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Stilbenoid compounds
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inflammatory responses
in the Drosophila intestine
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Introduction: Stilbenoid compounds have been described to have anti-

inflammatory properties in animal models in vivo, and have been shown to

inhibit Ca2+-influx through the transient receptor potential ankyrin 1 (TrpA1).

Methods: To study how stilbenoid compounds affect inflammatory signaling in

vivo, we have utilized the fruit fly, Drosophila melanogaster, as a model system.

To induce intestinal inflammation in the fly, we have fed flies with the intestinal

irritant dextran sodium sulphate (DSS).

Results: We found that DSS induces severe changes in the bacteriome of the

Drosophila intestine, and that this dysbiosis causes activation of the NF-kB
transcription factor Relish. We have taken advantage of the DSS-model to

study the anti-inflammatory properties of the stilbenoid compounds pinosylvin

(PS) and pinosylvin monomethyl ether (PSMME). With the help of in vivo

approaches, we have identified PS and PSMME to be transient receptor ankyrin

1 (TrpA1)-dependent antagonists of NF-kB-mediated intestinal immune

responses in Drosophila. We have also computationally predicted the putative

antagonist binding sites of these compounds at Drosophila TrpA1.

Discussion: Taken together, we show that the stilbenoids PS and PSMME have

anti-inflammatory properties in vivo in the intestine and can be used to alleviate

chemically induced intestinal inflammation in Drosophila.
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Introduction

Stilbenoids are hydroxylated derivatives of polyphenolic

compounds characterized by a 1,2-diphenylethylnucleus and are

present in berries, fruits and grape vine, but also in knots, bark, roots

and stumps of conifer trees, such as spruce and pine (1–3). Stilbenoids

exhibit antioxidant properties, which protect plants from harmful

exogenous stimuli such as excessive heat, UV-light, insect attacks

and infections caused by microorganisms (4–6). Some stilbenoid

compounds, such as resveratrol (3,4′,5-trihydroxystilbene), pinosylvin
(3,5-dihydroxystilbene, PS) and pinosylvin monomethyl ether (3-

hydroxy-5-methoxystilbene, PSMME) have been described to have

anti-inflammatory properties in animal models in vivo (7, 8). In

mammalian cells, resveratrol, PS and PSMME have been shown to

inhibit Ca2+-influx through the transient receptor potential ankyrin 1

(TrpA1) ion channel in response to a potent TrpA1 activator allyl

isothiocyanate (AITC) (8, 9).

The ligand-gated, transmembrane (TM) bound TrpA1 receptor is

a sensory protein that can be activated by environmental stimuli such

as noxious cold and mechanical stimuli, as well as by endogenous

irritant and pungent compounds. TrpA1 serves as an attractive target

for analgesic and anti-inflammatory drugs, as it is triggered during

inflammation, oxidative stress and tissue damage and is considered a

key player in acute and chronic pain sensation (10). In flies, TrpA1 is

expressed in sensory neurons as well as in the epithelial wall of the

intestine (11–14). The receptor has been shown to be involved in

oxidative stress-induced intestinal stem cell proliferation and in the

clearance of food-borne pathogens in flies (14, 15).

When intestinal homeostasis is disturbed, a local inflammation

arises to promote healing and recovery. The Drosophila intestinal

inflammatory response is induced by epithelial cells that recognise

and respond to pathogen-associated molecular patterns (PAMPs).

These PAMPs are derived from foreign bacteria or induced by

pathological changes of the resident microbiome causing dysbiosis.

Recognition of harmful bacteria leads to activation of several

inflammation-promoting signalling pathways, including the

Drosophila nuclear factor kB (NF-kB) pathways. The Immune

deficiency (Imd)/Relish pathway is activated upon recognition of

bacteria by peptidoglycan recognition proteins (PGRPs) and

culminates in the transcriptional activation of the NF-kB
transcription factor Relish. In the intestinal epithelial cells of the fly,

this is the major NF-kB pathway (16–19). Relish activation leads to the

transcription of hundreds of genes, including antimicrobial peptides

(AMPs) that upon secretion contribute to intestinal immune responses

by fending off intruding pathogens (20–22). Due to the advanced

innate immune system of Drosophila, as well as several structural and

functional similarities between the fly and the mammalian intestine,

the fruit fly has emerged as an ethical, inexpensive and fast model to

study intestinal inflammatory disease (23).

