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Gasdermins comprise a family of pore-forming proteins, which play critical roles

in (auto)inflammatory diseases and cancer. They are expressed as self-inhibited

precursor proteins consisting of an aminoterminal cytotoxic effector domain

(NT-GSDM) and a carboxyterminal inhibitor domain (GSDM-CT) separated by an

unstructured linker region. Proteolytic processing in the linker region liberates

NT-GSDM, which translocates to membranes, forms oligomers, and induces

membrane permeabilization, which can disturb the cellular equilibrium that can

lead to cell death. Gasdermin activation and pore formation are associated with

inflammation, particularly when induced by the inflammatory protease caspase-

1 upon inflammasome activation. These gasdermin pores allow the release of the

pro-inflammatory cytokines interleukin(IL)-1b and IL-18 and induce a lytic type of

cell death, termed pyroptosis that supports inflammation, immunity, and tissue

repair. However, even at the cellular level, the consequences of gasdermin

activation are diverse and range from induction of programmed cell death -

pyroptosis or apoptosis - to poorly characterized protective mechanisms. The

specific effects of gasdermin activation can vary between species, cell types, the

membrane that is being permeabilized (plasma membrane, mitochondrial

membrane, etc.), and the overall biological state of the local tissue/cells. In

epithelia, gasdermins seem to play crucial roles. Keratinocytes represent the

main cell type of the epidermis, which is the outermost skin layer with an

essential barrier function. Compared to other tissues, keratinocytes express all

members of the gasdermin family, in part in a differentiation-specific manner.

That raises questions regarding the specific roles of individual GSDM family

members in the skin, the mechanisms and consequences of their activation, and

the potential crosstalk between them. In this review, we summarize the current

knowledge about gasdermins with a focus on keratinocytes and the skin and

discuss the possible roles of the different family members in immunity

and disease.
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Introduction

The skin represents the outer barrier of the human body and is

in permanent contact with the environment (1). It limits water loss

from the body and protects from physical stressors, such as UV

radiation, and pathogens (2). The epidermis, the outermost layer of

the skin, is a constantly renewing stratified squamous epithelium,

consisting almost exclusively of a single cell type, termed

keratinocytes, in different stages of differentiation (1). In the basal

layer, keratinocyte stem cells divide, relocate upwards, and

terminally differentiate, giving rise to distinct layers of cells

characterized by a specific pattern of expressed genes. The

terminal differentiation of keratinocytes shares similarities with

programmed cell death pathways, such as the requirement for the

activation of caspases (3). It culminates in the formation of

corneocytes (4, 5), anucleated and dead keratinocytes, which form

a cornified envelope, the outermost layer of the epidermis

indispensable for the skin’s barrier function (6). Moreover,

keratinocytes are also actively involved in anti-bacterial and anti-

viral defense and induce immune responses by expressing and

secreting anti-microbial peptides and pro-inflammatory cytokines

in a constitutive or inducible manner (7, 8). Therefore, the

epidermis and keratinocytes have important functions in

immunity (2, 9).

The name gasdermin (GSDM) originates from the

identification of a murine gene (now termed GsdmA3), which is

mainly expressed in the gastrointestinal tract and the skin (dermis)

(10). It was shown that mutations of the GsdmA3 gene induced by

N-ethyl-N-nitrosourea cause alopecia in mice (11, 12). Later, it

turned out that mice express several Gsdms (13), which have

homology to the human deafness autosomal dominant

nonsyndromic sensorineural 5 (DFNA5) protein (now GSDME).

Due to several gene duplications and deletions, the GSDM family

consists of six members in humans, with GSDME as the most

ancient one and linked to autosomal dominant nonsyndromic

hearing loss (14, 15). In contrast, mice express ten different

Gsdms (16).

Gasdermins induce a lytic type of cell death termed pyroptosis

(17, 18). Although initially termed apoptosis, the process of

pyroptosis was first described in macrophages infected by Shigella

flexneri (19). Later, other bacteria were identified to be able to

induce a lytic type of cell death regulated by the cysteine protease

caspase-1 (20, 21), such as Salmonella (22, 23), Shigella flexneri (24),

Listeria (25), Pseudomonas aeruginosa (26), Legionella

pneumophilia (27), and Yersinia (28).

Caspase-1 belongs to a family of aspartate-specific cysteine

proteases, which have essential roles in regulated cell death

pathways (29). Caspase-1, caspase-4, and caspase-5 (and caspase-

11, which is the murine homologue of human caspase-4 and -5) are

termed “inflammatory” caspases as their activation is associated

with the induction of inflammation (30). Caspase-1, supported by

caspase-4/-5 (or -11 in mice), activates the pro-inflammatory

cytokines IL-1b and IL-18, which are expressed as biologically

inactive precursor proteins (31). Both cytokines are members of

the IL-1 family of inflammatory cytokines and play fundamental
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roles in the induction and regulation of inflammatory responses and

immunity (32, 33).

