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Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast

cancer. Due to the lack of specific therapeutic targets, treatment options are

limited, and the recurrence and metastasis rate is high, the overall survival of

patients is poor. However, with the discovery of some new targets and the

corresponding immune regulation after targeting these targets, TNBC has a new

hope in treatment. The peptide has a simple structure, strong binding affinity, and

high stability, and has great potential in targeted therapy and immune regulation

against TNBC. This review will discuss how single peptides and peptide

combinations target triple-negative breast cancer to exert immunomodulatory

effects. Among them, single peptides target specific receptors on TNBC cells, act

as decoys to target key ligands in the regulatory pathway, and target TME-related

cells. The combinations of peptides work in the form of cancer vaccines,

engineered exosomes, microRNAs and other immune-related molecular

pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells,

and drug-peptide conjugates. This article is mainly dedicated to exploring new

treatment methods for TNBC to improve the curative effect and prolong the

survival time of patients.
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1 Introduction

Breast cancer is one of the most frequently diagnosed cancers among all cancers and

the most common cancer among women worldwide (1), posing a serious threat to the

health of women. Breast cancer is a highly heterogeneous malignant tumor. Breast cancer

cell lines are usually used as the original model to study it. However, because the cell line is
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cultured in vitro alone, it lacks the influence of the

microenvironment and cannot fully simulate the heterogeneity of

cancer cells at the real tumor level. It is also necessary to combine

tumor samples or mouse models to verify the results (2). In

addition, breast cancer can be divided into different subtypes, but

often because of different classification criteria and seem to be

somewhat confused, so after considering the genetic and epigenetic

aspects of the tumor, it can be divided into lumen A, lumen B,

HER2 positive, triple negative A and triple-negative B five subtypes

(2). The luminal A and B cell lines are distinguished from each

other, and the HER2-positive line is identified as a single subtype,

while triple-negative breast cancer (TNBC) is due to the absence of

estrogen receptor (ER), progesterone receptor (PR) and human

epidermal growth factor receptor 2 (HER2)(3). In addition, TNBC

contains at least four subcategories, namely, metaplastic breast

cancer, core basal carcinoma, low-density protein, and interferon-

rich breast cancer, but there are only two subgroups of TNBC cell

lines currently available, namely triple-negative A and B cell lines.

Among them, triple-negative A is mainly characterized by the

expression of basal keratin (KRT4/5/6/13/14/15/16/17), similar to

the core basal tumor, while triple-negative B is characterized by

cancer stem cell patterns such as CD44+, CD24- and migration

markers such as VIM(2). It is hoped that more TNBC cell lines,

such as interferon-rich cell lines, can be established in the future to

cover the current subclass of TNBC more comprehensively.

TNBC accounts for about 10% to 20% of all types of breast cancer

and is more common in young women of African and Hispanic origin

(4). However, the incidence of TNBC in China has also increased year

by year since 2000. Therefore, TNBC also poses new challenges to the

treatment of breast cancer. Due to the lack of iconic ER, PR, and HER2

receptors in TNBC, endocrine therapy and targeted therapy commonly

used in breast cancer treatment cannot be used (5). At present, the

treatment of TNBC includes surgery, adjuvant chemotherapy, and

adjuvant radiotherapy (6). Usually, surgical resection of the tumor

mass is combined with a variety of drug treatments such as

chemotherapy, radiotherapy, and immunotherapy (7).

Chemotherapy is the main treatment (8). The commonly used

chemotherapeutic drugs include anthracyclines, taxanes, and

cyclophosphamide (9). Although TNBC is sensitive to

chemotherapy, chemotherapy drugs lack specificity and often

damage healthy tissues. Toxic side effects often occur during

treatment, such as neurotoxicity and nephrotoxicity (10). With the

resistance of tumor cells to chemotherapeutic drugs, it is gradually

unable to control the proliferation of tumor cells (11). And

chemotherapy drugs have poor pharmacokinetics and rapid systemic

clearance caused by poor water solubility (12). Due to these reasons,

only 20% of TNBC patients showed pathological complete response

(PCR) to neoadjuvant chemotherapy (13), and many patients

experienced treatment failure. Although adjuvant radiotherapy using

radiotherapy and imaging technology has a certain therapeutic effect on

TNBC, systemic reactions caused by off-target toxicity and radiation

resistance of tumor cells limit the effectiveness of clinical treatment(14).