In this study, we induced intestinal inflammation with the

intestinal irritant dextran sodium sulphate (DSS), and analysed the

anti-inflammatory properties of stilbenoid compounds in vivo in

Drosophila. We found that while the inflammation caused by DSS is

dependent on the commensal microbiome, the elevated immune

activation induced by Relish target gene expression can be alleviated

by inhibition of the TrpA1 channel by stilbenoid-treatment.
Frontiers in Immunology 02
Results

Molecular modelling of PS and PSMME
interactions with Drosophila TrpA1

PS and PSMME have been shown to inhibit Ca2+-influx through

the TrpA1 ion channel in response to TrpA1 activators in

mammalian cells (8, 9). The mammalian TrpA1 binding sites have

been identified and predicted for two known TrpA1 antagonists, A-

967079 and HC-030031, based on phylogenetic, mutational and

modelling studies (24). In this study, we have used Drosophila as a

model to study the effects of stilbenoid compounds on inflammatory

responses. To be able to investigate if stilbenes can interact with the

Drosophila TrpA1 (dTrpA1) channel, we used molecular modelling

to computationally predict the antagonist binding sites at the

receptor. In the absence of an experimentally defined structure of

the dTrpA1 channel, we built a comparative homology model of

dTrpA1 based on the experimental human TrpA1 (hTrpA1)

structure. The dTrpA1 model with the best Discrete Optimized

Protein Energy (DOPE) score (-317763.96875) and the root-mean-

square deviation (RMSD) of 0.764 Å from the template was utilized

for molecular modelling studies (Figure 1A). The two TrpA1

antagonists A-967079 and HC-030031 were used as reference

compounds and were modelled into their respective binding sites

described in the literature using molecular docking (Figure 1A, zoom

in). The A-967079 binding site has been described to locate within the

channel pore between TM5, TM6 and pore helix 1 (PH1) from one

subunit and TM6 from the adjacent chain (25). The residues forming

this particular binding pocket in hTrpA1 are S873, T874, F877, F909

and M912 (25–27). The respective residues in dTrpA1 are V431,

L432, F435, F468 and M471. The HC-030031 binding pocket is

situated between the TM4-TM5 linker, preTM1 and TRP-like

domains close to the membrane (28). The residues forming the

HC-030031 pocket in hTrpA1 are W711, N855, Q979, H983, A971

and in dTrpA1 W268, Q413, Q538, H542 and A530.

To investigate possible binding modes and sites of stilbenes at

dTrpA1, PS and PSMME were docked into both known antagonist

binding sites. Based on the docking results, both PS and PSMME are

predicted to form a hydrogen bond with S501 (of the adjacent TM6)

and p-p interactions with F468 (of PH1) in the A-967079 binding

site, while A-967079 itself is predicted to engage in hydrogen bonding

with L428 backbone oxygen (in TM5) and p-p interactions with F468
(Figure 1A, upper panel). In the HC-030031 binding pocket, PS and

PSMME are predicted to form a hydrogen bond with Q538 (of the

TRP-like domain) and p-p interactions with W268 (of the preTM1

domain), while HC-030031 itself is predicted to form hydrogen

bonds with Q265 (of the preTM1) and D412 (of TM4-TM5 linker)

(Figure 1A, lower panel).

In addition to assessing the initial docking scores and favorable

ligand-protein interactions to evaluate the predicted binding poses,

we employed the Molecular Mechanics-Generalized Born Surface

Area (MM-GBSA) method to estimate the free energy of binding

(binding affinity) of the docked ligands. Moreover, the best docking

poses of A-967079 and HC-030031 in their respective dTrpA1

binding sites and PS (as the representative of the stilbene

compounds) in both the known binding pockets of the dTrpA1
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model were subjected to molecular dynamics (MD) simulation to

evaluate the stability of the predicted ligand-dTrpA1 complexes.

After the MD simulation, the MM-GBSA binding affinities were

recalculated to see if the simulation had improved or worsened the

estimated binding affinity of the ligands. Whereas the MM-GBSA

binding free energy of HC-030031 was significantly better after the

100-ns simulation (from -44.39 to -74.42 kcal/mol) at its

corresponding binding site, it remained the same for A-967079

(-28 kcal/mol), suggesting a less favorable binding for A-967079 at

its binding site. The MM-GBSA binding free energies of PS were

also improved during the MD simulation (from -35.30 kcal/mol and

-31.73 kcal/mol to -45.62 kcal/mol and -54.89 kcal/mol at the A-

967079 and HC-030031 binding sites, respectively). PSMME (non-
Frontiers in Immunology 03
simulated) had very similar binding free energy values to those of PS

(non-simulated) at both binding sites.

