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The central nervous system (CNS) influences the immune system generally by

regulating the systemic concentration of humoral substances (e.g., cortisol and

epinephrine), whereas the peripheral nervous system (PNS) communicates

specifically with the immune system according to local interactions/

connections. An imbalance between the components of the PNS might

contribute to pathogenesis and the further development of certain diseases. In

this review, we have explored the “thread” (hardwiring) of the connections

between the immune system (e.g., primary/secondary/tertiary lymphoid

tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and

enteric nervous systems (ENS)) in health and disease in vitro and in vivo.

Neuroimmune cell units provide an anatomical and physiological basis for

bidirectional crosstalk between the PNS and the immune system in peripheral

tissues, including lymphoid tissues and organs. These neuroimmune

interactions/modulation studies might greatly contribute to a better

understanding of the mechanisms through which the PNS possibly affects

cellular and humoral-mediated immune responses or vice versa in health and

diseases. Physical, chemical, pharmacological, and other manipulations of these

neuroimmune interactions should bring about the development of practical

therapeutic applications for certain neurological, neuroimmunological,

infectious, inflammatory, and immunological disorders/diseases.
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1 Introduction

1.1 Central nervous system and peripheral
nervous system

The nervous system comprises the central nervous system (CNS)

and the peripheral nervous system (PNS). The CNS, including the

brain and spinal cord, is responsible for integrating, coordinating, and

maintaining the overall function and well-being of the human body (1).

In association with social activities, the human cerebral cortex has

become rapidly developed and continuously improved, producing

advanced functional activities such as language, thinking, learning,

and memory. Therefore, mammals are able not only to adapt to

changes in the environment, but also to recognize and actively

transform the environment. In PNS, bundles of nerve fibers (axons

and dendrites projecting from neuron cell bodies located in the spinal

cord and ganglia) and their nerve terminals are surrounded by

connective tissue layers and are organized into nerves. A branching

network of intersecting nerves then forms a nerve trunk and nerve

plexus. Functionally, the PNS consists of somatic afferent (somatic

sensory), somatic efferent (somatic motoric), visceral efferent

(autonomic; including sympathetic and parasympathetic), and

visceral afferent (visceral sensory) nerve fibers (2). The PNS relays

sensory information to the CNS and transmits motor commands to

regulate bodily functions and facilitate interactions with the external

environment (1, 3, 4). In the PNS, the autonomic nervous system

(ANS) is one of the main biological systems that regulates involuntary

physiologic processes including heart rate, blood pressure, respiration,

digestion, and sexual arousal (5).

The ANS has three anatomically distinct divisions: sympathetic,

parasympathetic, and enteric (5). The sympathetic nervous system

(SNS) and parasympathetic nervous system (PSNS) work together

to maintain homeostasis and to regulate various bodily functions.

Whereas the SNS is responsible for the “fight-or-flight” response,

the PSNS is often referred to as the “rest and digest” system (6). The

SNS emanates from the lateral horns of the gray matter of the entire

thoracic and upper three lumbar cords of the spinal cord. It uses

short communication branches (preganglionic fibers) to connect

with the sympathetic trunks on both sides of the spinal cord and

then sends out postganglionic fibers (from the sympathetic trunk

nerves) to control the activities of the organs and blood vessels in

the chest and abdomen (7). The SNS plays a crucial role in

preparing the body for rapid responses in stressful or threatening

situations, allowing individuals to deal effectively with challenges or

dangers (6). The PSNS arises from the brain stem (midbrain, pons,

and medulla oblongata) and sacral regions of the spinal cord. Its

preganglionic fibers exchange neurons in the parasympathetic

ganglion, from which postganglionic fibers emanate to smooth

muscle, cardiac muscle, and glands (8). The PSNS promotes

relaxation, conserves energy, and facilitates normal bodily

functions such as digesting food, slowing the heart rate, and

promoting rest/recovery (6).

The vagus nerve (cranial nerve X) is a long and complex nerve

that originates in the brainstem (dorsal motor nucleus of the vagus

nerve, nucleus ambiguus, and the solitary nucleus) and extends
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throughout the body (9). It travels down the neck, alongside the

esophagus, and branches out to innervate the heart, lungs, stomach,

liver, pancreas, intestines, and other organs. It is involved in a wide

range of bodily functions (including the regulation of the heart rate,

the control of respiratory muscles, and the stimulation of digestion)

and exerts an influence on gut function/motility (10). The vagus

nerve contains 20% “efferent” (motor) fibers and 80% “afferent”

(sensory) fibers (11). The sensory fibers of the vagus nerve, most of

which are non-myelinated and slow-conducting C-fibers, provide

information/sensation about the state/functioning of, for example,

the heart, lungs, gastrointestinal tract (GIT), and other organs/

structures in the thoracic cavity and abdomen. These sensory

signals can help the brain monitor and regulate body functions

(8). For example, the vagus nerve carries information about physical

changes (e.g., blood pressure changes, stretching of the gut) and

chemical changes (e.g., oxygen levels, secretions of bacteria in the

intestine) in the body, allowing the brain to make appropriate

adjustments and to maintain homeostasis. Furthermore, the vagus

nerve is also connected to various parts of the brain, influencing

emotions and memory (8).
1.2 Crosstalk between PNS and
immune system

The function of the immune system is to recognize and defend the

host against pathogens (e.g., bacteria, viruses, and fungi) and

substances or cells that appear foreign and harmful (12). This system

consists of immune organs (e.g., bone marrow, spleen, lymph nodes,

tonsils, Peyer’s patches, cecum/appendix, thymus), immune cells

(lymphocytes, mononuclear phagocytes, neutrophils, basophils,

eosinophils, mast cells, and platelets), and immune active substances

(e.g., antibodies, lysozymes, complement, immunoglobulin, interferon,

interleukin, tumor necrosis factor (TNF), and other cytokines) (12). It

is divided into innate immunity (non-specific immunity) and adaptive

immunity (specific immunity), of which adaptive immunity is further

divided into humoral immunity and cellular immunity (12–14).

Interestingly, in addition to the immune cells, some other cells (e.g.,

mesenchymal stromal/stem cells, fibroblasts, endothelial cells,

osteoblasts, neurons, and Schwann cells) can exhibit significant

immune functions (e.g., by secreting cytokines/chemokines/growth

factors, promoting inflammation, antigen presentation,

immunosuppression, and antimicrobial effects) under certain

conditions (e.g., infection and inflammation) (15–19).

The nervous system regulates and controls the functions of the

body’s organs and systems. However, instead of being isolated, our

body systems are interconnected and dependent on each other. For

example, the nervous system and immune system can mount a variety

of essential coordinated responses to danger (20–23). Usually, the CNS

influences the immune system in a general fashion by regulating the

systemic concentration of humoral substances (e.g., cortisol and

epinephrine) (24). The psychosocial state of a person can have a

direct impact on his/her immune system. Stimuli such as over-eating,

sleep, stress, and even operant conditioning in which a positive or

negative stimulus is paired with a particular behavioral outcome, can
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influence the immune response significantly (25). For example,

overeating or obesity can lead to reduced immunity, as excessive fat

accumulation and altered metabolic processes associated with obesity

can negatively impact immune system function, potentially increasing

susceptibility to infections and impairing immune responses (26).

Adequate sleep can boost immunity, as it allows the immune system

to function optimally by promoting the production of immune cells

and the release of cytokines that help defend the body against infections

and diseases (27). Stress can potentially weaken innate and adaptive

immunity to infections such as coronavirus disease 2019 (COVID-19),

as chronic stress seems to suppress immune responses, making

individuals more susceptible to infections, including the virus causing

COVID-19 (28, 29).

Another example of neuroimmune interaction is that psychological

stress/depression can worsen asthmatic symptoms (30). In addition,

neuroendocrine hormones such as corticotropin-releasing factor,

leptin, and alpha-melanocyte-stimulating hormone can regulate

cytokine secretion and balance (31). Furthermore, the immune

response can have surprising effects on brain activities, including

body temperature, sleep, and feeding behavior when it detects injury/

damage or infection/inflammation (32). For example, the well-known

feeling of sleepiness and the lack of appetite associated with fever is, in

part, a result of proinflammatory mediators (e.g.,interleukin-1 (IL-1),

tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and

prostaglandins) acting on the hypothalamus (33).

The PNS communicates specifically with the immune system

according to local interactions/conditions (34, 35). For example, the

main immune organs (e.g., bone marrow, thymus, spleen, and lymph

nodes) are supplied with an autonomic efferent (mainly sympathetic)

innervation and afferent sensory innervation, and both classic

(catecholamines and acetylcholine (ACh)) and peptide

neurotransmitters are probably involved in this type of

neuroimmune modulation (36–38). However, despite these above-

mentioned studies that indicate the occurrence of functional

interconnections between the immune and nervous systems, data

available on the mechanisms of this bidirectional crosstalk between

the PNS and immune system are frequently incomplete and not always

focused on their relevance for neuroimmune modulations in

neuroimmunological, infectious, immunological disorders/diseases.