In addition, it has the characteristics of rapid progression and strong

invasiveness (5). TNBC patients often have distant brain, liver, lung,

and bone metastasis, and poor prognosis (15). Therefore, TNBC is still

the most difficult subtype of breast cancer (16). Although the overall 5-
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year survival rate of breast cancer is 90%, the 5-year mortality rate of

TNBC is 77% regardless of stage, and the median death time of patients

is 4.2 years (17).

In the face of the lack of effective treatment for TNBC, it is

particularly critical to find new treatment methods (18). One of the

ideas is to explore new molecular targets for targeted therapy and

immune regulation to control the growth and metastasis of tumor

cells, reduce targeted toxicity and prevent recurrence (19). The

reason why there is currently no targeted therapy for TNBC is

closely related to the fact that TNBC is a heterogeneous tumor (20).

Tumor heterogeneity refers to the changes in the genetic or

epigenetic evolution of tumor cells during clonal evolution (19).

Despite this, there are still overexpressed targets in TNBC that can

be used for specific targeted therapy (14). Now there are targeted

therapy methods under study such as immune checkpoint

inhibitors, cell DNA key repair enzyme inhibitors (21), vascular

endothelial growth factor inhibitors, and integrin inhibitors (22).

These new molecular targets are up-regulated receptors such as

folate receptors and integrin receptors in TNBC. The development

of new therapies for new molecular targets in the treatment of

TNBC tumors is becoming a research hotspot (23).

Another problem to be solved after finding new molecular

targets is to develop active targeting ligands, and peptides are a

good candidate (24). Peptides have a series of advantages such as

simple structure, low synthesis cost, easy engineering (25), strong

binding affinity, and high stability(26), which can efficiently reach

the target and have great potential in the treatment of TNBC. Many

targeted peptides have been found in phage display and in vivo

biopanning techniques and can be further engineered (25). These

peptides can achieve immune regulation and anti-tumor by

targeting the corresponding molecular targets in TNBC, and these

peptides can work alone or in combination with other substances

such as adjuvants. Among them, a single peptide plays a role mainly

by targeting specific receptors on TNBC tumor cells and inhibiting

the growth, proliferation, and metastasis of tumor cells through

certain molecular mechanisms; or as an inducing peptide targeting

a key ligand in the regulatory pathway of triple-negative breast

cancer to promote tumor cell death; there is also a peptide single

peptide targeting triple-negative breast cancer-related cells to play

an immunomodulatory role. The combinations of peptides work by

forming cancer vaccines, engineered exosomes, microRNAs and

other immune-related molecular pathways, immune checkpoint

inhibitors (ICI), chimeric antigen receptor T cells, and drug-

peptide conjugates to improve efficacy Figure 1. It can be seen

that peptides have great hope in targeted therapy and immune

regulation of TNBC.

Although peptides are promising for the treatment of TNBC in

the future, current research has focused on reporting the discovery

of new therapeutic molecular targets or potential therapeutic

molecular targets, and there are few reports summarizing peptides

for targeted therapy and immune regulation of TNBC. Therefore,

this article will focus on how the peptide is targeted therapy and

immune regulation to achieve anti-TNBC, which will provide a

reference for exploring new treatment methods for TNBC,

enhancing the clinical treatment effect of TNBC, and improving

the survival rate of TNBC patients.
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2 Single peptides target TNBC to exert
immunomodulatory effects

Single peptides are often widely studied because of their simple

structure and ease to explore their independent mechanism of

action (27). For how a single peptides target TNBC and play an

immunomodulatory role, we will discuss it in three parts: targeting

specific receptors on TNBC cells, as decoys targeting key ligands in

the regulatory pathway, and targeting TME-related cells Table 1.
2.1 Single peptides target specific
receptors on TNBC cells

TNBC cells were once unable to target therapy due to the lack of

specific receptors, but recent studies have found some potential

targets or become the key to targeting triple-negative breast cancer.

Using a single peptide to target these receptors has a good anti-

TNBC effect.

2.1.1 G protein-coupled receptors
G protein-coupled receptors (GPCRs) are cell surface proteins

that are closely related to the occurrence and development of

tumors (29). They are involved in tumor growth, angiogenesis,

invasion, and metastasis (46), and the expression of GPR1 in TNBC

tissues will increase (3). Therefore, GPCRs have also become a good

therapeutic target.