The predicted HC-030031-TrpA1 complex remained relatively

stable during the simulations and HC-030031 engaged in water-

mediated hydrogen bonding interactions with Q261 and L264 (of

preTM1) (data not shown). However, the small reference ligand A-

967079 was not stable in its predicted binding pose at the binding

site during the simulation. It changed its position and orientation,

and thus, also the interactions with the protein, e.g., the hydrogen

bond with L428 (TM5) was exchanged to hydrogen bonds with

S501 (of the adjacent TM6), L464 (of PH1) and S436 (of TM5) (data

not shown). Although PS binding at the A-967079 site was relatively

stable during the whole simulation via p-p interactions with F468
A

B

FIGURE 1

Molecular modelling of PS and PSMME interactions with Drosophila TrpA1. (A) A comparative homology model of Drosophila TrpA1 (blue) based on
the experimental human TrpA1 structure (PDB ID: 6V9V). Zoom in: Docking studies of PS (yellow), PSMME (orange) and A-967079 (magenta) or HC-
030031 (green) in the A-967079 (top panel) or HC-030031 (lower panel) binding pocket of Drosophila TrpA1 (blue). (B) PS (yellow) in the A-967079
binding pocket of Drosophila TrpA1 (blue), before (left) and after (right) a 100ns MD simulation. The oxygen, nitrogen and hydrogen atoms are
displayed in red, blue, and white color, respectively. Interaction color code (dashed lines): H-bond – red; p-p – dark green. Key interacting residues
are shown in blue sticks and labelled.
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(of PH1), its hydrogen bond swapped from S501 (of the adjacent

TM6) (in Figure 1B, left) to S436 (of TM5) and it could form an

extra hydrogen bond through a water molecule with P461 (of PH1)

(in Figure 1B, right). At the HC-030031 binding site, PS moved

deeper into the cavity from its initial docking site, losing the initial

interactions while forming a new water-mediated hydrogen bond

with D412 (of the TM4-TM5 linker). This suggests that PS is too

small for this site and that the A-967079 binding site is the preferred

site for PS. Taken together, both PS and PSMME can bind to

Drosophila TrpA1, according to the in silico studies.
DSS-treatment causes microbial dysbiosis
in Drosophila larvae and induces
activation of Relish-mediated
inflammatory gene expression

To study the effect of stilbenoid compounds in vivo, we wanted

to induce activation of the NF-kB-mediated inflammatory Imd/

Relish pathway in the Drosophila intestine, without direct

interference of the signaling mediators of the pathway, or by

bacterial infection. In both murine and Drosophila models, oral

administration with DSS has been used to chemically induce

intestinal inflammation (29–31). DSS has been shown to disrupt

the epithelia barrier and the intestinal homeostasis, inducing

intestinal inflammation (31–35).

To assess the NF-kB-mediated inflammatory response induced

by DSS in Drosophila, we fed foraging 3rd instar larvae with fly food

supplemented with DSS, whereafter, we used qPCR-based analysis to

detect Relish-specific AMP target genes. We noticed that 5% w/v of

40 kDa DSS induced an increased gene expression of the NF-kB
Relish target gene diptericin compared to control fed flies (Figure 2A),

also in the absence of pathogenic infection. As Relish is involved in

protecting the epithelial borders in the intestine from local insults,

and thus maintains tissue homeostasis in situ also during non-

pathogenic inflammation-inducing conditions (22, 36, 37), we

wanted to specifically investigate if the local immune response in

the gut is activated in response to DSS. As expected, we were able to

detect local activation of the immune response in the Drosophila

intestine by performing X-Gal staining on the dissected gut of

diptericin-lacZ reporter flies fed with DSS (Figure 2B).

In addition, we analyzed if DSS treatment affects the intestinal

microbiome in the fly. For this purpose, we performed 16S rRNA

sequencing on control and DSS-fed larvae. The Drosophila gut

harbors relatively few bacterial species, usually belonging to the

families Enterococcaceae and Lactobacillaceae from the phylum

Baci l lo ta , and to the famil ies Acetobacteraceae and

Enterobacteriaceae from the phylum Pseudomonadota (38–40). We

found the bacterial composition to be changed in DSS-treated larvae

compared to control larvae (Figure 2C). The treatment with DSS

leads to a decrease in the proportion of Bacillota to Pseudomonadota

(Figure 2C, Supplementary Figure S1 and Table S1), which is a

marker for microbial instability and is associated with chronic

inflammatory diseases also in humans (41, 42). Concomitantly, the

Simpson index indicates a higher dominance and lower biodiversity
Frontiers in Immunology 04
in DSS treated larvae compared to control treated. Further supporting

this notion, both the total number of observed families (Sobs) and the

Shannon-wiener H index decreases in DSS treated larvae, indicating a

decline in biodiversity (Figure 2C).

To assess if the fly commensal microbiome, alas dysbiotic,

affects Relish activation upon DSS treatment, we reared flies

under axenic conditions before treating them with DSS.