The goal of this review is to explore the “thread” (hardwiring) of the

connections between the immune system (e.g., primary/secondary/

tertiary lymphoid tissues/organs) and PNS (e.g., sensory, SNS, PSNS,

and enteric nervous systems (ENS)) in health and disease in vitro and

in vivo.

2 Neuroimmune interactions in
primary lymphoid organs in health
and diseases

2.1 Neuroimmune interactions
in the thymus

The thymus is a vital primary lymphoid organ responsible for

the differentiation/maturation of bone-marrow-derived T cell

precursors (thymocytes) and their subsequent migration to T-cell-
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(e.g., spleen, lymph node, and mucosa-associated lymphoid tissue

(MALT)). Positive selection occurs in the cortex in which

thymocytes with low reactivity to the major histocompatibility

complex (MHC) are deleted/eliminated, whereas negative

selection takes place in the medulla in which cells that show

reactivity against self-antigens are eliminated. (39). These intricate

selection processes rely on the precise organization and

compartmentalization of parenchymal cells facilitating

interactions and signaling pathways inside the thymus (39). The

thymic microenvironment includes nerves/nerve fibers, which are

believed to regulate T cell development and thymic endocrine

function by influencing the secretion of self-hormones such as

thymulin, thymopoietin, and thymosins (40, 41).

Macroscopically, nerve fibers can be seen to originate from

postganglionic cell bodies (found in the superior cervical and

stellate ganglion of the sympathetic chain) and provide sympathetic

innervation to the human thymus (42). In addition, the thymus is

innervated by acetylcholinesterase (AChE)+ nerve fibers from the

vagus nerves (including the recurrent laryngeal nerves) and phrenic

nerves (43). Microscopically, a variety of experimental approaches

(e.g., histochemical, immunohistochemical, virus/dye tracing) have

revealed thymic sensory, sympathetic, and parasympathetic

innervation systems in several animal species (e.g., mouse, rat,

rabbit, and human) (37, 41, 44–48).

The sympathetic innervation influences the development,

migration, and homing of lymphocytes within the thymus. It

modulates the expression of adhesion molecules (e.g., Thy-1

(CD90)) on thymic epithelial cells (TECs), which facilitate the

interaction and movement of developing T cells (49). This

intricate interplay between sympathetic fibers and thymic cells

helps to orchestrate the maturation processes and the formation

of a diverse and functional T-cell repertoire (50). For example,

chronic stress-induced loss of sympathetic innervation can affect

thymic development and T cell development/maturation (51). The

parasympathetic fibers release ACh, which acts on muscarinic

acetylcholine receptors (mAChRs) present on the immune/non-

immune cells inside the thymus (52). However, the specific roles/

functions of the parasympathetic innervation on thymic

physiology/pathophysiology are not as well understood compared

with those of the sympathetic innervation.

Several neuropeptides (e.g., neuropeptide Y (NPY), vasoactive

intestinal polypeptide (VIP), substance P (SP), and calcitonin gene-

related peptide (CGRP)) have been shown to contribute to the

regulation/modulation of immune processes (e.g., T cell

development and maturation) inside the thymus (41, 50). For

example, SP and CGRP play essential roles in the differentiation,

proliferation, and maturation of thymocytes. CGRP can inhibit the

proliferation of virgin mature T cells inside the thymus (53). In

addition, SP and CGRP might also be involved in the promotion of

T cell apoptosis inside the thymus (53). T cell development and

function are also regulated by other neuropeptides. For example,

VIP can impact three crucial thymocyte functions, namely cytokine

production, migration/mobility, and apoptosis (53, 54).

Previous studies have shown that thymic innervation is mainly

associated with the blood vessels inside the thymus, and only sparse
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nerve fibers are present in the cortex, cortex-medulla junction, and

medulla (37, 41, 44–47). However, our studies have demonstrated,

by means of a general neuronal marker (neurofilament heavy chain

(NF-H)) and the non-myelinating Schwann cellmarker (NMSC)-

glial fibrillary acidic protein (GFAP), that all components of the

thymus including the capsule, cortex, cortex-medulla junction, and

medulla are extensively innervated (46, 55).

Several neuronal/glial cell markers have been utilized to identify

the types of nerve fibers inside the thymus and other lymphoid

tissue/organs (Table 1). Normally, protein gene product 9.5

(PGP9.5), NF-H, bIII tubulin, and microtubule-associated protein

2 (MAP2) are used as general neuronal markers for the

characterization of nerve fibers/nerves/neurons/neuroendocrine

cells inside the lymphoid organs. Tyrosine hydroxylase (TH) and

b2-adrenergic receptor (b2-AR) have been used for the

characterization of sympathetic nerve fibers/nerves/neurons,

whereas choline acetyltransferase (ChAT) and vesicular

acetylcholine transporter (VAChT) have been employed as

markers for the parasympathetic cholinergic fibers inside the

lymphoid organs. In addition, transient receptor potential

vanilloid 1 (TRPV1) and CGRP have been used for the

identification of visceral/somatic sensory nerve fibers inside the

lymphoid tissues and organs. In addition to the neuron and nerve

fibers expressing neurotransmitters/neuropeptides and their

receptors, other cells (including immune cells) or structures

(including reticular tissue, blood/lymphatic vessels) inside the

lymphoid organs might express these markers (Table 2). The

immune cells within the thymus express various receptors for

neurotransmitters/neuropeptides, allowing them to sense and

respond to neuronal signals. For example, thymocytes possess b2-
AR, cholinergic receptors, and other neurotransmitter/

neuropeptide receptors that can influence thymocyte activation,

proliferation, and migration inside the thymus (49, 50).

Numerous studies have demonstrated the direct interaction

between nerve fibers and several types of cells inside the thymus.

For example, T cells, TECs, and mast cells have been revealed to be

closely associated with sympathetic nerve fibers inside the thymus

(49, 87). In addition, Wülfing et al. have shown that the NF-H+

nerve fibers are intimately associated with the antigen-presenting

cells (APCs; demonstrated by major histocompatibility complex II

(MHC II) immunostaining) in the thymus (78). We have observed

the close proximity of nerve fibers to various subsets of thymocytes

(e.g., CD4+, CD8+, and CD4+CD8+), dendritic cells (DCs; e.g.,

B220+, CD4+, CD8+ and F4/80+), macrophages (Mac1+ and F4/

80+), and B cells strongly indicating that this innervation affects

both T cell development and APC antigen-presentation/cytokine

secretion inside the mouse thymus (46).

In another of our studies, we utilized GFAP to characterize the

NMSCs inside the mouse thymus (55). The extensive GFAP

staining in all compartments of thymus indirectly demonstrated

the Group C nerve fibers (sensory/efferent), the postganglionic

sympathetic fibers, some of the preganglionic sympathetic/

parasympathetic fibers, and the motor nerve terminals at

neuromuscular junctions (55). We also observed close “synapse-

like” association of NMSC processes with various subsets of DCs

(e.g., B220+, CD4+, and CD8+), and lymphocytes (B cells, CD4+/
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CD8+ thymocytes) (55). Since the NMSC can function as

professional APCs (88, 89), their interactions with immune cells

indicate their potential immune regulation function inside the

thymus and other primary/secondary lymphoid tissue/organs.
2.2 Neuroimmune interactions in
bone marrow

Bone marrow, a component of bone, not only engages in blood

cell production, but might have functions in immune responses (90,

91). For example, as the major source of immune cells, the bone

marrow is an essential target and actor in infection (92). The bone

marrow microenvironment, also known as the hematopoietic niche,

is a complex network of cells, extracellular matrix, and signaling

molecules that support the development, differentiation, and

maintenance of hematopoietic stem cells (HSCs). It provides a

specialized niche in which stem cells interact with their surrounding

environment for self-renewal and lineage-specific differentiation

(91, 92).

Because of the various locations of bones, their innervation

varies regionally, with the different bones and bone regions/

components exhibiting variations in their nerve density and

distribution (93, 94). For example, for the femur (including its

bone marrow), the innervation is mainly through the femoral nerve,

which consists of somatic sensory/motor nerve fibers and

sympathetic/parasympathetic nerve fibers (70). The complex and

dynamic innervation of the bone marrow plays a crucial role in

regulating hematopoiesis, immune responses (e.g., the homing of

memory T/B cells), and bone metabolism (60, 90, 95–97). Normally,

the bone marrow contains two types of nerve fibers, namely sensory

nerve fibers (4%) and autonomic nerve fibers (96%) (66). Sensory

nerve fibers innervate the bone marrow and transmit various types

of sensory information, including pain, temperature, and pressure

(93). These sensory nerves can detect changes in the

microenvironment of the bone marrow and relay this information

to the CNS. Therefore, sensory innervation is critical for the

detection of potential injury/damage, inflammation, or other

pathological conditions within the bone marrow (66, 96).