Caspase-1 is initially expressed as an enzymatically inactive

precursor protein and proteolytically self-activates upon activation

and assembly of different protein complexes, termed

inflammasomes (34–36). Inflammasomes consist of a sensor

protein, such as NLRP1 (nucleotide-binding domain, leucine-

rich-containing family, pyrin domain-containing-1), NLRP3 or

AIM2 (absent in melanoma 2), the adaptor protein ASC

(apoptosis-associated speck-like protein containing a caspase

recruitment domain), and the protease caspase-1. Sensing of

different exogenous pathogen-associated molecular patterns

(PAMPs) or endogenous damage-associated molecular patterns

(DAMPs) induces oligomerization of the sensor, recruitment of

ASC with the subsequent formation of large ASC polymers (termed

ASC specks), and finally, proteolytic self-activation of pro-caspase-

1. Then, caspase-1 cleaves and thereby activates proIL-1b and -18

(and GSDMD, see below), which upon secretion, induce

inflammation. This inflammatory response is required for repair

processes and immunity (37, 38). However, chronic inflammasome

activation, particularly the NLRP3 inflammasome, underlies the

pathology of numerous (auto)inflammatory diseases and

contributes to cancer development (36, 39–42).

NLRP1 is considered the central inflammasome sensor in

human skin and is expressed by keratinocytes (43, 44). Human

NLRP1 is activated by UVB radiation (45, 46), underlying sunburn,

and p38 activation (47–49), as well as by viral 3C proteases (50),

double-stranded RNA (51), and by talabostat, an anticancer drug

and dipeptidyl peptidase 8/9 inhibitor (52). Single nucleotide

polymorphisms (SNPs) of NLRP1 are associated with (auto)

inflammatory diseases affecting mainly the skin, such as vitiligo

(43, 44, 53). Gain-of-function mutations of NLRP1 cause

inflammatory skin syndromes, which predispose patients to the

development of squamous cell carcinoma, a type of keratinocyte-

derived skin cancer (54, 55). The NLRP1 pathway is poorly

conserved in mice (56). Although sunburn in mice is caspase-1-

and IL-1-dependent, this process is not regulated by the expression

of these proteins by keratinocytes but most likely by other immune

cells in the skin (57).

IL-1b and IL-18 lack a signal peptide for secretion by the

canonical endoplasmic reticulum/Golgi-dependent pathway and

are released by several mechanisms and pathways, collectively

termed unconventional protein secretion (58–60). Secretion of

these cytokines is regulated by caspase-1 activity upon

inflammasome activation (61). This is mediated by the

aminoterminal GSDMD fragment (NT-GSDMD), generated by

caspase-1 upon cleavage at aspartate 275 (62–64). NT-GSDMD

forms pores in the plasma membrane that allow the release of IL-1b
and -18 (65–68). Furthermore, GSDMD is also activated by

caspase-4/-5/-11 upon noncanonical inflammasome activation

induced by LPS. LPS binds and thereby activates caspase-4/-5/-11

directly. Although LPS doesn’t activate caspase-1 directly, caspase-

4/-5/-11-induced pyroptosis leads to secondary NLRP3 activation

and downstream cleavage of caspase-1, proIL-1b, and proIL-18 (63,

69, 70).
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The gasdermin family: an overview

The human gasdermin family consists of six members (GSDMA

to GSDMF), whereas mice express ten different Gsdms. Among

them are three GsdmA and four GsdmC (Table 1) (16). GSDMB is

expressed only in humans (17). Humans and mice express GSDMF/

GsdmF (also termed pejvakin/PJVK or DFNB59), which shares

sequence and functional similarity with GSDME because mutations

of both of these genes cause hearing loss in humans (14, 71, 72).

However, GSDMF is structurally different from the other GSDM

family members, and it is not known whether it can form

membrane pores (17). Therefore, although it belongs to the

GSDM family, it is not discussed in this review. Human and

murine gasdermin proteins share the same structural organization

into a conserved aminoterminal polypeptide (NT-GSDM) and a

less conserved carboxyterminal part (GSDM-CT) with variable

length (which is missing in GSDMF) separated by an

unstructured linker region (17, 73).

Mutations in GsdmA3-CT, particularly in the stretch of amino

acids 343-348, cause alopecia in mice (11, 74). However, mice

lacking GsdmA3 expression do not show a spontaneous phenotype

(75), whereas GsdmA3 overexpression causes epidermal

hyperplasia and skin inflammation (75, 76). Overexpression of

GsdmA3 in cultured cells suggested that GsdmA3-CT inhibits the

activity of NT-GsdmA3 (74, 77), which was confirmed by cryo-EM

(78). Mutations of human GSDMA, GSDMC, GSDMD, and

GSDME in the region of GSDM-CT, where mutations induce

alopecia in mice, also cause their activation and pyroptosis (65).

Therefore, NT-GSDM is the pore-forming effector domain

inhibited by GSDM-CT (79).

Wild type GSDMs are activated by proteolytic processing in the

linker region, thereby releasing pore-forming NT-GSDM, which

inserts into membranes and forms pores upon oligomerization (73).