Interestingly, DSS did not induce Relish activation in germ-free

flies compared to their conventionally reared counterparts

(Figure 2D). Similarly, the inducibility of diptericin is impaired in

flies lacking the pattern-recognizing receptor (PRR) PGRP-LC

(Figure 2E). This indicates that DSS-induced diptericin expression

is not driven by disruption of the epithelial barrier, but rather

mediated by receptor activation in response to a dysbiotic

microbiome. In addition, this suggests that DSS-induced Relish

target gene expression is mediated via activation of the Imd/Relish

pathway. Finally, to assess if the DSS-induced expression of AMPs

is indeed mediated by the NF-kB Relish, we used loss-of-function

(LOF) mutants of Relish and confirmed that the inducibility of

diptericin expression was Relish-dependent (Figure 2E). Taken

together, DSS-treatment induces activation of Relish in flies and

can be used to induce a modest inflammation in Drosophila.

Stilbenoid compounds reduce
inflammatory gene expression

Taking advantage of the model of DSS-induced dysbiosis and

inflammation, we wanted to investigate the anti-inflammatory

properties of stilbenoid compounds in flies. To relate our

modelling studies of stilbenes and the reference TrpA1

antagonists with the experimental data, we first determined the

anti-inflammatory properties of the reference compounds A-

967079 and HC-030031 in DSS-treated flies. We fed the DSS-

treated flies with A-967079 and HC-030031, and both TrpA1-

inhibiting drugs alleviated DSS-induced inflammation 24 hours

post DSS-treatment (Figure 3A), suggesting that the stilbenoid

compounds may also exert their anti-inflammatory properties by

inhibiting the TrpA1 ion channel also in Drosophila.

Before assessing the anti-inflammatory properties of the

stilbenoids, we first fed flies with the stilbenoids to investigate if the

treatment alone activates NF-kB in Drosophila. We analyzed four

different stilbenoid compounds, the compounds modelled together

with Drosophila TrpA1 pinosylvin (PS) and pinosylvin monomethyl

ether (PSMME), as well as the stilbenoid glucosides isorhapontin

(4,5’-dihydroxy-3-methoxy-3’-glucopyranosylstilbene) and astringin

(3,4,3’,5’-tetrahydroxystilbene 3’-glucoside). When used at a

concentration of 100 µM, none of the tested stilbenoids induced

inflammation after 24 hours of feeding. On the contrary, treatment

with 100 µM PS, PSMME and isorhapontin reduced basal Relish

target gene expression (Figure 3B). Astringin, on the other hand, did

not seem to influence basal Relish activity (Figure 3B). Similar results

were obtained when using a higher, 500 µM concentration of

PSMME, isorhapontin and astringin (Figure 3B). However, a

higher concentration of PS resulted in an adverse spontaneous

increase of Relish target gene expression (Figure 3B).
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To assess the anti-inflammatory effect of stilbenes, we fed larvae

with DSS for 3 hours, after which they were allowed to feed on

control food or food supplemented with stilbenoids for 24 hours.

While DSS-treated flies still expressed diptericin 24 hours post DSS-

treatment in control conditions, PS and PSMME, were able to

alleviate the DSS-induced inflammation (Figure 3C). However,

isorhapontin had no alleviating effect on DSS-induced

inflammation and astringin seemed to have an opposite effect

(Figure 3D). As both isorhapontin and astringin were unable to

reduce DSS-induced inflammation the compounds were excluded

from further experiments.
Frontiers in Immunology 05
Stilbenoid compounds depend on TrpA1
for their anti-inflammatory activity

To assess if the anti-inflammatory effect of PS and PSMME is

indeed mediated via the TrpA1 channel in vivo, we investigated the

ability of the stilbenoids to alleviate inflammation in TrpA1 LOF

TrpA11-mutant flies. We first ensured that the larvae of TrpA1 LOF

flies responded to DSS-treatment by inducing expression of

diptericin similarly as wildtype flies (Supplementary Figure S2).

At the same time this indicates that the DSS-induced Relish

activation is TrpA1-independent. When we next treated the DSS-
A B

D E

C

FIGURE 2

DSS-feeding induces local inflammation and causes microbial dysbiosis. (A) 3rd instar larvae of wild-type CantonS were fed with indicated
concentrations of DSS for 3 h, with 1 h recovery. Relish activation was studied by analyzing the expression of diptericin with qPCR (shown as DDCt).
Error bars indicate SEM from 6 independent experimental repeats. (B) Dissected larval guts from diptericin-lacZ stained for b-galactosidase activity
after 3 hours with indicated concentrations of DSS feeding. The images are representatives of 3 independent experimental repeats. (C) Bacterial 16S
rRNA metagenomics analysis of the 1V-3V region in CantonS control and DSS fed flies with 10% of DSS for 3 hours. Colors indicate identified
operational taxonomic units (OTUs). The intestinal bacterial diversity of control and DSS treated wild-type CantonS larvae with and without
Wolbachia was analysed by calculating the Simpson index, the Shannon-wiener H index, and the total number of observed families (Sobs). (D) 3rd