Regional autonomic nerves, including sympathetic and

parasympathetic nerves, also innervate the bone marrow. The

autonomic nerves play a crucial role in regulating various

physiological processes of bone marrow (66). For example,

sympathetic nerves release norepinephrine (NE), which can

modulate hematopoiesis by influencing HSC activities (e.g.,

quiescence, proliferation, and mobilization) and the bone marrow

microenvironment (96). Certain conditions, such as aging and

stress, can reduce the number and size of nerve fibers inside the

bone marrow (69). In addition, denervation or a reduction in

sympathetic nerve fibers might lead to a reduction/loss of HSCs

(85). The parasympathetic nerves, on the other hand, might have a

regulatory role in bone metabolism/remodeling through the dual

effects of cholinergic signals on osteoclasts (apoptosis) and

osteoblast function (proliferation and bone formation) (66, 98).

However, their presence inside the bone marrow is still

controversial, and their exact roles remain unclear (96).
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Several markers have been utilized to detect the nerve fiber/

neurons inside bone marrow (Table 1). TH has been used for the

characterization of sympathetic nerve fibers/neurons, whereas ChAT

and VAChT have been utilized for locating parasympathetic

cholinergic fibers inside the bone marrow. According to previous

studies, mixed nerve fibers (myelinated and non-myelinated) enter

the medullary cavity through the nutrient foramen or Haversian canals

(99). After entering the bonemarrow, most nerve fibers accompany the

blood vessels, whereas some do not (67). The nerves of the bone

marrow communicate and interact with immune cells, including

hematopoietic cells, lymphocytes, and myeloid cells. This type of

interaction occurs through a few mechanisms, including the release
Frontiers in Immunology 05
of neurotransmitters/neuropeptides (e.g., SP, CGRP, NPY) from nerve

fibers and the expression of receptors for these signaling molecules on

immune cells (Table 2). These molecules (neurotransmitters/

neuropeptides and their receptors) in HSCs have been shown to

regulate hematopoiesis, immune cell functions/activities, the bone

marrow microenvironment, and bone metabolism (67, 96, 100, 101).

For example, NPY receptors (e.g., Y1, Y2, Y4, and Y5) are highly

expressed in HSCs, and NPY is essential for the mobilization and

proliferation of HSCs inside the bone marrow (102).

The mechanisms of bidirectional crosstalk between the PNS and

bone marrow can be investigated by examining the local

interactions between nerve fibers and other cell populations inside
TABLE 1 Neuronal/glial cell markers used to study the innervation of lymphoid tissues/organs.

Markers (histochemistry,
immunohistochemistry,
or transgenic)

Neuron/nerves/glial cells Lymphoid tissues/organs

Protein gene product (PGP9.5) Pan-neuronal markers
Neuroendocrine cells

Spleen/GALT (36, 56–58)
Thymus (56, 59)
Bone marrow (60)
TLT (in melanoma and pancreatic cancer) (61, 62)

Tyrosine hydroxylase (TH) Sympathetic fibers
Dopaminergic fibers

LN (48, 56, 63, 64)
Thymus (41, 59, 64, 65)
Bone marrow (64, 66–71)
Spleen (56, 64, 72)

Acetyl-
cholinesterase (AChE)

Parasympathetic fibers
Neuromuscular junctions

Thymus (41, 65)

Choline acetyltransferase
(ChAT)

Sympathetic fibers
Dopaminergic nerve fibers

Thymus (52)
Mesenteric LN (73)
GALT/spleen (74)
LN (63)
Bone marrow (66)

Transient receptor potential
vanilloid 1 (TRPV1)

Sensory nerve fibers Inflamed islets of Langerhans
(75)

Anti-b2-AR Sympathetic fibers Immune cells (47, 49)
LN (76)

Calcitonin gene-related peptide
(CGRP)

Sensory fibers from DRG
Motor fibers from anterior horn of spinal cord

Bone marrow/thymus (37)
Bone marrow (67, 69–71)
Spleen (67)
PP (58)

NF-H
Neurofilament heavy chain (NFH);
Neurofilament 200 (NF-200)

Pan-neuronal markers Spleen (77)
LN/PP/thymus/spleen (58, 78–80)
Thymus (46, 59)

Vesicular acetylcholine transporter
(VAChT)

Cholinergic neurons/nerves
Nerve terminals

Bone marrow (66)
Thymus/spleen/LN/PP (56)

b III-Tubulin Pan-neuronal marker LN (63)
Spleen (67)
Bone marrow (67, 69)
TLT in colon (81)

Microtubule-associated protein 2
(MAP2)

Pan-neuronal marker Bone marrow (68)

Glial fibrillary acidic protein
(GFAP)

NMSCs associated with C-nerve fibers (sensory/efferent),
postganglionic sympathetic fibers, some of the preganglionic
sympathetic/parasympathetic fibers, and the motor nerve terminals at
neuromuscular junctions

Thymus (55)
Mesenteric LN (82)
Spleen (83)
PP (80, 84)
Bone marrow (85)
GALT, gut-associated lymphoid tissue; LN, lymph node; PP, Peyer′s patches; TLT, tertiary lymphoid tissue.
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the bone marrow. For example, immunohistochemical and

immuno-electron microscope (EM) studies have shown that the

nerve fibers/endings have close contact with hematopoietic cells and

osteoblasts inside the bone marrow (68). In addition, nerves in the

bone marrow also interact with stromal cells, which include

osteoblasts, osteoclasts, mesenchymal stem cells, and endothelial

cells. These local interactions are crucial for regulating bone

remodeling, hematopoiesis, and the maintenance of the bone

marrow microenvironment (67, 68, 103). These interesting

studies have revealed important elements of anatomical and

physiological bidirectional crosstalk between the nerve fibers and

parenchyma/stromal components of bone marrow.
3 Neuroimmune interactions in
secondary lymphoid tissue/organs

3.1 Neuroimmune interactions in
lymph node

Lymph nodes function as filters for harmful substances/waste

products and meeting points for various immune cells. Their highly

organized structure enables efficient immune responses, helping to

defend the body against pathogens/foreign substances/tumors and to

maintain overall health (104). The regional distribution of lymph

nodes inside the mammalian body results in them receiving regional

innervation. The innervation of lymph nodes is complex and can vary

depending on factors such as the location, size, and function of the
Frontiers in Immunology 06
lymph node. Both the sympathetic and parasympathetic branches

(from the vagus nerve) of the ANS are involved in this innervation

(47, 105). In addition, lymph nodes have a sensory (afferent)

innervation since they are responsible for immune responses

against injury/infection/tumors in specific regions (63). Nociceptors

are specialized nerve endings that detect and transmit signals related

to pain and potential tissue injury/damage. They can regulate the

immune response inside the lymph node through neuropeptides (e.g.,

SP and CGRP) and affect the immune cells/stromal cells expressing

these peptide receptors (Table 2) (105). For example, activation of the

innervation of the lymph node can lead to antigen retention in the

lymph, whereas the blocking of this neuronal activity can restore

antigen flow inside the lymph nodes (106).

Several neuronal/glial markers have been used to identify the

types of nerve fibers inside lymph nodes (Table 1). For example, TH

and anti-b2-AR have been utilized to characterize the sympathetic

nerve fibers/neurons, whereas ChAT and VAChT have been

employed as markers for the parasympathetic cholinergic fibers

inside the lymph node (Table 1). The sympathetic and sensory

innervation of lymph node has been revealed by using these

markers in numerous studies. Nerve fibers have been

demonstrated to enter the lymph node from the hilum, to

accompany the blood vessels, to pass through the medullary

region (with fibers entering the medullary cord and sinus), and to

form subscapular plexuses. From these plexuses, nerve fibers enter

the cortical and paracortical areas (105). However, these studies

have a few limitations. The first is that only sparse neurons/nerve

fibers/nerve endings have been identified in some investigations (44,
TABLE 2 Expression of neurotransmitters/neuropeptides and their receptors in lymphoid tissues and organs.

Markers Location and Functions in PNS Lymphoid tissues/organs

Noradrenaline
(Norepinephrine; NE)

Sympathetic nerve fibers Bone marrow (cells and nerve fibers) (37)
Spleen and LN (lymphocytes and
macrophages) (37)

Muscarinic acetylcholine
receptor

Main end-receptor stimulated by ACh; released from postganglionic fibers GALT (DC and nerve fibers) (36)
Spleen/LN (cells and nerve fibers) (37)

Substance P (SP) Neurotransmitter and a modulator of pain perception; proinflammatory Thymus (pain fibers) (41)
Bone marrow and thymus (thymocytes)
(37)
Spleen and LN (lymphocytes and
macrophages) (37)
Bone marrow (66)
PP (58)

Vasoactive intestinal
polypeptide (VIP)

Neuromodulator and neurotransmitter; anti-inflammatory Thymus (pain fibers) (41)
Bone marrow (37, 66, 68, 86)
PP (58)

Neuropeptide Y (NPY) Neurotransmitter during cellular communication in GABAergic neurons;
proinflammatory

Bone marrow (32, 66),
Thymus (thymocytes) (32)
Spleen (72)

Dopamine Transmitter for movement, memory, pleasurable reward, and motivation Thymus (thymocytes) and
spleen/LN (32)

Acetylcholine
(Ach)

Excitatory neurotransmitter;
primary neurotransmitter for parasympathetic nerve fibers; somatic nervous system
(neuromuscular junction)

Thymus (thymocytes, TECs, and nerve
fibers) (32)
Spleen/LN (T cells and nerve fibers) (32)

Glutamate Excitatory neurotransmitter Bone marrow (68)
DC, dendritic cell; GALT, gut-associated lymphoid tissue; LN, lymph node; PP, Peyer′s patches; TECs, thymic epithelial cells.
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48). Second, even though the major nerves (after entering the lymph

node through hilum) have been shown in some studies, the fine

nerve fibers inside the lymph node have not (56, 63). Third, the

innervation of certain regions (e.g., B cell follicles and their germinal

centers) has not been revealed (105). Fourth, the potential

parasympathetic innervation (56) has not been demonstrated in

some studies (105). Lastly, the close interaction/contact between

nerve fibers/nerves and immune cell/non-immune cells (48) has not

been well documented in some studies (56).