Activating proteases are either the cysteine proteases caspase-1, -3,

-4, -5, or -8, or the serine proteases granzyme (Gzm) A and B,

neutrophil elastase and cathepsin G (Table 2). For example,

GSDMD is activated by caspase-1 upon inflammasome activation

or caspase-4/-5 (caspase-11 in mice) upon LPS-induced activation

(63, 64). Then, pores of NT-GSDMD formed in the plasma
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induce pyroptosis. However, when cells undergo apoptosis,

GSDMD is cleaved by caspase-3 at aspartate 87 in NT-GSDMD,

causing its inactivation (100, 104). In contrast, caspase-3 activates

GSDME inducing secondary necrosis via NT-GSDME pores in the

plasma membrane or apoptosis upon insertion in the mitochondrial

membrane (101, 106). Interestingly, human GSDMA and murine

GsdmA1 are activated by an exogenous pathogen-derived protease,

and the induction of pyroptosis in keratinocytes prevents the

spreading of the pathogen (80, 81). In contrast, GSDMB lacks

autoinhibition, and the full-length protein already possesses

bioactivity (85).

Gasdermins are widely expressed in different tissues and cells

[see excellent reviews by (16, 17, 73, 107)]. However, the skin and

keratinocytes seem to be the only tissue and cell type, respectively,

expressing all GSDM family members (108). Whereas GSDMC,

GSDMB, and particularly GSDMA expression is induced upon

keratinocyte differentiation, levels of GSDMD and GSDME are

lower in differentiated keratinocytes compared to proliferating cells

(Figure 1). This expression pattern suggests important and

differentiation-specific roles of GSDMs in human skin. It raises

questions about the molecular mechanisms underlying their

activation and the (patho)physiological functions of GSDMs in

the skin.
Auto-inhibition and activation

Apart from GSDMB, all GSDM family members are expressed

in an auto-inhibited state (17). NT-GSDM is the effector fragment

as ectopic expression of NT-GSDMA/B/C/D or -E induces

pyroptosis (65, 101). This demonstrates that GSDM-CT inhibits

NT-GSDM, and it is believed that the pore-forming activity of

GSDM family members, except for GSDMB, is inhibited by similar

molecular mechanisms (109). After proteolytic processing, NT-

GSDM and GSDM-CT remain associated in a complex (92, 109).

However, cleavage unveils the ability of GSDMs to bind liposomes

with negatively charged phospholipids allowing them to interact

with the inner leaflet of the plasma membrane (66). The crystal
TABLE 1 GSDM genes and their chromosomal localization (13, 16, 17).
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structure of GSDMD or GsdmA3 pores revealed conserved basic

amino acids essential for binding acidic lipids and a hydrophobic

part for membrane interaction (110). The NT-GSDM/GSDM-CT

complex dissociates upon interaction with a membrane, and NT-

GSDM forms oligomers and pores (Figure 2) (92, 109). The

structure of GsdmA3 revealed two hydrophobic interdomain

interfaces in NT-GsdmA3 and GsdmA3-CT, which are highly

conserved in the gasdermin family (65, 78, 111). Indeed, mutating

hydrophobic amino acids in this region activates full-length

GSDMA, C, D, and E, causing cytotoxicity (16, 65). In GSDMB-

CT, two a-helices, conserved in other GSDMs and required for

interaction with the NT-fragment, are missing (87, 111). As a result,

already full-length GSDMB binds to membranes (in contrast to

other wild type GSDMs), although the pore-forming activity is still

blocked (85).

Wild type GSDMs are activated - and in part also inactivated -

by proteolytic processing through different proteases, particularly

caspases (Table 2). For example, GSDMD is activated by caspase-1

at Asp275 in the linker between NT-GSDMD and GSDMD-CT

upon canonical inflammasome activation (64) and by caspase-4/-

5/-11 upon noncanonical inflammasome activation (63, 73).

Furthermore, triggered by extrinsic apoptosis, caspase-8 can

process GSDMD (17, 28, 93, 94) as well as the serine proteases

neutrophil elastase (96, 112) and cathepsin G (97). In contrast,

caspase-3, when activated during apoptosis, inactivates GSDMD by

cleavage at Asp87 in its pore-forming aminoterminal domain (91).

However, caspase-3 cleaves and activates GSDME at aspartate 270,

and NT-GSDME pores accelerate slow apoptotic cell death to faster

pyroptotic cell death (100, 101). GSDME supports anti-tumor

immunity, and its expression is often suppressed in cancer (105).

Furthermore, GSDME in cancer cells is also activated by NK and

cytotoxic T cells upon delivery of granzyme B through perforin

pores (109). Interestingly, the crystal structures of caspase-1/-4/-11

with GSDMD-CT revealed an interaction of the protease with the
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latter at a substrate-binding exosite remote from the active site

(90, 113).

NT-GSDMD is also detected extracellularly but cannot insert

from outside into membranes of adjacent cells to induce pyroptosis

(66, 73). NT-GSDMs bind to different types of membranes.