instar larvae of conventionally (CV) or axenically reared (AX) wild-type CantonS
flies were fed with 5% DSS for 3 h with 1 h recovery. Relish activation

was studied by analyzing the expression of diptericin with qPCR (shown as DDCt). Error bars indicate SEM from 4 independent experimental repeats.
(E) 3rd instar larvae of wild-type CantonS, LOF RelE20 flies and PGRPD5-receptor mutant flies were fed with 5% DSS for 3 h with 1 h recovery. Relish
activation was studied by analyzing the expression of diptericin with qPCR (shown as DDCt). Error bars indicate SEM from more than 4 independent
experimental repeats. Statistical significance was calculated using Student’s t-test (A) or one-way ANOVA (D, E) on non-normalized -DCt-values, ns
nonsignificant, * p < 0.05, ** p < 0.01.
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fed TrpA1-mutant larvae with stilbenoid compounds, PS and

PSMME lost their anti-inflammatory properties observed in

control larvae (Figure 4A). Finally, the DSS-induced diptericin

expression could not be alleviated by feeding TrpA1 LOF flies

with the known antagonists of mammalian TrpA1, A-967079 and

HC-030031 (Figure 4B), hence, strengthening the functional role of

TrpA1 in the immune response during DSS-induced intestinal

inflammation (Figure 4C).
Discussion

When intestinal cellular and microbiome homeostasis is

disturbed, as in inflammatory bowels disease (IBD) patients,

activation of the transcription factor NF-kB in the epithelium is
Frontiers in Immunology 06
markedly induced, further promoting intestinal inflammation (43,

44). In this study, we demonstrate that feeding Drosophila larvae

with DSS leads to an intestinal inflammatory response mediated via

the NF-kB transcription factor Relish. Interestingly, our results

indicate that DSS-induced Relish activation is not prompted by the

damage in the epithelial barrier, but instead through activation of

inflammatory receptors as a response to the emerging microbial

instability. Therefore, the DSS-induced inflammatory response

caused by a microbial dysbiosis of commensal bacteria is modest

in comparison to immune responses caused by pathogenic

infections. While the activation of Relish seems to be TrpA1-

independent, feeding flies with DSS has been shown to increase

ROS levels (34), which in turn, is suggested to activate the TrpA1

ion channels expressed in the epithelial cells along the Drosophila

midgut (13, 14). Interestingly, TrpA1 is upregulated in IBD patients
A B

DC

FIGURE 3

The anti-inflammatory properties of stilbenoid-compounds. (A) 3rd instar larvae of wild-type CantonS were fed with 200 µM of TrpA1 antagonists A-
967079 and HC-030031 or MQ for 24 hours after 3 hours DSS feeding. Relish activation was studied by analyzing the expression of diptericin with
qPCR (shown as DDCt). Error bars indicate SEM from 3 independent experimental repeats. (B) 3rd instar larvae of wild-type CantonS were fed with
indicated concentrations of stilbenoids PS, PSMME, isorhapontin and astringin for 24 hours. Relish activation was studied by analyzing the expression
of diptericin with qPCR (shown as DDCt). Error bars indicate SEM from more than 3 independent experimental repeats. (C, D) 3rd instar larvae of
wild-type CantonS were fed with 100 µM of stilbenoids PS (C), PSMME (C), isorhapontin (D) and astringin (D) or MQ for 24 hours after 3 hours DSS
feeding. Relish activation was studied by analyzing the expression of diptericin with qPCR (shown as DDCt). Error bars indicate SEM from more than 3
independent experimental repeats. Statistical significance was calculated using one-way ANOVA on non-normalized -DCt-values, ns nonsignificant,
* p < 0.05, ** p < 0.01.
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and its activation is required to alleviate the expression of several

proinflammatory neuropeptides, cytokines and chemokines (45).

Here, we show that although TrpA1 is not required for DSS-

induced Relish activation, there is a crosstalk between TrpA1 and

Relish, as the DSS-induced Relish activation can be modulated

pharmacologically with stilbenoid compounds PS and PSMME that

target TrpA1.

In this study, we computationally modelled the putative binding

interactions of PS and PSMME at Drosophila TrpA1. We

specifically focused on investigating the binding sites reported for

known human TrpA1-antagonists A-967079 and HC-030031.

Previous studies have stated that the predicted A-967079 binding

site in mammalian TrpA1 consists of different residues than the
Frontiers in Immunology 07
corresponding pocket in the Drosophila TrpA1, thus rendering

Drosophila TrpA1 insensitive to A-967079 (24, 46, 47). The

docking study and the MD analysis of the putative binding poses

of the stilbenes showed that PS can form favorable polar and

hydrophobic interactions with the target at both studied sites.