In our previous studies, NF-H and GFAP were utilized to

investigate the innervation of mouse lymph nodes (82). We

demonstrated the presence of extensive nerve fibers in all

compartments (including B cell follicles) of mouse lymph node,

and some nerve fibers had close contacts/associations with blood

vessels (including high endothelial venules (HEVs)) and lymphatic

vessels/sinuses. We also showed the close contacts/associations

between nerve fibers and immune cells (e.g., various subsets of

DCs (e.g., B220+CD11c+, CD4+CD11c+, CD8a+CD11c+, and

Mac1+CD11c+), Mac1+ macrophages, and B/T lymphocytes).

However, one limitation of our study was that we did not identify

the types of nerve fibers inside the lymph node because of the use of

general neuronal markers. This type of nerve-immune interaction

(demonstrated by high-resolution microscopic imaging) inside the

lymph node has however been observed in studies by other

investigators (48, 105, 107). In our studies, we also used GFAP

for the identification of NMSCs inside the lymph node (82). We

observed extensive immunostaining of NMSCs in all compartments

of mouse lymph node. In addition, we found NMSC processes

interacting with various subsets of DCs (e.g., CD4+CD11c+,

CD8+CD11c+ DCs), macrophages (F4/80+ and CD11b+

macrophages), and lymphocytes (82). Since Schwann cells can

express major histocompatibility complex II (MHCII) and act as

APCs under pathological conditions, their interactions with T cells

(e.g., T helper cells) or other immune cells (e.g., macrophage and

DC) might lead to T cell/macrophage/DC activation and cytokine

release (89, 108).

In addition to light microscopy, EM has been utilized to study

nerve-immune cell interactions. For example, nerve fibers have

been observed lying in close contact with plasma cells inside the

axillary lymph nodes (109, 110). This type of interaction

demonstrated by ultrastructural analysis has provided powerful

evidence/confirmation for nerve-immune cell interactions inside

the lymph node and other lymphoid tissues/organs.
3.2 Neuroimmune interactions in
the spleen

The spleen is the largest secondary lymphoid organ responsible

for the filtration/storage of blood and the immune response against

bacterial/viral infection (111). It is enclosed in a capsule of fibrous

and elastic tissue that extends into the parenchyma as trabeculae. It

is separated into the blood-containing red pulp (primarily for

innate immunity) and the lymphoid-cell-containing white pulp

(primarily for adaptive immunity) by an interface, namely the

marginal zone (part of the white pulp) (111).
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Splenic sympathetic innervation arises from the celiac plexus,

the left celiac ganglion, whereas parasympathetic innervation comes

from the vagus nerve (112). The sympathetic nerves enter the spleen

together with blood vessels inside the trabeculae, whereas the

parasympathetic nerve fibers can reach the spleen via both of its

tips (83, 113). However, the presence of sensory nerve fibers inside

the spleen remains controversial (112, 114).

Several neuronal/glial markers have been utilized to identify the

types of nerves/nerve fibers inside the spleen (Table 1). For example,

TH has been used for the characterization of sympathetic nerve

fibers/neurons, whereas ChAT and VAChT have been employed for

parasympathetic cholinergic fibers inside the spleen (Table 1). The

peripheral innervation of spleen has been revealed by means of

these markers in several studies. The splenic nerves have been

shown to enter the spleen at the splenic hilum along the splenic

artery, to travel in the plexuses together with the vasculature, to

continue into the spleen in the trabeculae with the trabecular plexi,

and to extend into the white pulp (including the splenic nodules,

marginal zones, and periarteriolar lymphoid sheaths (PALS)) (77,

112). However, a few limitations to the above studies should be

mentioned. The first is that, in some investigations, only sparse

neurons/nerve fibers/nerve endings have been identified in the

spleen (59, 72). Second, even though the major nerves (after

entering the spleen through hilum) have been shown, some

studies have not identified fine nerve fibers inside the spleen (64).

Third, the innervation of certain regions (e.g., B cell follicles and

their Germinal centers) has often not been established (64). Fourth,

the potential parasympathetic innervation (64, 73) has not been

shown in some of the studies. Lastly, the local close contact/

interactions between nerve fibers and immune cell/non-immune

cells have sometimes not been well documented (78, 79).

In our previous studies, we used NF-H and GFAP to investigate

murine splenic innervation (77, 83). We demonstrated the presence

of extensive nerve fibers in all splenic compartments (including the

splenic nodules, PALS, marginal zones, trabeculae, and red pulp)

and close associations between these nerve fibers with blood vessels

(including central arteries, marginal sinuses, penicillar arterioles,

and splenic sinuses) (77). In addition, we observed close

associations between nerve fibers and various subsets of DCs

(CD11c+), macrophages (Mac1+ and F4/80+), and lymphocytes (B

cells, T helper cells, and cytotoxic T cells) (77). However, one

limitation of our study was that, by using NF-H as a general

neuronal marker, we did not identify the types of nerve fibers

inside the spleen. This type of nerve-immune interaction

(demonstrated by high-resolution microscopic imaging) inside the

spleen has been observed in some studies by other investigators (72,

114–116). For example, Kirkland et al. have shown the close

association of TH+ sympathetic fibers with CD3+ T cells in the

human and porcine spleen (72). In addition, Murray et al. have also

demonstrated close associations between TH+ (sympathetic)/

ChAT+ (parasympathetic) nerve fibers with CD3+ T cells in the

murine spleen (73).

These above-mentioned studies concerning splenic innervation

and nerve-immune cell communication enrich our knowledge of

the effects of the PNS on the cellular- and humoral-mediated

immune responses in healthy and infectious/non-infectious
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conditions. For example, vagus nerve stimulation (anterograde

efferent fiber stimulation and anterograde afferent fiber

stimulation) seems to activate neuroimmune circuits (e.g., C1

neurons (in the brain stem)- SNS-splenic nerve-spleen-kidney

axis for anterograde afferent fiber stimulation) inside the spleen

and protect mice from kidney from ischemia-reperfusion injury

(117). On the contrary, infection/inflammatory conditions might

also affect splenic innervation. For example, sepsis can lead to the

loss of noradrenergic (sympathetic) nerves inside the human spleen

possibly because of altered immune responses (e.g., increased

inflammatory cytokines, immunosuppression, or reduction of

nerve growth factor (NGF) from immune cells) (115). In

addition, Kelley et al. have shown that murine acquired

immunodeficiency syndrome (AIDS) can lead to splenic

sympathetic nerve destruction (118).
3.3 Neuroimmune interactions in GALT

MALT refers to a component of the immune system found in

various mucosal surfaces throughout the body (119). Specific

MALT structures include the tonsils, adenoids, Peyer’s patches in

the small intestine, and lymphoid follicles/tissues in the respiratory/

urogenital mucosa. The primary function of MALT tissue is to

protect mucosal surfaces from invading pathogens/foreign

substances and to trigger immune responses against them (119).

Another function of MALT is immune tolerance at various mucosal

surfaces (120). GALT is a specific MALT component located in

GIT. It includes structures such as Peyer’s patches, scattered

immune cells, diffuse lymphoid tissues, and aggregated lymphoid

tissues (e.g., in the cecum, colon, and appendix) (121, 122). It plays a

vital role in immune surveillance/tolerance, in defense against

pathogens, and in maintaining gut homeostasis (122).

The neural regulation of GIT function relies on a delicate balance

of intrinsic and extrinsic nervous divisions (123). The ENS, which

forms the intrinsic division of the GIT nervous system, consists of

intrinsic primary afferent neurons, interneurons, and motor neurons

located within the myenteric plexus (Auerbach’s plexus) and the

submucosal plexus (Meissner’s plexus) (124). It might operate

independently of the brain/spinal cord but relies on innervation from

the extrinsic nervous division, which consists of nerve branches from

the vagus nerve (containing visceral sensory and parasympathetic

fibers), the sympathetic trunk/ganglion, and the dorsal root ganglion

(DRG; containing visceral sensory neurons) (124).