Although GSDMD induces cytokine release and pyroptosis in

most cell types due to pore formation in the plasma membrane, it

binds to the nuclear membrane in neutrophils, thereby inducing

NETosis (Figure 3) (112, 114). Neutrophils express lower levels of

ASC and caspase-1, and this lower amount of ASC specks might

result in lower levels of active caspase-1 upon inflammasome

activation and localization of GSDMD pores only in the nuclear

membrane (114–116). NT-GSDMD and –E also insert into the

mitochondrial membrane causing its permeabilization and release

of ROS and cytochrome C; the latter activates caspase-9 leading to

caspase-3 activation and apoptosis (Figure 3) (106). This is most

likely mediated by binding to the negatively charged phospholipid

cardiolipin in the mitochondrial membrane. Moreover, cardiolipin

is also part of bacterial membranes, and indeed gasdermins can lyse

protoplasts of Bacillus megaterium and E. coli (66, 109).

Characterization of the structure of GsdmA3 and GSDMD

pores demonstrates that GSDMs represent a novel class of pore-

forming proteins (65, 78). GSDM pores are structurally different

from pore-forming perforin, BAX/BAK pores, which are formed

during intrinsic apoptosis, or MLKL (mixed lineage kinase domain-

like) pores induced by phosphorylation through RIP3 (receptor

interacting serine/threonine kinase 3) in necroptosis (117).

GsdmA3 pores are characterized by an inner diameter of 180 Å

with a 27-fold symmetry, and GSDMD pores by a 215 Å diameter

and a 33-fold symmetry (78, 110, 111). This size is sufficient for

releasing the small IL-1 family members but not for larger proteins

such as LDH (lactate dehydrogenase), which is a stable tetramer of

140 kDa. LDH is frequently used to quantify lysis and pyroptosis of

cells due to its cytoplasmic localization and extracellular release
TABLE 2 GSDM activating and inactivating proteases.
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when the cells are damaged. Recent studies suggest that GSDMD

pores can quickly progress to sizes of 8000 Å and thereby accelerate

pyroptosis (92, 118). Interestingly, the GSDMD pore is negatively

charged and favours releasing neutral and positively charged

proteins such as mature IL-1b over acidic proIL-1b (110).
Pyroptosis and hyperactivation

Pyroptosis and NETosis are defined as gasdermin-induced

necrotic-like types of regulated cell death, which support

inflammation (17, 18, 112, 114). In necroptosis, caspases are not

required for this type of cell death. In contrast, at least initially,
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apoptosis is a caspase-dependent non-lytic type of regulated cell

death, which is immunologically silent. When apoptotic cells are

not taken up by other cells upon exposing eat-me signals, they can

undergo secondary necrosis mediated by caspase-3-dependent

GSDME activation (100, 119). However, it should be considered

that secondary necrosis does not resemble pyroptosis because

activation of the apoptotic machinery results in the degradation

of pro-inflammatory molecules and proteins. Pyroptosis has at least

three consequences; it allows the release of pro-inflammatory

cytokines, such as IL-1b, and IL-18, eliminates the replicative

niche of pathogens upon infection and causes cell death (120,

121). Pyroptosis is characterized by the ballooning of the dying

cell due to the osmotic uptake of water (18, 122). Interestingly, it has
FIGURE 2

Gasdermin pore formation. An activating protease cleaves the gasdermin protein in the linker region between NT-GSDM and GSDM-CT (A) the NT-
GSDM and GSDM-CT subunits remain associated in a complex (B) the NT-GSDM/GSDM-CT complex interacts with a membrane (C) and dissociates
upon this interaction (D) NT-GSDM subunits oligomerize and form pores (E) GSDMB has a unique ability to interact with the cytoplasmatic
membrane in its full-length form.
FIGURE 1

Expression gradient of GSDM family members in the epidermis. All GSDM family members are expressed in human skin in a differentiation-specific
manner in stratified layers of the epidermis (108).
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been suggested that NINJ1 (ninjurin-1), a transmembrane protein,

is required for plasma membrane rupture in murine bone marrow

macrophages but not for releasing IL-1b and IL-18 (123).

Furthermore, in these cells, NINJ1 is also required for toxin-,

secondary necrosis- and necroptosis-associated lysis (the latter

only partially) (124). NINJ1 also plays a central role in plasma

membrane rupture in other cell types (125). However, neutrophils

do not undergo pyroptosis, presumably because they express low

levels of ASC and caspase-1 (120). Furthermore, human

keratinocytes do not undergo massive pyroptosis upon

inflammasome activation, although they secrete high levels of IL-

1b (48, 126). GSDMD-dependent pore formation and cytokine

secretion from living cells that do not undergo pyoptosis is also

termed hyperactivation and is a common phenomenon (127–132).