Studies have found that an adipokine Chemerin secreted by

white adipose tissue can activate GPR1 to release intracellular

calcium, thereby inhibiting the accumulation of cyclic adenosine

monophosphate, achieving phosphorylation of P42-P44 MAP

kinase through G1 heterotrimeric G protein(47). The

corresponding peptide antagonist LRH7-G5 can competitively
Frontiers in Immunology 03
bind to GPR1 with Chemerin, thereby blocking the signal

transduction of Chemerin/GPR1 through the P13K/Akt signaling

pathway and inhibiting the growth of TNBC cells (3). In addition,

protease-activated receptor 1 (PAR1) is also a G protein-coupled

receptor. A palmitoylated peptide PZ-128, which targets the

intracellular loop of PAR1, can inhibit PAR1/G protein signaling

by interacting with GPCRs to significantly inhibit the growth of

MDA-MB-231 TNBC cells (5). In addition to the G protein-coupled

receptors mentioned above, there are G protein-coupled adenosine

receptors, such as the adenosine A2B receptor (ADORA2B)(48),

which is a member of the G protein-coupled adenosine receptor

superfamily. ADORA2B and adenosine signal transduction can

affect the occurrence and invasion of TNBC, especially in mutant

TP53, because the expression of ADORA2B is enhanced by the

interaction between the CCAAT box and NF-g protein (28). In

addition, ADORA2B is selectively up-regulated under hypoxic

conditions, and hypoxia activates hypoxia factor 1a (HIF-1a)
through signal transduction pathways such as Akt and

extracellular regulated kinase 1/2 (ERK1/2), and HIF-1a
stimulates more adenosine production (49). The study found that

cytotoxic cyclic peptide SA-1 can inhibit the expression of

ADORA2B (28), to achieve the purpose of inhibiting the

occurrence of TNBC. Although GPCRs are almost always located

on the cell surface, some GPCRs retain atypical intracellular/nuclear

locations and are involved in intracellular signal transduction.

These intracellular/nuclear GPCRs, such as kallikrein B1/B2

receptors (B1R/B2R), affect tumor growth, invasion, and

angiogenesis. (18), affect tumor growth, invasion, and

angiogenesis. For kinin receptors, cell-penetrating kinin receptor

antagonists, such as cell-penetrating B1R antagonists (CP-B1Ras)

and a cell-penetrating B2R antagonist (CP-B2Ras) (18), are

generally used to target B1R and B2R, respectively. For kinin

receptors, cell penetrating kinin receptor antagonists, such as cell

penetrating B1R antagonists (CP-B1Ras) and cell penetrating B2R
FIGURE 1

The mechanism of peptide in targeted therapy and immune regulation against triple-negative breast cancer (TNBC). (A) The mechanism by which
single peptides target TNBC to exert its immunomodulatory effects. (B) The mechanism by which the combinations of peptides target TNBC to exert
its immunomodulatory effects.
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TABLE 1 The mechanism by which single peptides target TNBC to exert its immunomodulatory effects.

Target Mechanism Reference

GPR1 Inhibiting the Chemerin/ GPR1
signaling

(3)

PAR1 Inhibiting the PAR1/ G protein
signaling

(5)

ADORA2B Inhibiting the expression of
ADORA2B

(28)

B1R Inhibiting the phosphorylation of
MAPK p42/ p44

(29)

B2R Activating the p38kinase/
p27kip1 pathway

Inhibiting the growth of TNBC
in the G1 phase

(18)

aVb3 Inhibiting the formation of new
blood vessels

(30)

aVb3 Inhibiting the PI3K/ Akt pathway (31)

OBR Inhibiting leptin-stimulated
tumor cell proliferation
Anti-angiogenic therapy

(32)

CSPG4 Inhibiting the proliferation and
migration of TNBC

(33)

Wnt receptor Inhibiting the Wnt / b-catenin
signaling pathway

Inhibiting c-myc, cyclin D1,
survivin and other target genes
Inhibiting tumor angiogenesis

(34)

CAPCNA Inhibiting the repair of DNA (35)

CXCL12 Inhibiting CXCR4-CXCL12
Inhibiting the RhoA/ Rock/ Limk

signaling pathway
Inhibiting Akt

(36)

SIN3A
SIN3B

Inhibiting the Wnt / b-catenin
Inhibiting the Axin2 and Bcl9
Inhibiting the TGFb/ SMAD