The GIT nervous system communicates bidirectionally with the

immune system through various mechanisms (125, 126). It can

release neuropeptides/neurotransmitters/cytokines that modulate

immune cell function, such as promoting the release of

proinflammatory cytokines or suppressing immune responses

(127–129). For example, in GIT, VIP has been shown to

modulate the recruitment of intestinal group 3 innate lymphoid

cells (through VIP receptor (VPAC)) and the formation of

postnatal intestinal lymphoid tissues, thereby providing

protection against enteric pathogens (independent of the gut

microbiota or adaptive immunity) (130). The CGRP-containing

afferent nerve fibers (capsaicin-sensitive) can have protective anti-
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inflammatory effects and reduce mucosal damage through

neuropeptides (primarily CGRP) released from their peripheral

endings (127).

Immune cells in GALT can also produce cytokines/

neurotransmitters and other signaling molecules that can

influence ENS activity (131, 132). For example, enteric neurons

can trigger the activation/degranulation of mast cells through

neuropeptides (e.g., VIP)/hormones, and vice versa, mast cells can

affect the function of enteric neurons through neurotransmitters

(e.g., serotonin and histamine)/tryptase (132). Alterations in ENS

function and neurotransmitter signaling have been observed in

patients with inflammatory bowel disease (IBD) and inflammatory

bowel syndrome (IBS). Manipulation of the GIT nervous system

(e.g., vagus stimulation) can be utilized for certain diseases such as

IBD (131, 133, 134). However, vagus stimulation may also lead to

severe complications such as gastric ulcers, since an increased vagal

parasympathetic tone has been associated with peptic ulcer

formation (135).

The sympathetic nerve fibers have close associations with

immune/non-immune cells inside the GALT (e.g., isolated/

aggregated lymphoid follicles and Peyer’s patches), whereas the

parasympathetic nerve fibers (from the vagus and sacral spinal

nerves S2-S4) extensively innervate the gut wall (up to the

myenteric plexus) (123, 131).

Various neuronal markers have been utilized to identify the

types of nerve fibers inside the GALT (Table 1). For example, TH

has been used to characterize the sympathetic nerve fibers/neurons,

whereas ChAT and VAChT have been employed for

parasympathetic cholinergic fibers inside the GALT (Table 1).

These markers have revealed the ANS innervation of GALT in

numerous studies. We utilized PGP9.5, GFAP, and NF-H to study

the GALT innervation (36, 84). For example, in the villus of mouse

small intestine, we observed close contacts between PGP9.5+ nerve

fibers/neurons and immune cells (e.g., B/T cells and DCs) (36). In

the Peyer′s patches, we found close associations between NMSC

processes (demonstrated by GFAP staining) with B cells by using

immunostaining and three-dimensional (3D) confocal microscopy

(36). Compared with another study showing only sparse nerve

fibers (57), we demonstrated an extensive meshwork of NF-H+

presumptive nerve fibers in all compartments of the Peyer′s patches
(e.g., lymphoid nodules, interfollicular regions, follicle-associated

epithelium, and subepithelial dome) and close associations between

some nerve fibers with the blood vessels including HEVs, indicating

the neural regulation of blood flow and immune cell dynamics

inside the Peyer′s patches. In addition, we also observed close

contacts between nerve fibers/endings and B/T cells and various

subsets of DCs (e.g., B220-, B220+, CD4-, CD4+, CD8-, and CD8+).

However, one limitation of our study was that, by using NF-H as a

general neuronal marker, we did not identify the types of nerves/

nerve fibers inside the GALT. This type of nerve fiber/immune cell

contact has been also reported in some other studies. For example,

Vulchanova et al. have shown the close associations of SP+ nerve

fibers and T cell (CD3+)/plasma cells (IgA+)/APC (MHCII+) inside

porcine villus (58).

In addition to light microscopy, EM has been utilized in the

study of nerve-immune cell interactions inside the GALT. For
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example, somatostatin-positive nerve fibers/terminals have been

shown to lie in close contact with lymphocytes/plasma cells inside

the Peyer′s patches of the cat (136). The synaptic cleft is about 20-
220 nm, which is similar to clefts of classical synapses (136).

Of note, this type of close contact between nerve fibers and the

immune cells in Peyer′s patches and other secondary lymphoid

tissues/organs is a potential route for prion transmission. Since B/T

lymphocytes, DCs, natural killer T cells, and macrophages might

contain/transport prions, this type of nerve-immune cell contact/

association might be responsible for prion transmission (through

membrane-membrane contact or via exosomes) from lymphoid

tissues to distal PNS/CNS (80, 137, 138).
4 Neuroimmune interactions in
tertiary lymphoid tissue

4.1 Tertiary lymphoid tissue

Tertiary lymphoid tissues (TLTs) are organized lymphoid

structures (resembling secondary lymphoid tissue/organs) that

develop at sites of chronic inflammation or infection outside of

the traditional lymphoid tissues/organs (e.g., lymph nodes and

spleen) (139, 140). TLTs often form in perivascular areas in

response to disturbed tissue homeostasis in various tissues/organs,

including the lungs, liver, brain, salivary glands, and GIT. Since the

unencapsulated structure of TLTs allows direct exposure to diverse

factors/cells from an inflamed environment, they can promote

adaptive immunity under certain pathological conditions (140).

TLTs in tumor tissues share similarities with secondary

lymphoid tissues/organs, such as lymph nodes, in terms of their

organization and cellular composition (141, 142). They can contain

B/T cells, DCs, plasma cells, macrophages, and other immune cells,

together with specialized stromal cells/connective tissues that

support their structure (143). TLTs in tumor tissues can exhibit

features such as lymphoid follicle-like structures with distinct B/T

cell zones, germinal center-like structures, and HEVs (144). The

presence of intertumoral TLTs is believed to reflect ongoing

immune responses against the tumor. For example, TLTs can

serve as sites for immune cell activation, antigen presentation,

and lymphocyte trafficking. In addition, TLTs within tumors have

been associated with favorable clinical outcomes of certain cancers,

indicating a potential role in anti-tumor immunity/therapy (143,

145, 146). However, the exact impact of TLTs on tumor

progression/metastasis and patient prognosis can vary depending

on the tumor type and context.

TLTs are also sometimes present at sites of chronic inflammation

in autoimmune diseases such as systemic lupus erythematosus (SLE)

and rheumatoid arthritis. These organized accumulations of B/T cells

and other cells (e.g., DCs, plasma cells, andmacrophages) can resemble

secondary lymphoid tissue and produce autoreactive effector T cells

against self-antigens inside the human body (140, 144).
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4.2 Innervation of TLTs

Although lymphoid organs, such as lymph nodes, are known to

receive extensive innervation, the innervation of TLTs is less well-

characterized. However, studies have indicated that TLTs can have

neural components, including neurons/nerve/nerve fibers,

suggesting a potential role of innervation in TLT functions at

various locations of chronic inflammation or tumors (61, 62, 81).

The TLT innervation might serve several functions. Neural

components within TLTs can modulate immune responses by

interacting with immune cells and influencing their activities.

Neuropeptides (e.g., VIP and SP) and neurotransmitters (e.g.,

ACh) released by nerve fibers in TLTs are capable of impacting

the recruitment, activation, and migration of immune cells (e.g., B

cells, T helper cells, cytotoxic T cells, and macrophages), thereby

affecting the overall immune response (e.g., chronic inflammation,

autoimmunity, anti-tumor immune responses) within these

structures (61, 81, 147, 148). In addition, neural signals from the

ANS can influence TLT development and maintenance (81). For

example, sympathetic and parasympathetic nerves release

neurotransmitters (e.g., epinephrine, ACh, serotonin, and gamma-

aminobutyric acid (GABA))/neuropeptides (e.g., NPY, VIP, and

SP) that affect the local environment and cellular interactions,

potentially promoting the formation and organization of TLTs

(61, 81, 149). Furthermore, sensory neurons/nerve fibers in TLTs

can also affect their immune responses. For example, elimination of

TRPV1+ sensory neurons (by using capsaicin, an active component

of chili peppers) prevents insulitis and diabetes in diabetes-prone

non-obese diabetic (NOD) mice. Therefore, TRPV1+ sensory

neurons might control b cell stress and islet inflammation in

mouse experimental autoimmune diabetes (75). The depletion of

TRPV1+ sensory nerves (pain fibers) by using resiniferatoxin can

hinder the formation of TLTs and impede the development of

effective protective immune responses against murine

melanoma (61).

Neurotransmitters/neuropeptides such as ACh, GABA,

serotonin (5-HT), NE, NPY, and neurotensin, which can be

produced by tumor cells and immune cells inside the TLT, might

affect cancer progression/metastasis through multiple signaling

pathways (149, 150). Neurotransmitters/neuropeptides and

cytokines/chemokines that regulate tumor cell migration might

provide an effective pharmacological approach for inhibiting

cancer invasion/metastasis (151–153).