GSDM and MLKL pore formation is antagonized by membrane

repair mechanisms regulated by the endosomal sorting complexes

required for transport (ESCRT)-III machinery (16, 17). Upon the

formation of GSDM pores, Ca2+ enters the cell and activates

ESCRT-III. Then, the damaged plasma membrane is repaired

upon budding and shedding of vesicles (133). Interestingly, these

exosomes often contain IL-1b and, consequently, besides the release

through pores and pyroptosis, the ESCRT-dependent repair of

GSDM pores represents a third mechanism of cytokine release (17).
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GSDMA

Humans express a single GSDMA protein, while mice express

GsdmA1, GsdmA2, and GsdmA3 (13). GsdmA1 was first

discovered in 2000 and is expressed by epithelial cells in the

upper gastrointestinal tract and skin (10), macrophages, and T

cells (134, 135). Proliferating human keratinocytes and the SCC cell

line A431 express GSDMA protein (80, 81), but its mRNA

expression is strongly induced upon keratinocyte differentiation,

suggesting a particularly important role in the outer epidermal

layers (108). This was confirmed at the protein level since GSDMA/

GsdmA is expressed in the upper epidermis and the inner root

sheath and hair shaft by differentiated cells as well as by mature

sebocytes (136). The expression of GSDMA is suppressed in

esophageal, gastric, and skin cancer, suggesting a role as a tumor

suppressor (107, 136, 137). SNPs of GSDMA are associated with

systemic sclerosis (SSc), inflammatory bowel disease (IBD), and

childhood asthma (138–141). Expression of GSDMA is induced in

monocyte-derived macrophages of patients suffering from

SSc (139).

In mice, at least 11 point mutations of GsdmA3 have been

described, which cause alopecia (11, 17, 142). Although the

underlying molecular mechanisms are only partially understood, it
FIGURE 3

Localization and function of GSDM pores. Upon activation by protease cleavage, GSDMs can be localized in various cell membranes. All NT-GSDMs
can target the plasma membrane where they cause its permeabilization leading to pyroptosis. GSDMD pores also enable the secretion of IL-1b and
IL-18 cytokines. GSDMA, D, E can also be implemented into the mitochondrial membrane, where they cause the release of cytochrome C triggering
the apoptotic pathway. Moreover, GSDMD can also target the nuclear membrane, which plays a role during the NETosis of neutrophils.
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has been suggested that alopecia starting at day 22 of embryonic

development is caused by inflammation and loss of bulge stem cells

(142–144) and mediated by a role of GsdmA3 in apoptosis-driven

catagen induction (145). Furthermore, these mutations cause

thermogenesis in brown adipose tissue, a phenotype mediated by

JNK activation and IL-6, which is rescued by immune suppression

(146). Alopecia-causing mutations of GsdmA3 are gain-of-function

mutations because mice lacking expression of GsdmA1/2/3 do not

show a spontaneous phenotype (75, 81, 107, 144). Overexpression of

GsdmA3 in HaCaT keratinocytes or HEK293 does not harm the cells

(74), but overexpression of NT-GsdmA3 in the latter cell type induces

lytic cell death (107), and overexpression of GsdmA3 in murine

epidermis results in hyperplasia and inflammation (144). As

mentioned above, GSDM-CT inhibits the pore-forming activity of

NT-GSDM, and the alopecia-inducing mutations of GsdmA3 are

located in GsdmA3-CT, disrupting autoinhibition (74). The crystal

structure of GsdmA3 confirmed the inhibition of NT-GsdmA3 by a

hydrophobic stretch of amino acids in GsdmA3-CT. Alopecia-

inducing mutations weaken this interaction and cause spontaneous

pore formation (65). Cryo-EM demonstrated massive structural

changes upon lipid binding of GsdmA3 induced by alopecia-

inducing mutations or upon proteolytic processing (17, 78).

Although overexpression of NT-GSDMA induces pyroptosis/

necrosis via pore-formation in the plasma membrane (17, 65),

GsdmA3/GSDMA also targets the mitochondrial membrane

inducing ROS formation and disruption of mitochondria (74, 82,

83). Compared to NT-GSDMD, NT-GSDMA binds weaker to

phosphoinositides located in the plasma membrane but stronger to

cardiolipin, which is associated with the mitochondrial membrane (65,

66, 82). NT-GsdmA3 associates with Hsp90, and this complex is

delivered to Tom70, a mitochondrial import receptor, and

subsequently interacts with the mitochondrial chaperone Trap1 (83).

As a consequence, mitochondria increase ROS production and lose

their membrane potential. Furthermore, GSDMA/GsdmA3 can also

lyse protoplasts of Bacillus megaterium (73, 109).

Until recently, neither a biological function of GSDMA nor an

activating protease was known (84). Interestingly, two groups have

shown that in keratinocytes, GSDMA is cleaved and activated by a

pathogen-derived protease called SpeB, a virulence factor of the

Gram-positive Group A Streptococcus (GAS) (80, 81). SpeB cleaves

and activates GSDMA upon overexpression of SpeB or infection by

GAS. Thereby GSDMA acts as a sensor for the pathogen. Moreover,

cleavage at Gln246 induces GSDMA activation and pyroptosis,

demonstrating that GSDMA also acts as an effector (80, 84). In

mice, SpeB cleaves and activates GsdmA1. Most importantly,

GsdmA1 knockout mice suffer from less skin inflammation upon

infection with GAS. However, this is associated with uncontrolled

systemic bacterial dissemination and an increased death rate of

infected mice, demonstrating that GsdmA1 expressed by

keratinocytes acts as a guardian protein in the skin (80, 81).