(37)
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Catalog Peptide
name

Peptide sequence

Specific receptors on
triple-negative breast
cancer cells

G protein-coupled
receptors

LRH7-G5 /

palmitoylated
peptide PZ-128

AEEQNPWARYLEWLFPTELLLELC

cytotoxic cyclic
peptide SA-1

/

CP-B1Ras /

CP-B2Ras /

Integrin receptor a type IV
collagen-derived
peptide AXT050

/

yRGDECHI /

Leptin receptor allo-ACA H-alloThr-Glu-Nva-Val-Ala-Leu-Ser-Arg-
Aca-NH2

Chondroitin sulfate
receptor

MABS /

Wnt receptor Frizzle-7(FZD7) /

Proliferating cell
nuclear antigen

CAPCNAab LGIPEQEYSC

Peptide decoys Chemotactic factor DV1peptide L-G-A-S-W-H-R-P-D-K-C-C-L-G-Y-Q-K-R-P-L-P-A (b-azido)-
CONH2

SIN3 SID peptide /
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TABLE 1 Continued

Target Mechanism Reference

signal transduction pathway
Inhibiting the EMT

RIWSSDGEH STAT3 Inhibiting the STAT3 vascular
endothelial growth factor (VEGF)

signaling pathway

(38)

STAT3 Inhibiting genes related to
angiogenesis (VECGF-A),
proliferation-related genes
and invasion-related genes

(MMP1 and MMP7)

(39)

RALQGKT API-5 Inhibiting the API-5/ acinar
interaction

Activating the caspase-3 pathway

(40)

CIB1 Inhibiting the regulation of AKT
and ERK carcinogenic pathways

(41)

CIB1 Inhibiting the regulation of AKT
and ERK carcinogenic pathways

(1)

K] M2 Inducing M2-like macrophagesl
death

(42)

vitamin D receptor
on the cell surface of

M2

Inducing M2-like macrophagesl
death

(6)

CD 206-positive M2 Converting M2 into M1 (43)

Tumor-associated
immune cells with
CD45 receptor

Re-activating the Src family of
tyrosine kinases

Activating 69+T cells and 69+
NK cells

Activating CD8+ and CD56+
tumor-infiltrating cells

(44)

ASC Inducing the apoptosis of ASC (45)
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Catalog Peptide
name

Peptide sequence

Transcription factor ASRPS MTTKMRRLRPSAPSGLGQEQEAEVVEGCFPAVTETPFAPAYIKKRGG

the
dodecapeptide

YYVSWPPDMMHY

Anti-apoptotic anti-API5
peptide

RQIKIWFQNRMKWKKAK LNAEKLKDFKIRLQYFARGLQVYIRQL

CIB1 UNC10245131 YKQPYWLINWCS

UNC10245092 NH3-EDGGSFWYGAMKALYG

TME-related cells Tumor-infiltrating
immune cell

the melittin
KLA8-26

VLTTGLPALISWIKRKRQQGGGGS-d[KLAKLAKKLAKLA

a cyclic peptide CSSTRESAC

“mUNO” peptide /

C24 D peptide /

Tumor-associated
fibroblasts and

adipose stromal cells

WAT 7 CSWKYWFGEC

/, The structure of the peptide is not mentioned in the current reference, and it is not clear.
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antagonists (CP-B2Ras), are generally used to target B1R and B2R,

respectively(18). Among them, CP-B1Ras such as SSR240612,

NG67, N2000, etc. showed strong anti-cancer activity (29), which

could inhibit the proliferation effect caused by the transactivation of

EGF receptor and the phosphorylation of MAPK p42/p44 after the

activation of B1R. CP-B2Ras can activate the p38kinase/p27kip1

pathway, which in turn arrests the growth of TNBC in the G1 phase

and leads to apoptosis (18).

2.1.2 Integrin receptor
The expression of integrin receptors is up-regulated on the

surface of tumor cells and is related to the promotion of

angiogenesis, cancer cell adhesion, migration, and invasion (31).

The common integrin is mainly aVb3 (50). Studies have found that
some peptides can specifically target aVb3, thereby disrupting

integrin-dependent signaling pathways to achieve anti-tumor

purposes. A type IV collagen-derived peptide AXT050 specifically

binds to aVb3 to produce an anti-vascular effect unrelated to VEGF

inhibits the formation of new blood vessels in TNBC(30), and

makes it lack the supply of oxygen and nutrients(51). Another novel

peptide yRGDECHI inhibits the PI3K/Akt pathway involved in

integrin-mediated EMT activation after targeting aVb3 (52),

thereby inhibiting the migration and invasion of TNBC cells.