While PS showed comparable predicted affinities to both

antagonist binding sites, its size and interactions suggest that it

may favor the A-967079 binding pocket. A-967079 however, did

not find a stable binding site at Drosophila TrpA1, consistent with

the previous observation that Drosophila TrpA1 is insensitive to A-

967079. However, when analyzing in vivo, A-967079 did have anti-

inflammatory properties, indicating that A-967079 may bind to

TrpA1 sufficiently in vivo. While the stilbenoids resveratrol, PS and
A B

C

FIGURE 4

TrpA1-dependency of the stilbenoid compound anti-inflammatory activity. 3rd instar larvae of LOF mutant TrpA11 were fed with 100 µM of
stilbenoids PS and PSMME (A) or 200 µM of TrpA1 antagonists A-967079 and HC-030031 (B) or MQ for 24 hours after 3 hours DSS feeding. Relish
activation was studied by analyzing the expression of diptericin with qPCR. Error bars indicate SEM from more than 5 independent experimental
repeats (shown as DDCt). Statistical significance was calculated using one-way ANOVA on non-normalized -DCt-values, ns nonsignificant, * p < 0.05.
(C) Schematic summary of results showing that inhibition of the TrpA1 channel by stilbenoid-treatment reduces inflammation induced by Relish
target gene expression.
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PSMME have been previously shown to have anti-inflammatory

properties in vivo (7, 8, 48), isorhapontin and astringin have not

been studied in vivo before. We were not able to detect any

significant anti-inflammatory effects with neither of these

compounds. However, isorhapontin and astringin are both

hydrophilic glucosides that may not diffuse through the lipophilic

cell membrane to the lipid-surrounded binding site at TrpA1, and

would hence need to be metabolized to function properly (49).

Besides their direct interaction with the TrpA1-receptor,

stilbenoid compounds also exhibit antimicrobial effects (50, 51),

making them potential modulators of the bacteria composition in

the intestinal lumen. This could explain why during basal conditions,

some of the stilbenoid compounds were able to alleviate basal NF-kB
activation. As the microbial dysbiosis caused by DSS seems to be the

main reason for Relish activation, the antimicrobial activities of

stilbenoids may alleviate the bacterial burden on the intestinal

epithelia, which may contribute to the anti-inflammatory effect of

PS and PSMME. To further address this, an analysis of the microbial

structure in response to stilbenoid treatments would be informative

and would elucidate the antimicrobial effects of stilbenoids during

intestinal inflammation. In conclusion, both our molecular modelling

and our experimental data indicate favorable interactions of the

stilbenoid compounds with the Drosophila TrpA1, suggesting

crosstalk between TrpA1 and NF-kB signaling in maintenance of

intestinal immune homeostasis.
Materials and methods

Fly husbandry and strains

Drosophila melanogaster were maintained at 25°C with a 12 h

light–dark cycle on Nutri-fly BF (Dutscher Scientific, Essex, UK).

CantonS wildtype flies and diptericin-lacZ reporter line and balancer

lines fly lines were kindly provided by Prof. Pascal Meier and Dr.

François Leulier (52, 53). The Drosophila fly lines TrpA11 (#36342),

PGRP-LCD5 (#36323), w:RelE20 (stock #9457) were obtained from

the Bloomington stock center.
DSS treatment of Drosophila larvae

Early Drosophila 3rd instar larvae were fed 40 kDa DSS (TdB

Consultancy AB, Uppsala, Sweden) mixed in the fly food. 40 kDa

DSS has been shown to induce the most severe colitis in

mammalian model organism (54). For feeding with DSS 3-10

larvae were placed in 2 ml collection tubes with food (1-2 ml)

containing DSS and sealed with pieces of Drosophila plugs (Genesee

Scientific, California, USA). For qPCR experiments, more than 3

larvae were fed for 3 h with indicated DSS concentrations (1%, 5%

or 10% w/v) and allowed to recover for at least 1 h before freezing.

As DSS has been shown to compromise qPCR results by interfering
Frontiers in Immunology 08
with the activity of reverse transcriptase during cDNA synthesis and