Interestingly mice lacking expression of GsdmA1 and GsdmA3 in

the epidermis have a defect in skin barrier repair upon repeated

epidermal barrier disruption (147). These findings suggest a role of

GsdmAs in keratinocyte differentiation.
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GSDMB

GSDMB does not have a rodent ortholog (13) and possesses

unique properties within the GSDM family, only recently

summarized in an excellent review (85). Compared to GSDMA,

GSDMB is much broader expressed, mainly by epithelial cells in the

airway, gastrointestinal tract, or liver, but also by immune cells (73,

148–150). In the skin, expression of GSDMB is induced upon

differentiation (108). From the GSDMB gene, six different splice

variants are expressed, but their expression patterns and properties

are poorly characterized (85).

SNPs of GSDMB are associated with several chronic inflammatory

diseases, such as IBD (138, 151), rheumatoid arthritis (152, 153), and

asthma (154, 155). Isoform 1 of GSDMB is overexpressed in bronchial

epithelial cells of asthma patients and is located in the nucleus (156).

GSDMB expression is suppressed in skin lesions of patients suffering

from psoriasis vulgaris, suggesting a role in the pathogenesis of this

inflammatory skin disease (157). Most importantly, GSDMB

expression is increased in different types of cancer, including breast,

cervical, hepatic, and gastrointestinal cancer (149, 158–160), and its

high mRNA expression is associated with poor prognosis in breast

cancer (161). Therefore, GSDMB might be an oncogene (21).

Although overexpression of NT-GSDMB induces necrosis (65),

already full-length GSDMB binds to membrane lipids (87). The lack

of two a-helices in GSDMB-CT, responsible for the binding of NT-

GSDM, results in the direct binding of full-length GSDMB to

membranes (85, 87, 111). Most importantly, GSDMB supports

proliferation and motility, which is particularly important for

cancer cells (162–164). However, the underlying molecular

mechanisms are poorly understood (85). Different proteases

cleave GSDMB. Apoptotic executioner caspases cleave in NT-

GSDMB, e.g., caspase-3 at Asp91, causing protein inactivation

(87). In contrast, granzyme A delivered through perforin pores

and expressed by cytotoxic T lymphocytes and natural killer cells,

activates GSDMB by cleavage in the linker region, inducing

pyroptosis in epithelial cells (165). Activation of GSDMB at

Asp236 by caspase-1 causes pyroptosis (86). Conversely, GSDMB

enhances caspase-4 activity and promotes noncanonical pyroptosis

(88). However, it should also be mentioned that the pore-forming

activity of GSDMB or NT-GSDMB is controversial because

GSDMB might neither interact with phospholipids in the plasma

membranes nor form oligomeric pores (85, 166). In summary,

GSDMB is clearly different from the other family members and

possesses biological activities beyond cell death without a need for

proteolytic activation (85).
GSDMC

In contrast to humans, which express a single GSDMC protein,

mice express four different GsdmC orthologs. However, the roles of

these orthologs are poorly characterized (13). GSDMC is expressed

in epithelia, such as the esophagus, small intestine, and colon, but it

lacks in immune cells (134, 135, 148, 167). In human keratinocytes,
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GSDMC expression is slightly induced upon differentiation (108)

and UVB radiation (168). UVB-induced GSDMC expression in

HaCaT keratinocytes is Ca2+-dependent and regulated by TRPV1

(transient receptor potential cation channel subfamily V) (168),

which is required for ERK/JNK activation and MMP1-induction

(107, 169). The role of GSDMC in cancer development is a matter of

debate (17). In metastatic melanoma (167) and colorectal cancer,

GSDMC is considered an oncogene (73), as its expression is

increased and supports cancer cell proliferation (170). In contrast,

in esophageal squamous carcinomas, GSDMC expression is

suppressed (137, 148). Expression of GSDMC is induced in

lumbar disc degeneration, and the condition is associated with

SNPs of GSDMC (171, 172). Furthermore, it has been shown that

PD-L1 and p-Stat3 induce GSDMC expression synergistically, and

caspase-8 activated upon TNFa stimulation cleaves GSDMC at

Asp365, inducing pyroptosis of cancer cells (89).
GSDMD

In contrast to other GSDM family members, GSDMD is not only

expressed by epithelial and immune cells but more ubiquitously (134,

135). It is the best-characterized GSDM, highlighted in recently

published excellent reviews (17, 73, 120). GSDMD is a downstream

target of all inflammasome complexes and, therefore, plays an

important role in inflammation (34, 173). Caspase-1, which is

activated upon the assembly of inflammasome complexes, is the

main activating protease of GSDMD (69). Still, GSDMD is also

cleaved by other inflammatory caspases upon non-canonical

inflammasome activation and by caspase-8, cathepsin G, and

neutrophil elastase. However, the physiological significance of these

cleavage events is partially unclear (17, 63, 69, 73). The Yersinia

effector protein YopJ inhibits the protein kinase TAK1 and NF-kB
(95). Under these conditions, TLR4 or TNFR activation results in the