Notably, the extent of TLT innervation might vary depending

on the tissue and the specific context of inflammation/infection. For

example, by using confocal microscopy and 3D reconstruction,

Veres et al. have shown the close contact of sensory nerve fibers

with T cell/DCs in allergic airway inflammation (154). By means of

EM, the authors also showed close associations between the DCs

and nerve fibers (axons) inside the inflamed airways, providing

robust evidence for nerve-immune cell contact/interaction

(154, 155).
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5 Mechanisms of neuroimmune
interactions in lymphoid tissues

5.1 Neuroimmune cell units

A neurological synapse is a specialized junction that allows

communication between neurons or between a neuron and a target

cell (e.g., smooth/cardiac/skeletal muscle cell, adipose cell, glandular

cell, endocrine cell) (156). It is the fundamental unit of information

transfer in the nervous system. Although many types of synapses

have been described within the brain, they can be divided into two

general classes: electrical synapses and chemical synapses (157). At

the synapse, electrical signals known as action potentials trigger the

release of chemical neurotransmitters from the presynaptic neuron

(158). These neurotransmitters then bind to receptors on the

postsynaptic cell, transmitting the signal and enabling the relay of

information. Synapses are dynamic structures that can be modified

through processes such as synaptic plasticity and play a crucial role

in learning, memory, and overall brain functions (159, 160).

The immunological synapse is a specialized junction between an

immune cell and its target, such as an APC (161–165). It consists of

a central supramolecular activation cluster and a peripheral

supramolecular activation cluster (166). At the immunological

synapse, immune cell receptors, such as the T cell receptor

(TCR), interact with antigens presented by the target cell through

MHC, leading to immune cell activation and signaling (165). The

synapse enables the precise spatial and temporal control of immune

responses, regulating immune cell activation, cytokine release, and

cytotoxicity. An understanding of the immunological synapse

provides insights into immune cell function, immune regulation,

and potential therapeutic strategies (161–165).

Despite acknowledgement of the crosstalk/interaction between

the immune system and PNS during the past few decades, only

some recent studies have begun to reveal the anatomical/

morphological and molecular/physiological basis of this type of

local interaction (167). Although local contacts/associations

between nerve fiber/neurons and immune cells (or other non-

immune cells with certain immunological functions) (36, 167,

168) have several similar features to both the neurological

synapse and the immunological synapse, we still cannot call them

“neuroimmune synapses”, at this stage because of limited evidence

and functional studies.

In previous studies, three types of contact between nerve fibers

and immune cells have been documented in lymphoid tissue/organs

(36, 46, 48, 77, 84). The first is the nerve-immune cell contact (36,

154). The second is the neuron (soma)-immune cell (e.g., DCs)

membrane-membrane contact (36). The third is the contact

between the immune cells and fine nerve fibers/nerve terminal

(endings) (36, 46, 48).

The nerve fibers in the peripheral tissue/organs (including the

lymphoid tissue/organs) are relatively static, whereas the immune

cells are flexible and mobile. Therefore, this type of close nerve-

immune cell association/contact should be dynamic under

physiological and pathological conditions (154, 155, 168). Further

studies need to be performed to elucidate this type of local

interaction/contact between the PNS and immune cells. First, this
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type of interaction should be studied further by using high-

resolution microscopic imaging and 3D reconstruction. In this

case, immunostaining by using whole-mount tissue/organs (or

thick tissue sections) coupled with tissue-clearing techniques can

be used (46, 169–173). After the immunostaining step, optic

sectioning and 3D projection/reconstruction might reveal

neuroimmune interactions in situ, thereby excluding the

possibility of the “random colocalization” of nerve fibers and

immune cells (173) and establishing that two structures have

actual close contact (not attributable to their merely lying near

each other or to the viewpoint/resolution limit of the light

microscopy). Second, live cell/tissue/organ/animal imaging (174,

175) should be used to study this type of dynamic interaction

between nerve fibers and immune cells. Third, this type of contact

needs to be confirmed further in tissue sections/co-culture of

neurons/glial cell and immune cells by using EM and immuno-

EM as described in a few previous studies (175, 176). Once enough

anatomical/morphological evidence of nerve-immune cell

interaction has been obtained, further molecular/physiological/

functional studies should be conducted to reveal the molecular

mechanism of this type of local neuroimmune interaction (20,

177–179).

Neuroimmune cell units, also known as neuroimmune

complexes, is the term used to refer to localized cellular

interactions between neurons/nerves and immune cells within the

nervous system. These units represent specialized structures

whereby immune cells and neurons/nerves/nerve fibers/nerve

endings (terminals) come into close contact allowing direct

communication and coordination between the two systems (20).

Neuroimmune cell units typically involve specific immune cells

(e.g., microglia, B/T cells, mast cells, DCs, macrophages) interacting

with neurons/nerves and other glial cells. These interactions,

occurring through the formation of physical contacts or synapse-

like connections (36, 175, 180), involve the exchange of signaling

molecules, including cytokines, chemokines, neurotransmitters, and

other immune modulators. Neuroimmune cell units are thought to

play a significant role in regulating neuroinflammatory responses,

modulating neuroimmune signaling, and influencing disease

progression in various neurological/neurological disorders and

cancers. An active area of research in neuroimmunology in recent

years has aimed at elucidating the formation, dynamics, and

functional consequences of these units (167).

Several mechanisms might be involved in the formation and

functions of the neuroimmune cell units. First, neurotransmitters/

neuropeptides (e.g., NE, ACh, SP, and VIP) from the neuron/nerve

fibers/glial cells of PNS canmodulate immune cell functions by binding

to specific receptors on immune cells (Figure 1A) (20, 181). Immune

cells (e.g., monocytes, macrophages, DCs, and T/B cells) and non-

immune cells (e.g., endothelial cells) often express receptors such as

muscarinic/nicotinic AChRs and a-/b-AR receptors (36, 182).

Activating these receptors by neurotransmitters/neuropeptides can

influence immune cell functions, cytokine production, and

inflammatory processes, contributing to the neuroimmune crosstalk

observed in various physiological and pathological conditions.

The a7 nicotinic acetylcholine receptor (a7nAChR) on

macrophages and other immune cells has been reported to
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mediate the cholinergic anti-inflammatory effects of the vagus nerve

(183). Activation of a7nAChR by ACh can promote the

phosphorylation and activation of Janus kinase 2 (JAK2), which

then promotes the phosphorylation and nuclear entry of signal

transducers and activators of transcription 3 (STAT3), reducing the

expression of proinflammatory cytokines (184). In addition,

activation of a7nAChR can also inhibit the degradation of

nuclear factor of kappa light polypeptide gene enhancer in B-cells

inhibitor, alpha (IkBa) and translocation of nuclear factor

kappa B (NF-kB), therefore also reducing the expression of

proinflammatory cytokines (184).

NE, a transmitter released predominantly from the ends of

sympathetic nerve fibers, can bind to two families of AR (alpha-

(aAR) and beta-AR (bAR)) expressed on immune cells and affect

immune responses under various conditions (185). For example,

NE might induce anti-programmed cell death protein 1 (PD-1)

monoclonal antibody resistance in lung adenocarcinoma via the

inhibition of CD8+ T-cell infiltration and function. Activation of

ARs in secondary lymphoid organs might cause the inhibition of

interleukin-2 (IL-2) and then the inhibition of lymphocyte

proliferation in adjuvant-induced arthritis (186). Moreover, once

b2 AR is activated in Th0/Th1 cells, the increased cyclic adenosine

monophosphate (cAMP) level can inhibit the production

of interferon-gamma (IFN-g) and promote the production

of interleukin 4 (IL-4) production in Th2 cells, therefore

promoting the humoral immunity and inhibiting cell-mediated

immunity (187).

SP is produced in a subset of DRG neurons and, upon noxious

stimulation, is released from peripheral and central (spinal)

terminals (188). SP can regulate the activation and function (e.g.,

phagocytosis and cytokine secretion) and promote the cell survival/

viability of some innate immune cells (e.g., natural killer cells, DCs,

macrophages, neutrophils, mast cells, and eosinophils) (189). For

example, SP/neurokinin 1 receptor (NK1R) signaling seems to

activate two proinflammatory signaling pathways (protein kinase

C (PKC) and phosphoinositide 3-kinases (PI3Ks)/protein kinase B

(PKB)), leading to extracellular signal-regulated kinase 1/2 (ERK1/

2)/NF-kB activation and cytokines/chemokine production in

mouse macrophages (190). In addition, SP can stimulate mast

cells to release proinflammatory factors such as C-C motif

chemokine ligand 2 (CCL2), C-C motif chemokine ligand 3

(CCL3), C-C motif chemokine ligand 4 (CCL4), granulocyte-

macrophage colony-stimulating factor (GM-CSF), interleukin 8

(IL-8), and TNF-a (188).

Second, neurotransmitters/neuropeptides (e.g., NE, ACh, SP,

and VIP) from immune cells (182) can modulate PNS function by

binding to specific receptors on neuron/nerve fibers and glial cells in

PNS (Figure 1A) (180). These neurotransmitters/neuropeptides

produced by immune cells might act through the paracrine

pathway leading to nerve fiber/neurons/glial cells in PNS (or

through an autocrine pathway to the immune cells themselves).