the polymerase during qPCR (55), we decided to use a one-hour

recovery post DSS-treatment in all qPCR-experiments. For

sequencing of the 16S rRNA gene larvae were fed with 10% w/v

DSS for 3 h in room temperature with a 2 h recovery.
Stilbenoid compounds

PS and PSMME were isolated from a mixture of Norway spruce

and Scot pine knotwood using a batch reactor. In the first step of

isolation, the wood materials were boiled in ethanol for about two

hours. After cooling, the ethanol solution was filtrated and then

condensed by distillation (56). Further, the ethanol extract was

dissolved in Toluene and stirred in a dark place at room

temperature to remove the polymers that could interfere with the

purification process. After two days, it was filtrated, and the solid

residue was returned to the flask. This procedure was repeated two

more times. The final filtrate was evaporated with a rotary

evaporator at 40℃. The extract was subjected to a normal phase

column chromatography (Silica gel 60, 0.040–0.063 mm, Merck,

Darmstadt, Germany) and eluted with petroleum ether (peth) and

ethyl acetate (EtOAc) as a solvent system. PSMME was separated in

a proportion of 80:20 (peth/EtOAc). The remaining obtained

fractions contained PS, resin acids and hydroxymatairesinol

(HMR) were subjected to the second normal phase column and

eluted with 100% chloroform (CHCl3). The procedure continued

by using a gradient of CHCl3/MeOH (98:2) and the fractions were

collected based on TLC (Silica gel 60 F254, Merck, Darmstadt,

Germany) profile. All the organic solvents in analytical grade

(99.9%) were purchased from Sigma-Aldrich (St. Louis, MO,

USA). The purity of the fractions containing PSMME and PS was

analyzed by GC-MS after silylation (Supplementary Figure S3, S4).

The purity was determined to be >95% (Supplementary Figure S5,

S6). The silylation reagents hexamethyldisiloxane (HMDS) and

trimethylchlorosilane (TMSCl) were purchased from Sigma-

Aldrich (St. Louis, MO, USA) and pyridine was obtained from

VWR (Fontenay-sous-Bois, France). The GC-MS instrument was

Agilent 5975C TAD series GC/MSD system (Stevens Creek, Santa

Clara, CA, USA). The stilbenoid glucosides (astringin and

isorhapontin) were extracted from fresh inner bark of Norway

spruce by acetone and further purified by column chromatography

over 95% and analyzed by GC-MS and NMR described in detail in

our previously reported method (57).
Stilbenoid and TrpA1 antagonist treatment
of Drosophila larvae

Similarly as with DSS feeding, 3-10 larvae were fed 24 h with

indicated concentrations (100 µM or 500 µM) of stilbenoid

compounds PS, PSMME, isorhapontin and astringin, or 200 µM
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of TrpA1 antagonists A-967079 (Sigma-Aldrich) and HC-030031

(Sigma-Aldrich) mixed in 1-2 ml fly food. For experiments with

DSS treatment, larvae were moved from DSS-containing food to

new tubes with stilbene/antagonist-containing food.
Quantitative real-time-PCR

Drosophila larvae were homogenized using QIAshredder

(QIAGEN) and total RNA was extracted with RNeasy Mini Kit

(QIAGEN) and cDNA was synthesized with SensiFast cDNA

synthesis kit (Bioline, London, UK) according to the

manufacturers’ protocols. qPCR was performed using SensiFast

SYBR Hi-ROX qPCR kit (Bioline). rp49 was used as a housekeeping

gene for DDCt calculations. The following gene-specific primers

were used to amplify cDNA: diptericin (5’-ACCGCAGTA

CCCACTCAATC-3’, 5’-ACTTTCCAGCTCGGTTCTGA-3’), rp49

(5’-GACGCTTCAAGGGACAGTATCTG-3’, 5’-AAACGCGGT

TCTGCATGAG-3’).
X-gal staining of Drosophila larvae

3rd instar fly larvae were dissected in PBS and fixed for 15

minutes with PBS containing 0.4% glutaraldehyde (Sigma-Aldrich)

and 1 mM MgCl2 (Sigma-Aldrich). The samples were washed with

PBS and incubated with a freshly prepared staining solution

containing 5 mg/ml X-gal (5-Bromo-4-chloro-3-indolyl-b-D-

galactopyranoside), 5 mM potassium ferrocyanide trihydrate

(Sigma-Aldrich), 5 mM potassium ferrocyanide crystalline

(Sigma-Aldrich) and 2 mM MgCl2 in PBS at 37°C. After washing

with PBS, the samples were mounted using Mowiol (Sigma) and

imaged with brightfield microscopy (Leica, Wetzlar, Germany).
Sequencing of the 16S rRNA gene

Genomic DNA was isolated from 40 3rd instar larvae using a

modified protocol for the QIAamp DNA mini kit (QIAGEN) (58).