activation of caspase-8 induced by RIPK1 and the Rag-Ragulator

complex. Then, caspase-8 activates GSDMD inducing pyroptosis,

which is required to counteract Yersinia infection (95). In contrast,

caspase-3 and caspase-7 inactivate GSDMD by cleavage at Asp87 and

thereby prevent pyroptosis (91, 92). Interestingly, in some pathogens,

mechanisms evolved, causing the inactivation of GSDMD and

prevention of pyroptosis and cell death, thereby allowing pathogen

replication. GSDMD is inactivated by the cleavage at Gln193 by the

viral 3C protease of enterovirus 71 (98) as well as by the coronavirus

3CL protease (99). However, in both cases, caspase-3-induced

GSDME activation rescues cell death (99, 102).

NT-GSDMD binds to phosphatidylinositol phosphate and

phosphatidylserine located at the inner leaflet of the plasma

membrane (66). This ensures that pyroptosis is not induced by

GSDMD activation in neighboring cells either by ESCRT-

dependent repair of the plasma membrane and shedding of

GSDMD pores or directly by cell lysis. In neutrophils, NT-

GSDMD interacts with the nuclear membrane and induces

NETosis (112, 114). Furthermore, NT-GSDMD binds to

cardiolipin, which is situated in bacterial membranes and is able

to kill bacteria (66, 107). However, cardiolipin is also a
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mitochondrial membrane component, and NT-GSDMD binding

causes mitochondrial damage, ROS release, and cell death (82, 106).

Expression of GSDMD is regulated by IRF2, a transcription

factor known to repress interferons (174). Most SNPs of GSDMD

do not alter pore formation, and so far, none has been linked to

disease (73). Mice lacking GsdmD expression do not show a

spontaneous phenotype (175). Depending on the pathogen,

knockout mice are either more or less susceptible to infection

compared to control animals, and IL-1b release is rather delayed

than inhibited (73, 176). Nevertheless, GSDMD plays essential roles

in different models of inflammation (73). NOMID (neonatal-onset

multisystem inflammatory disease) patients suffer from a severe

auto-inflammatory disease caused by activating mutations of the

NLRP3 gene (35), and knock-in mice with a NOMID mutation

show a similar phenotype (177). In these mice, additional ablation

of GSDMD expression prevented all NOMID-associated

inflammatory symptoms (178). Furthermore, in a mouse model

for skin infection by Staphylococcus aureus, GsdmD expression

contributes to host defense (179). In a mouse model for systemic

lupus erythematosus, GsdmD exerts a protective role (180). Serum

levels of patients suffering from adult-onset Still`s disease or

systemic juvenile idiopathic arthritis, two auto-inflammatory

diseases, are characterized by increased levels of IL-18 and NT-

GSDMD suggesting important roles of the pore-forming protein in

the pathology of these diseases (181). GSDMD might also

contribute to scleroderma, a fibrotic skin disease (182). In non-

small cell lung cancer, GSDMD expression is upregulated, supports

metastasis, and is associated with a poor prognosis (183) and in

general, GSDMD is differentially expressed in cancer (184).

In human keratinocytes, GSDMD expression is decreased upon

differentiation (108). GSDMD clearly supports the release of IL-1b
and -18 upon NLRP1 inflammasome activation in human

keratinocytes without inducing pyroptosis (44, 48). NLRP1

activation with IL-1b and -18 release represents an early event

induced by UVB radiation (45, 46, 185) and is followed by apoptosis

that occurs significantly later and is not dependent on NLRP1

activation (185). Interestingly, UVB-induced IL-1b release is only

delayed in GSDMD knockdown keratinocytes suggesting that other

family members might compensate for this process (126). However,

these cells undergo apoptosis earlier, demonstrating that in

keratinocytes, GSDMD pores support survival, presumably due to

the release of active caspase-1 and other caspases that induce

apoptosis when they remain intracellularly (126, 185).
GSDME

GSDME is the most ancient gene of the GSDM family and is

ubiquitously expressed (15, 134, 135). Nevertheless, mutations of

GSDME resulting in the expression of a truncated cytotoxic protein

cause nonsyndromic hearing loss in humans, whereas phenotypes

in other tissues are not described (14). It is not understood why

these mutations cause only damage and a phenotype in the inner

ear and not in other tissues and cells with high GSDME expression

(17). GSDME expression is silenced by promoter methylation in
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different types of cancer (73, 186–190). Furthermore, TP53 - a