Third, cytokines/chemokines from the neuron/nerve fibers and

glial cells of PNS (191, 192) can modulate immune cell function by

binding to specific cytokine receptors on immune cells (Figure 1B)

(20). For example, although enteric ganglion cells (EGCs) are non-

immune cells, they directly sense invading pathogens via specific
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Toll-like receptors (TLRs) and release proinflammatory cytokines

such as interleukin-1b (IL-1b) and IL-6 (123, 193). Rothan et al.

have shown that primary neurons from human angiotensin-

converting enzyme 2 (ACE2)-expressing mice produce cytokines

(e.g., interferon-a (IFN-a), C-X-C motif chemokine ligand 10

(CXCL10), CCL2, IL-6, and TNF-a) after infection with severe

acute respiratory syndrome coronavirus 2 (SARS−CoV−2) (194).

Lastly, cytokines/chemokines from the immune cells can

modulate PNS function by binding specific receptors on neuron/

nerve fibers and glial cells in PNS (Figure 1B) (182, 195). For

example, sensory neurons (including nociceptors) can express

receptors for cytokines, lipids, and growth factors (182, 196).

Cytokines (e.g., TNF, IL-1b, IL-6, interleukin-17 (IL-17)) from

macrophages, mast cells, and other immune cells interact with

sensory neurons through these cytokine receptors during infection/

inflammation, allergy, and tissue damage/injuries. In addition,

bacteria such as Staphylococcus aureus can activate nociceptor

sensory neurons that modulate pain and inflammation in the

host (197).

Another possible interaction between the nerve fibers and

immune cells might occur through cell surface (insoluble) ligand-

receptor pairs (36). Ligand-receptor pairs (Figure 2) are molecular

interactions that take place between a specific signaling molecule

called a ligand and a corresponding receptor protein. These

interactions play a crucial role in cellular communication and

signal transduction, allowing cells to respond to various stimuli

(198). For example, programmed death-ligand 1 (PD-L1) on tumor

cells can bind with PD-1 on T cells to reduce the proliferation of

PD-1 positive cells (e.g., CD8+ cytotoxic T cells), inhibit their

cytokine secretion, and induce apoptosis (199). Therefore, the

PD-1/PD-L1 pathway represents an effective therapeutical target

for immunotherapy of some cancers (199). Since most

neuroimmune interaction occurs at discrete anatomical locations

in which neurons and immune cells colocalize, the ligand-receptor

interaction is crucial for the formation and maintenance of this type

of cell-cell contact. For example, tumor-associated nerves can

express PD-L1, and its level has been correlated with tumor-

associated lymphocytes (e.g., CD8+ cytotoxic T cells) that might

express PD-1 (200). Therefore, interaction through PD-1/PD-L1 or

other cell surface ligand-receptor pairs might be a mechanism

through which nerves and immune cells interact. However,

further studies need to be carried out to confirm this type of

interaction and to search for surface ligand-receptor pairs

responsible for this neuroimmune interaction.
5.2 Neuroimmune crosstalk through
extracellular vesicles

Extracellular vesicles (EVs) are lipid bilayer-delimited particles

released by some cells into the extracellular space. They play

essential roles in intercellular communication by transferring

various molecules/substances between cells, including proteins,

lipids, nucleic acids (RNA and DNA), and other bioactive

molecules (201). Three main types of extracellular vesicles are

known: exosomes, microvesicles (microparticles or ectosomes),
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and apoptotic bodies. These vesicles differ in their biogenesis, size,

and cellular origins (201). EVs have been implicated in immune

responses, tissue regeneration, cancer progression, and neurological

disorders. Researchers are also exploring the potential of these

vesicles as diagnostic biomarkers and therapeutic delivery vehicles
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because of their ability to traverse biological barriers and target

specific cells (202).

Neuron-derived exosomes (NDEs) are probably released from

damaged neurons/nerves/axons, as living cells are generally

required for exosome production (203). NDEs can contain a
A

B

FIGURE 1

Bidirectional crosstalk between the nerves and immune cells through the neuroimmune cell units. (A) Neurotransmitters/neuropeptides (e.g., NE,
ACh, and SP) from the neuron/nerve fibers/glial cells of PNS can modulate immune cell functions by binding to specific receptors on immune cells.
In addition, neurotransmitters/neuropeptides produced by immune cells can also modulate the PNS function by binding to specific receptors on
neuron/nerve fibers/glial cells in PNS. AChR: acetylcholine receptor; AR: adrenergic receptor (for NE); NK1R: neurokinin 1 receptor (for SP).
(B) Cytokines/chemokines from the immune cells can modulate PNS function by binding specific receptors on neuron/nerve fibers and glial cells in
PNS. In addition, cytokines/chemokines produced by the neuron/nerve fibers and glial cells of PNS can also modulate immune cell function by
binding to specific cytokine receptors on immune cells. Some immune cells can secrete brain-derived neurotrophic factor (BDNF) that can regulate
the activity of nerve fibers by binding with its receptor Tropomyosin receptor kinase B (TrkB). Please note that the space (cleft) between the nerve
terminals and immune cells is exaggerated for better presentation. TGF-bR1, transforming growth factor beta receptor 1; IFNAR, interferon-alpha/
beta receptor alpha chain; IL-1R1, IL-1 receptor, type 1; TNFR1, tumor necrosis factor receptor 1. The images were created by BioRender.
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variety of cargos, including proteins, lipids, RNA/microRNAs, and

viruses, which can be transferred to recipient cells and influence

their subsequent functions (204). By using a murine primary

cortical neuron culture model, Zhou et al. have shown that Zika

virus can be transmitted between neurons via NDEs (204). These

exosomes might play a role in the propagation of signals between

neurons, synaptic plasticity, and the regulation of neuronal

development/function (203, 205, 206). NDE-mediated

intercellular signaling might also contribute to a number of

neurodegenerative diseases such as Alzheimer ’s disease,

Parkinson’s disease, and multiple sclerosis (206).

Immune cell exosomes (IEEs; immune cell-derived extracellular

vesicles) released by various types of immune cells are crucial in

immune regulation and intercellular communication within the

immune system and beyond (207). They carry a diverse cargo of

molecules that can modulate immune responses and influence the

behavior of recipient cells. The different immune cell types,

including DCs, macrophages, B cells, and T cells, release

exosomes with distinct compositions and functions. IEEs can

contain various bioactive molecules, such as proteins, lipids,

cytokines/chemokines, and nucleic acids (207). These molecules

can be transferred to target cells, such as other immune cells or non-

immune cells (e.g., neuron and glial cells), to regulate immune

responses or convey specific signals (Figure 2). For example, after

forming immunological synapse with DCs, T cell-derived exosomes

can promote antiviral responses of DCs (208). The study of IEEs has

shown promise in various areas, including immunotherapy, vaccine

development, and the treatment of certain autoimmune diseases

(207, 209). For example, DC-derived exosomes can activate innate

and adaptive immunity and therefore might have use as a

vaccine with several advantages (e.g., good immunogenicity,

delivery efficiency, application in the immunosuppressive

environment) (210).

Recent studies have demonstrated that EVs have essential roles

in neuroimmune crosstalk because of their ability to facilitate local

and remote communication between cells and tissues (Figure 2)

(211, 212). Observation of exosomes from nerves or immune cells at

local contact points (e.g., by using EM or high-resolution light

microscopic imaging) might be useful to confirm/understand the

mechanism for this neuroimmune interaction. However, exosomes

from projections/fragments of immune cell/nerve fibers might be

difficult to discern in ultrathin sections by EM. If this is the case,

exosome markers might prove useful for characterizing the

exosomes from nerves and immune cells (213). Although some

evidence exists for neuroimmune interactions through EVs, further

studies should be performed to investigate the mechanisms of this

interaction and to develop potential therapeutical approaches for

the treatment of certain neurological/neuroimmunological and

immunological/infectious diseases (214).
5.3 Anti-inflammatory reflex

The inflammatory reflex is a mechanism by which the sensory

(afferent) signaling pathway is related to efferent-mediated output

to regulate proinflammatory cytokine production and immune
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responses (215). The anti-inflammatory reflex (216) is a

physiological mechanism that helps regulate and control/reduce

the inflammation/immune responses in the human body. It

involves neural pathways and signaling that actively suppress the

production and release of proinflammatory molecules, thereby

reducing inflammation (217). The primary pathway associated

with the anti-inflammatory reflex is the cholinergic anti-

inflammatory pathway, in which the vagus nerve is involved

(216). The cholinergic anti-inflammatory pathway, namely the

efferent or motor arm of the inflammatory reflex, might regulate

innate immune responses against injury, pathogens, and tissue

ischemia (218).