2.1.3 Leptin receptor
Leptin (obesity hormone) is related to obesity-related stimuli,

which can be produced by adipose tissue and breast cancer cells

(53). Leptin and its receptor (OBR) are overexpressed in TNBC(54).

Therefore, the leptin receptor is also a target for TNBC-targeted

therapy. The leptin receptor antagonist peptide allo-ACA can

specifically bind to OBR, inhibit the expression of downstream

signal channels and cyclins induced by OBR activation, and inhibit

leptin-stimulated tumor cell proliferation (55). Because leptin is also

an angiogenic factor (56), the use of allo-ACA peptides can also

achieve anti-angiogenic therapy (32).

2.1.4 Chondroitin sulfate receptor
Chondroitin sulfate proteoglycan 4 (CSPG4) is an antigen

receptor with increased expression in tumors, including TNBC.

CSPG4 can promote the survival and adhesion of cancer cells and

promote tumor growth and metastasis (57). Correspondingly, the

polypeptide targeting CSPG4 has an anti-CSPG4 monoclonal

antibody (MABS), which can effectively inhibit the proliferation

and migration of TNBC by targeting CSPG4 (33).

2.1.5 Wnt receptor
Studies have shown that Wnt receptors are overexpressed in

TNBC and induce the proliferation and invasion of TNBC cells

through the Wnt/b-catenin signaling pathway(58). RHFZD7 is a

recombinant soluble peptide fragment, which can effectively target

and antagonize a Wnt receptor Frizzle-7 (FZD7)(34), inhibit the

activation of Wnt/b-catenin signaling pathway, and block the

initiation of downstream target genes caused by b-catenin
entering the nucleus, such as inhibition of c-myc, cyclin D1,

survivin, and other target genes can inhibit tumor growth and
Frontiers in Immunology 06
drug resistance(59), while inhibition of VEGF target genes can

inhibit tumor angiogenesis.

2.1.6 Proliferating cell nuclear antigen
Proliferating cell nuclear antigen (PCNA) is essential for DNA

replication and repair. During DNA replication, PCNA forms a

homotrimer around the DNA chain and loads related proteins and

enzymes(60). There are some interdomain connector loop (IDCL)

domains in the PCNA monomer, and IDCL contains the motif of

the PCNA interacting protein box (PIP-box). The proteins

interacting with PCNA regulate DNA replication and repair by

binding to these motifs. Therefore, the use of polypeptides to target

IDCL to inhibit the interaction between proteins required for DNA

replication and repair and PCNA can hinder cell function and

promote cell death. The study found a rabbit polyclonal antibody

(CAPCNAab) that specifically recognizes the tumor-associated

PCNA subtype. CAPCNAab can compete with CAPCNA binding

auxiliary proteins and specifically target the CAPCNA in the IDCL

of PCNA (35). The replication of DNA in TNBC tumor cells is

blocked, and the damaged DNA cannot be repaired and then dies.
2.2 Single peptides as decoys target key
ligands in the regulatory pathway

In addition to binding to certain receptors on triple-negative

breast cancer cells, single peptides can also bind to ligands related to

tumor regulation. These peptides can be called peptide decoys.

Peptide decoys are molecular traps that bind to certain ligands and

play a confusing role, which are the same as receptor proteins. They

can be soluble proteins, that is, binding proteins, or inactive cell

surface receptors. Soluble peptide decoys have different production

mechanisms, including proteolytic cleavage of cell surface receptors,

phospholipase C-mediated cleavage, selective splicing of receptor

mRNA transcripts, and selective intron polyadenylation (61). These

peptide decoys can target key ligands in the breast cancer regulatory

pathway, including chemokines, SIN3, etc.
2.2.1 Chemotactic factor
Chemokines are small proteins with low molecular weight and

play a key role in tumor immunity and communication between

tumor cells and their surrounding environment(62), such as CCR9/

CCL25, CXCR5/CXCL13, CXCR4/CXCL12 and CCR7/CCL19

(CCL21), which play a role in cancer growth and metastasis. The

decoy peptide can inhibit tumor cells by targeting chemokines, such

as the DV1 peptide targeting CXCL12. CXCL12 is a chemokine

stromal cell-derived factor-1, and its specific receptor is the

chemokine receptor CXCR4. In tumors, CXCR4-CXCL12 is

involved in activating a variety of cancer-promoting regulatory

mechanisms, thereby promoting tumor proliferation, inhibiting

cancer cell apoptosis, and promoting metastasis. DV1 peptide

mainly blocks CXCR4 signal transduction by binding to CXCL12

to silence the expression of CXCR4 (36), inhibits Rho-involved

RhoA/Rock/Limk signaling pathway (63), and makes Rho protein

unable to regulate the tissue, focal adhesion arrangement and
frontiersin.org
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intracellular transport of actin stress fibers, thereby inhibiting the