tumor suppressor gene that is frequently inactivated in many

cancers – induces transcription of GSDME in cells with DNA

damage (73, 191). Therefore, GSDME is a clear tumor suppressor

(17, 73). The apoptotic executioner caspase-3 is the most important

proteolytic activator of GSDME (101). Upon activation, NT-

GSDME inserts into the plasma membrane inducing secondary

necrosis. This pathway is induced by chemotherapeutic drugs in

tumor cells (100). On the one hand, this directly accelerates cell

death. On the other hand, GSDME activation might transform non-

inflammatory apoptosis into inflammatory pyroptosis, activating

anti-tumor immunity. Furthermore, NT-GSDME also binds to the

mitochondrial membrane causing its damage upon pore formation

and activating the mitochondrial pathway of apoptosis (106). NK

and CD8+ cytotoxic T cells can deliver GzmB to tumor cells, which

induces apoptosis upon activation of caspase-3 and downstream

activation of GSDME, which causes pyroptosis. On top of that,

GzmB can also directly cleave and activate GSDME itself. Described

processes further support the anti-tumor function of GSDME (105,

192). Tumor cell death caused by GSDME activation can also be

induced by chimeric antigen receptor T (CAR-T) cells (193).

Treating melanoma patients with BRAF/MEK inhibitors induces

GSDME-dependent pyroptosis and supports anti-tumor immune

responses (192, 194). GSDME can compensate for the inactivation

of GSDMD upon infection with coronavirus in epithelial cells or

enterovirus 71 in Hela cells and induce pyroptosis (99, 102).

Expression of GSDME is decreased upon induction of

differentiation of human keratinocytes (108). UVB irradiation of

HaCaT keratinocytes induces GSDME activation and pyroptosis

(195). Ablation of GsdmE expression in mice revealed that the pore-

forming protein supports inflammation via the recruitment and

activation of neutrophils into UVB-irradiated skin (196). UVB-

induced GSDME-dependent pyroptosis of keratinocytes is

antagonized by microRNA miR-133a-3p, but the underlying

molecular mechanisms are incompletely characterized (197).

Interestingly, infection of human keratinocytes with viruses, such

as VSV or HSV-1, induces GSDME-dependent pyroptosis activated

by caspase-3 and release of the alarmin IL-1a (103). Blocking this

pathway enhances virus replication, demonstrating a protective

function of GSDME in human keratinocytes and an organoid

model of human skin (103).
Conclusions and outlook

First, after their discovery in keratinocytes of the skin, GSDM

family members lived mainly in the shadow. This changed

dramatically with the identification of GSDMD as a substrate of

inflammatory caspases and an effector protein of inflammasomes

inducing pyroptosis in immune cells (63, 64). Today, GSDMs are

well established as a novel family of self-inhibited pore-forming

proteins activated upon proteolytic processing or by mutations. Due

to its role as an inflammasome effector protein, GSDMD is still
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considered the most important family member, and its inhibition

might represent a novel therapeutic approach for treating

inflammatory diseases with the involvement of inflammasomes.

Indeed, different molecules were discovered that inhibit GSDMD

pore formation, such as disulfiram, fumarates, or necrosulfonamide

(198–200). However, it is known that in most cases, inflammasome-

induced IL-1b secretion is just delayed by GSDMD inhibition or

knockout, most likely due to redundancy in the GSDM family (73).

Therefore, a task for the future will be to analyze the crosstalk

between GSDM family members. Here, epithelia, including the

epidermis, are particularly challenging because all family members

are expressed by keratinocytes in human skin (108), which suggests

particularly important roles in the skin. However, our knowledge

about the roles of GSDM family members in the skin is very limited,

reflected by the low number of publications dealing with GSDMs in

keratinocytes and the skin, particularly in humans. The varying

number of members of the GSDM family in humans and mice

indicates that the proteins are poorly conserved, limiting the

relevance of experiments based on the murine model for humans.

Interestingly, particularly GSDME seems to act as a tumor

suppressor (73). Therefore, in contrast to GSDMD, which

supports inflammation and inflammatory diseases, cancer

treatment strategies aiming for the activation of GSDMs might be

promising. Furthermore, it can be anticipated that more lysis- and

pyroptosis-independent roles of GSDMs will be identified in the

future. Even GSDMD activation does not necessarily result in

pyroptosis. There are several examples of hyperactivated cells

which release pro-inflammatory cytokines lacking a signal peptide

via GSDMD pores without undergoing pyroptosis, such as human

keratinocytes (44). In these epithelial cells, GSDMD activation even

has a cytoprotective effect acting like a valve upon inflammasome

activation since GSDMD pores also allow the release of activated

cytotoxic caspases (126, 185). In the coming years, a significant

challenge lies in identifying particular physiological stimuli

responsible for triggering the activation of GSDMs. This

activation is closely linked to their involvement in pathological

and stress-related conditions and their potential contributions to

maintaining homeostasis within the body, particularly on its surface

in keratinocytes of the epidermis.

GSDMs exemplify an intriguing and distinctive protein family,

and our knowledge regarding these pore-forming entities has

expanded considerably since their initial identification. Nonetheless,

it is plausible to consider that our current understanding merely

scratches the surface, implying that there is much more to uncover

and explore regarding GSDMs, opening up exciting opportunities for

new insights and discoveries not only but also in the skin.
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