When injury/inflammation occurs, immune cells release

proinflammatory molecules such as cytokines. These cytokines

activate sensory nerve fibers that transmit signals to the brain via

the vagus nerve. In response, the brain sends signals back through

the vagus nerve to dampen the immune response and to reduce

inflammation (219). Interestingly, activation/manipulation of the

cholinergic anti-inflammatory pathway might be a novel

therapeutic strategy against COVID-19 (220). When the anti-

inflammatory pathway is activated, nerve terminals release ACh,
FIGURE 2

Neuroimmune crosstalk through extracellular vesicles and ligand-
receptor pairs. NDEs can influence the function of immune cells
(e.g., DCs) locally (neuroimmune cell units) and remotely. IEEs can
also affect the function of nerve fibers/neurons locally
(neuroimmune cell units) and remotely. The neuroimmune cell units
can function as a potential route for prion transmission. The
interaction of nerve and immune cells can also be through ligand-
receptor pairs (e.g., PD-L1 and PD-1). Please note that the space
(cleft) between the nerve terminals and immune cells is exaggerated
for better presentation. The image was created by BioRender.
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which binds to ACRs on immune cells (primarily macrophages and

T cells). The ACh pathways can then inhibit the production and

release of proinflammatory cytokines, such as TNF-a and IL-1b,
thereby exerting an anti-inflammatory effect. In our previous study,

we have observed the expression of ACRs on DCs in mouse Peyer′s
patches (36). The anti-inflammatory reflex is an essential

mechanism for maintaining immune homeostasis and preventing

excessive or prolonged inflammation. Dysregulation of this reflex

has been implicated in various inflammatory diseases, such as

sepsis, rheumatoid arthritis, and IBD (221–223).

Whereas some neuropeptides (e.g., NPY and SP) have

proinflammatory effects, other neuropeptides (e.g., VIP, galanin,

and opioid peptides) might be involved in the anti-inflammatory

reflex (224–226). For example, in innate immunity, VIP seems to

inhibit the production of inflammatory cytokines/chemokines from

DCs, macrophages, and microglia (227). In adaptive immune

response, VIP might reduce the proinflammatory Th1 and Th17

responses (228). In addition, opioid peptides released by immune

cells can activate opioid receptors located on sensory nerve endings

and therefore effectively reduce inflammatory pain (229).
5.4 Neuroimmune interactions as potential
therapeutical targets

The modulation of neuroimmune interactions might lead to

innovative interventions that modify disease progression or

alleviate symptoms. The targeting of neuroimmune pathways

offers a multifaceted approach for addressing complex conditions

by influencing both immune responses and neural functions (230).

Acupuncture is a traditional Chinese medical practice that

involves the insertion of thin needles into specific points on the

body. These points, known as acupuncture points or acupoints, are

believed to be located along pathways called meridians (231). Since

neuroimmune crosstalk plays an essential role in the development

and maintenance of inflammation and inflammatory pain,

acupuncture (considered as mechanical/physical stimulation that

stimulates the nociceptors and mechanical receptors in the skin,

muscles, and other tissues) might thus reduce pain/inflammation

and promote tissue repair/regeneration (232–234). For example,

acupuncture suppresses serum levels of TNF-a/IL-6/IL-1b and

improves animal survival in a murine model of endotoxemia

(182). In addition, another study has shown that acupuncture

possibly reduces the levels of several proinflammatory factors

(e.g., neuropeptides, neurotrophins, and cytokines/chemokines)

and disrupts the Th1/Th2 balance through the hypothalamic-

pituitary-adrenal (HPA) axis pathway (235).

Vagus nerve stimulation (VNS), a United States Food and Drug

Administration (FDA)-approved treatment for both drug-resistant

depression and epilepsy, can produce clinically meaningful

antidepressant and anti-seizure effects (11, 182, 236, 237). VNS

can also be utilized for the treatment of other non-neurological

diseases such as IBD and rheumatoid arthritis (133, 238). For

example, VNS via an electric stimulator decreases the pain and

inflammation in two-thirds of rheumatoid arthritis patients

resistant to drugs such as methotrexate (239). VNS leads to
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sympathetic b2-AR signaling on T helper cells, which secrete

ACh to activate splenic macrophages expressing nicotinic

acetylcholine receptors (nAChRs) and then reduce the production

of TNF-a and other proinflammatory cytokines (167). In addition,

VNS can be performed by using ultrasound for site-selective

neuromodulation in order to regulate specific physiological/

pathophysiological functions (240).

VNS can also be utilized for the treatment of infectious diseases

such as sepsis and COVID-19 (241–243). For example,

transcutaneous auricular VNS can significantly inhibit the

production of proinflammatory cytokines (e.g., TNF-a and IL-1b)
and increase the production of anti-inflammatory cytokines (e.g.,

IL-4 and interleukin 10 (IL-10)) in sepsis patients (241). Severe

cases of COVID-19 are characterized by excessive inflammatory

responses (e.g., “cytokine storm”), and VNS is a possible treatment

here, since it might reduce the levels of inflammatory markers (e.g.,

C-reactive protein and procalcitonin) (243).

In addition to physical stimulation, chemical/pharmaceutical

manipulations of neuroimmune interaction can also be used in the

development of treatment/therapy for certain diseases/disorders. By

using this approach, PNS is manipulated in order to treat certain

inflammatory/infectious diseases. For example, rheumatoid

arthritis is a chronic autoimmune disease with chronic

inflammation/imbalanced ANS; restoration of the ANS balance

might represent an innovative/effective treatment for rheumatoid

arthritis (244). In another study, NGF therapy seemed to improve

bone marrow sensory innervation, to increase blood cell

production, and then to reduce the occurrence of peripheral

ischemia. Therefore, nociceptors might provide a new target for

treating ischemic complications in diabetes (245). In addition, by

using a mouse infection model, another study has shown that CGRP

can inhibit the recruitment of neutrophils/opsonophagocytic killing

of Streptococcus pyogenes and blocking CGRP signaling to immune

cells might be utilized for the treatment of this skin infection (246).

Intra-tumoral innervation refers to the nerves/nerve fibers

within or around tumor tissues/tumor TLT (247). Nerves can

infiltrate tumors and establish connections with cancer cells/

immune cells/stromal cells, creating a neural network within the

tumor microenvironment. Tumor innervation can influence

various aspects of cancer biology, including tumor growth/

progression, angiogenesis, immune response, and metastasis

(247). Tumor nerve-derived transmitters/neuropeptides can

promote tumor cell proliferation, survival, and migration, while

also affecting tumor-associated inflammation and immune cell

infiltration. Understanding the complex interactions between

nerves and tumors might provide insights into novel therapeutic

strategies targeting tumor innervation to modulate cancer

progression and to improve treatment outcomes (248, 249). For

example, selective a2- and b2-AR agonists/antagonists have been

used in the treatment of experimental models of autoimmune

diseases, fibromyalgia, and chronic fatigue syndrome (249).

Manipulation of the immune system may also be utilized to

treat PNS-associated diseases (e.g., peripheral neuropathy) (225,

229, 250). Peripheral neuropathy, as a result of damage/injury to

peripheral nerves, often causes weakness/numbness/pain (usually in

the hands and feet) (251). It can also affect other areas and body
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functions (e.g., digestion, urination, and circulation). For example,

inhibition of osteoclast activity by alendronate can modify the

aberrant subchondral bone remodeling and reduce the

innervation/pain during the early stage of osteoarthritis (252). In

addition, modulation of the macrophage phenotype might benefit

peripheral nerve repair/regeneration (253, 254). Furthermore,

galanin, a biologically active neuropeptide widely distributed in

the CNS/PNS and the endocrine system, has been shown to have

analgesic (pain-relieving) effects, particularly in the context of

inflammatory pain conditions (255). Although the exact

mechanisms by which galanin reduces inflammatory pain are not

fully understood, it appears to modulate pain perception through its

interactions with various receptor systems (e.g., galanin receptor 1

and galanin receptor 2) and its ability to influence the release of

neurotransmitters (e.g., ACh, NE, serotonin, and dopamine) (256–

259). Immunotherapy has recently been tested for its potential

applications in the treatment of immune-mediated peripheral

neuropathies such as Guillain-Barré syndrome, chronic

inflammatory demyelinating polyradiculoneuropathy, and

neuropathy associated with IgM anti-myelin-associated

glycoprotein (260).

Of note, although neuroimmune interactions have been

explored as potential therapeutic targets, many of these

approaches are still in the experimental stages, and their

applications have not been established (230). Rigorous clinical

trials must be performed to determine their safety and efficacy,

and regulatory approval, such as FDA clearance, must be obtained

before they can be considered established treatments (236, 237).
6 Conclusion

Studies investigating neuroimmune interactions and modulation

will significantly contribute to a better understanding of the

mechanisms through which the PNS potentially affects cellular and
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humoral-mediated immune responses or vice versa in health and

diseases. Neuroimmune cell units provide an anatomical and

physiological basis for bidirectional crosstalk between the PNS

and the immune system in peripheral tissues, including lymphoid

tissues and organs. Furthermore, physical, chemical, pharmacological,

and other manipulations of these neuroimmune interactions should

bring about the development of practical therapeutic applications for

certain neurological, neuroimmunological, infectious, inflammatory,

and immunological disorders/diseases (239, 261, 262).
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