migration of tumor cells (64). Of course, silencing the expression of

CXCR4 can also inhibit some targets that induce tumor cell

migration activity. These targets refer to Akt and its downstream

targets activated when stimulating PI3K in CXCR4 signal

transduction (36).

2.2.2 SIN3
SIN3 is a key adaptor protein in the co-repressor complex of

histone deacetylase (HDAC1/2). As a scaffold connecting DNA-

binding transcription factors and chromatin regulators (65), it has a

regulatory effect on the proliferation and differentiation of TNBC

tumor cells (66). Sin3 includes Sin3A and Sin3B (67), and its

structure is composed of four pairs of amphipathic a-helix
(PAH1-PAH4) motifs.

The Sin 3-interacting domain (SID) bait is a peptide designed to

target the SIN3 complex (PAH2 domain) and induce epigenetic

reprogramming in TNBC (68). SID peptide binding to SIN3A can

inhibit TGIF1 and then bind to SIN3A, while TGIF1 is a transcription

factor involved in the regulation ofWnt signal transduction. TGIF1 can

not bind to the PAH2 domain of SIN3A, and then can not promote the

expression of the Wnt gene, while the expression of nuclear b-catenin
and its target is also inhibited, because the activity of Wnt/b-catenin is

not increased, resulting in downstream media such as Axin2, Bcl9 can

not be activated(69). It can not further promote the EMT and invasion

and metastasis of TNBC tumor cells. The activity was not increased,

resulting in downstream mediators such as Axin2 and Bcl9 could not

be activated, and it could not further promote the EMT and invasion

and metastasis of TNBC tumor cells(70). In addition, some other

proteins that can bind to the PAH2 domain, such as the adaptor PF1

(PHF12) and TIEG1 (TGFb-induced early gene), can not only interact

with SIN3A but also interact with SIN3B. First of all, the SID peptide

can down-regulate the transcription of genes related to epithelial-

mesenchymal transition (EMT) after blocking the interaction between

SIN3A and PF1(71). Blocking the interaction between PF1 and SIN3B

can inhibit the modification of downstream chromatin of the

transcription initiation site by PF1 and restore the effect of RNA

polymerase II. SID peptide inhibits the combination of TIEG1 and

PAH2, which is to inhibit the TGFb/SMAD signal transduction

pathway involved in TIEG1, so that the expression of Smad2 is

down-regulated, and the EMT of tumor is inhibited to a certain

extent (72). Of course, the interaction between MAD and SIN3-

PAH2 is blocked, which enhances the expression of CDH1 and

ESR1 and restores the sensitivity of tumor cells to chemotherapeutic

drugs (37).

2.2.3 Transcription factor
Transcription factors are an important part of the signaling

pathway. Most of them are proteins. Transcription factors are also

related to the progression of tumors by binding to DNA to regulate

gene transcription. Targeting transcription factors with inducing

peptides can achieve the purpose of treating TNBC.

Among them, STAT3 is one of the many transcription factors,

and its overexpression is related to the malignant transformation of

tumors including breast cancer. STAT3 has six conserved domains,
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C-terminal trans-activation domain, the DNA binding domain, the

SH2 domain, and the linker domain (38). The activation of STAT3

depends on phosphorylation and dimerization(39). There are

several peptides targeting STAT3. The first is a small regulatory

peptide ASRPS of STAT3, which mainly regulates the STAT3

vascular endothelial growth factor (VEGF) signaling pathway

(38). The combination of ASRPS and the CCD domain of STAT3

can inhibit the phosphorylation of STAT3, thereby reducing the

expression of VEGF and inhibiting the formation of tumor blood

vessels. The dodecapeptide of the YYVSWPPDMMHY sequence is

another peptide targeting STAT3 (39), which mainly prevents the

homodimerization of STAT3 and inhibits the stimulation of tumor

genes by recognizing and binding to the promoter region of the

target gene (73). Studies have shown that YYVSWPPDMMHY

peptide down-regulated genes related to angiogenesis (VECGF-

A), proliferation-related genes (BIRC5, CDK2, and MCL1) and

invasion-related genes (MMP1 and MMP7)(39), which can

effectively induce apoptosis and inhibit the growth of TNBC

tumor cells.

