (23, 68). This observation was also reported in other

age-dependent fibrosis development studies using genetically

modified mouse strains in which the upward trend of hepatic

HYP levels was clearer at four to eight weeks after birth (68). We

therefore hypothesize that the early-onset lethal scurfy phenotype

might represent a premature model for the full development of

fibrosis and/or that their specific Foxp3 defect may favor both active

fibrogenesis and fibrolysis, resulting in no significant net fibrosis.

This can be supported by previous findings that MMP-9 and MMP-

13, for instance, can be both fibrogenic via tissue remodeling and

subsequent repair, but also be fibrolytic in other (resolution)

settings (63, 69). Our findings further suggest a potential link

between macrophages and CD4+ T cell-mediated tissue

destruction in scurfy mice. In the aforementioned study by

Haeberle et al., spontaneous Th2 cytokine secretion of skin

infiltrating CD4+ T cells was associated with M2-polarized

macrophages in the skin (56). Concordantly, scurfy mice were

found to exhibit cartilage degradation and nonerosive arthritis in

the paws, comprising CD3+ T lymphocytes, B cells, but also

neutrophiles and macrophages (9). As previously demonstrated,

in liver tissue of scurfy mice, CD4+ T cells were predominantly

accumulated in periportal areas, while cytotoxic CD8+ T cells were

concentrated around the bile ducts (31). The same study also

identified increased expression of hepatic genes encoding

cytokines such as IL-12, which is mainly produced by antigen-
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presenting cells including dendritic cells, monocytes, and

macrophages (31, 70).

Previous reports indicate that, compared to isolated PBC,

PBC-AIH overlap syndrome leads to significantly higher rates of

unfavorable outcomes including esophageal varices, gastrointestinal

bleeding, ascites, need for liver transplant, as well as abatement of 5-

year survival (50, 71). Thus, there is an unmet need for therapeutic

options which specifically target key molecules in the pathogenesis

of AILD. Notably, a growing body of literature demonstrates safety

and efficacy of adoptive Treg therapy in a variety of immune-

mediated diseases (72, 73). However, available data on the precise

role of Treg in AILD have been sparse and in part contradictory. In

AIH patients, recent reports have suggested that Treg are fully

functional and are not reduced in frequency (74, 75), despite initial

studies indicating otherwise [reviewed in (73)]. Some researchers

even found increased intrahepatic and peripheral Treg frequency in

AIH, which was more prominent in pediatric patients than adults,

implicating that intrahepatic Treg might be functionally defective or

insufficient for disease control (75–77). Of note, a 4-year-old patient

with IPEX syndrome was reported to develop AIH-2 with anti-

LKM1 autoantibodies, which points to involvement of Treg in

pathogenesis of AIH (78). In contrast, PBC has been clearly

shown to be associated with functionally and numerically

impaired Treg both in peripheral blood and liver of patients and

mouse models (79–81). Further studies have highlighted the

significance of Treg in PBC by demonstrating that deficiency in

the alpha subunit of the IL-2 receptor (IL2RA; CD25) led to PBC-

like liver disease in human und murine setting (82, 83).

Importantly, healthy sisters and daughters of PBC patients were

found to possess a significantly reduced Treg frequency, indicating a

genetic susceptibility to Treg deficiency in PBC (84). In this context,

our results might serve as an incentive for future research to

determine the functionality and frequency of Treg in PBC-AIH

overlap syndrome.

In summary, we confirm and extend previous findings on PBC-

like liver disease in scurfy mice and provide further evidence of

concomitant aspects typical of AIH. Our results support the

hypothesis that Treg deficiency and the consequent breach of

humoral tolerance in scurfy mice is key to the spontaneous

development of clinical, serological, and immunopathological

features of AILD with overlapping characteristics of PBC and

AIH. The study sheds a new light on the role of Treg in the

pathogenesis of immune-mediated liver disease.
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Glossary

ACTA2 (a-
SMA)

a-smooth muscle actin

ALBIA addressable laser bead immunoassay

AC anti-cellular

Ago2 argonaute protein

AMA-MIT3 antimitochondrial antibodies against PDC-E2, BCOADC-E2,
and OGDC-E2

ANA antinuclear antibodies

AIH autoimmune hepatitis

AILD autoimmune liver diseases

COL1A1 procollagen a1(I)

CTD connective tissue disease

ECM extracellular matrix

EEA1 early endosomal antigen 1

ELISA enzyme-linked immunosorbent assay

FACS fluorescence-activated cell sorting

FoxP3 Forkhead Box 3

gp210 glycoprotein-210

GW G (glycine) W (tryptophan)-containing

GW-182 glycine-tryptophan protein of 182 kDa

HEp-20-10 human epithelial cells

HK hexokinase

HYP hydroxyproline

H&E hematoxylin and eosin

ICAP International Consensus on ANA Patterns

IFA indirect immunofluorescence assay

IFNg interferon-g

IPEX immune dysregulation, polyendocrinopathy, enteropathy,
X-linked

KL Kelch-like

LC1 liver cytosol type 1

LIA line immunoassay

LKM liver kidney microsome

MMP matrix metalloproteinases

PBC primary biliary cholangitis

PSC primary sclerosing cholangitis

qRT-PCR quantitative real-time polymerase chain reaction

Treg regulatory T cells

SLA soluble liver antigen

SLE systemic lupus erythematosus
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sp100 soluble protein 100 kDa

TGFb1 transforming growth factor beta 1

TIMP-1 tissue inhibitor of metalloproteinases 1

TNFa tumor necrosis factor a

VCP valosin-containing protein

WT wildtype
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