Larvae were surface sterilized by vortexing them twice in 2% active

hypochlorite and sterile H2O. The efficiency of the washes was

confirmed by 16S PCR of water from the last wash step. Larvae were

homogenized in lysis buffer containing 20 mM Tris, pH 8.0, 2 mM

EDTA, 1.2% Triton X-100 and 20 mg/ml lysozyme and incubated

90 min at 37°C. 200 µl AL buffer (QIAamp DNA mini kit) with 20

µl proteinase K were added and the lysate was incubated 90 min at

56°C. Subsequent extraction was performed according to

manufacturer’s protocol. Amplification and Illumina MiSeq

sequencing of the V1-V3 region of the 16S rRNA gene, as well as

selection of operational taxonomic units (OTUs) and taxonomy

assignment of OTUs was done using Eurofins Genomics InView

Microbiome Profiling 3.0 service. The data is deposited at NCBI,

BioProject ID: PRJNA1005106. The proportion of Wolbachia

species have been omitted from the bar graph in Figure 2C for

easier comparison of bacterial species residing in the gut lumen.
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Figure S1 and Supplementary Table S1.
Computational protein modelling

The fruit fly (Drosophila melanogaster) TrpA1 (dTrpA1) sequence

was obtained from the UniProt knowledgebase (UniProtKB -

Q7Z020). A Basic Local Alignment Search Tool (BLAST) (59) search

for the sequence was run to find a suitable template in the Protein Data

Bank (PDB) (60) for comparative modelling of its three-dimensional

(3D) structure. Among protein structures with similar E-values (0.0)

and Sequence Identity (35.81%), the human TrpA1 crystal structure

(PDB ID: 6V9V) (61) was selected due to the highest resolution (2.60

Å) and the greatest sequence coverage (residues 1 – 1119). The 3D

structure model of dTrpA1 was generated usingModeller (v. 9.24) (62).

The modelling alignment was created with Clustal Omega (63) and

manually curated. Out of the 20 generated alternative models, the one

with the best Discrete Optimized Protein Energy (DOPE) score (64)

was selected. The model was further evaluated by superimposition on

the template structure using PyMOL (The PyMOLMolecular Graphics

System, Version 4.6, Schrödinger, LLC) and the stereochemical quality

of the model was verified with MolProbity (65).
Computational docking studies

The structures of natural stilbenes and the reference compounds

were prepared using the LigPrep module of Maestro (Release 2020-2:

Schrödinger, LLC, New York, NY, 2020) software and the Protein

Preparation Wizard of Maestro (66) was used to minimize the

dTrpA1 model using the OPLS3e force field (67) and the RMSD of

0.3 Å for heavy atoms as the convergence criteria. Two docking sites

were defined based on the previously reported TrpA1 antagonist

binding pockets (28) using the Receptor Grid Generation tool of

Maestro: (i) A-967079 binding pocket around the amino acids V431,

L432, F435, F468 and M471; and (ii) HC-030031 binding site around

W268, Q413, Q538, H542 and A530. The stilbene compounds were

docked at these alternative sites with the GLIDE docking tool (68–70)

of Maestro, using the extra precision (XP) mode with flexible ligand

sampling. A maximum of five poses per ligand were ranked based on

the Glide XP docking score (XP Gscore) value. To allow for more

accurate evaluation of the predicted docking poses, binding free

energy calculations with the Prime/MM-GBSA module of Maestro

(71) were carried out for the best-docked pose (according to the XP

Gscore and the observed binding interactions) of each compound

using the VSGB 2.0 solvation model (72) and the OPLS3e force field

(67) and allowing the residues within 5 Å from the ligand to move.
Molecular dynamics simulation analysis

The simulation systems (consisting of the membrane embedded

dTrpA1 and the receptor-bound ligand in explicit solvent) were created
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with the System Builder tool of the Desmond module (Schrödinger

Release 2020-2: Desmond Molecular Dynamics System, D. E. Shaw

Research, New York, NY, USA, 2020. Maestro-Desmond

Interoperability Tools, Schrödinger, New York, NY, USA, 2020) (73)

using TIP3P water (74) as the solvent model and POPC (1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine) as the membrane model. The

systems were neutralized by adding Na+ counter ions. After the system

relaxation, the production simulations were run for 100 ns at constant

temperature (300 K) and pressure (1.01325 bar) according to our

previously reported simulation protocol (75).
Statistical analysis

Results from qPCR were analyzed by ordinary one-way ANOVA

and two-tailed Student’s t-test on the non-normalized -DCt values,
the graphs depict relative fold induction of the target gene compared

to a normalized sample (DDCt). Statistical analyses were performed

using GraphPad Prism version 9.5.0 for Windows (GraphPad

Software, San Diego, California, USA). In figures, ns stands for p>

0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Error bars

in figures specify SEM from the indicated number of independent

experimental repeats with more than 3 larvae per treatment.

Experiments were performed indicated number of times (n ≥ 3)

and statistics were calculated for each individual experiment. For

analysis of 16S rRNA sequencing data, Shannon-wiener H index was

calculated according to H = -Spi*ln(pi) and Simpson index was

calculated according to D = Sni(ni-1)/N(N-1). In addition, the total

number of observed families (Sobs) was calculated.
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