2.2.4 Anti-apoptotic
Caspase-3 is a protease related to apoptosis and plays an

important role in promoting apoptosis. However, in some tumor

cells, the function of caspase-3 is inhibited, resulting in the

inhibition of apoptosis. For example, after the anti-apoptotic

protein-5 (API-5) binds to the acinar protein, the acinar protein

cannot be cleaved by caspase-3, and the formation of the active p17

fragment is inhibited, resulting in DNA breakage(74). Therefore,

the anti-API5 peptide targeting API-5 promotes the apoptosis of

TNBC tumor cells by preventing the API-5/acinar interaction and

reactivating the caspase-3 pathway (40).

2.2.5 CIB1
CIB1 is a small cytoplasmic protein, 22kDa (75). It is composed

of 10 alpha helices, of which 8 alpha helices form 4 EF-hand

domains, and the other 2 alpha helices are binding to the Ca2+

C-terminal domain (76). CIB1 can not only interact with the

cytoplasmic tail of integrin aIIb through the hydrophobic pocket

hidden by the C-terminal helix 10 to participate in the adhesion and

migration of tumor cells(77). CIB1 can also interact with PAK1 to

affect the downstream signaling pathways of related signaling

pathways such as PI3K/Akt and Ras/RAF/MEK/ERK and regulate

the growth and proliferation of TNBC tumor cells (78). Studies have

found that CIB1 cyclic peptide inhibitors such as UNC10245131

(41) and UNC10245092 (1), these cyclic peptide inhibitors by

targeting CIB1 to prevent its regulation of AKT and ERK

carcinogenic pathways, achieve the purpose of intervention TNBC.
2.3 Single peptides target TME-related cells

Tumor cells and their environment are a functional whole.

Tumor cells and tumor microenvironment (TME) affect each other

and jointly promote the occurrence and development of tumors.
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TME-related cells include immune cells, fibroblasts, and adipocytes

(17). These cells are also closely related to tumor growth and

metastasis (79). Some single peptides can also play a good role in

immune regulation and inhibition of tumor cells by targeting TME-

related cells.

2.3.1 Tumor-infiltrating immune cell
Tumor-associated immune cells include tumor-infiltrating

lymphocytes, macrophages, neutrophils, etc. Among them,

tumor-associated macrophages (TAM) are classically divided into

two major groups: M1 and M2. The M1 group is associated with

anti-tumor activity, while the M2 group is associated with tumor

growth, angiogenesis, migration and invasion, and metastasis, and

promotes epithelial-mesenchymal transition (EMT) in TNBC(80).

Generally, macrophages are in a balance between M1 and M2 in

healthy tissues, while in cancer tissues, the phenotype shifts to M2.

Therefore, targeting M2-like macrophages and restoring them to

anti-tumor Ml-like macrophages is a direction for cancer treatment.

Researchers have found several peptides that can effectively target

M2-like macrophages. One is the melittin KLA8-26, which can

distinguish M0/M1/M2. When the melittin is attached to the lipid

membrane of M2-like macrophages, the membrane will be

disturbed, resulting in asymmetry between the two lipid layers

and temporary formation of pores, thereby inducing cell death (42).

The other is a cyclic peptide with a structure of CSSTRESAC, which

can specifically bind to the protein disulfide isomerase A3 (PDIA3)

expressed on the cell surface of TAM, namely vitamin D receptor, to

achieve the purpose of reducing M2-like macrophages. In addition,

there is an “mUNO” peptide, which mainly targets CD206-positive

M2-like TAM and converts it into M1-like TAM (43).

In addition to the commonly used method of targeting M2-like

macrophages, it can also target other tumor-associated immune

cells. C24D peptide is an immunoregulatory therapeutic peptide

derived from placental immunoregulatory ferritin targeting CD45

molecule, which consists of 24 amino acids (81). The CD45 receptor

is a transmembrane protein tyrosine phosphatase receptor type C,

which is present in T cells and NK cells and can inhibit the

activation of Src family tyrosine kinases and immune cells in

TNBC patients (82). Therefore, after binding to the CD45

receptor on the inhibited leukocytes in TNBC, the C24D peptide

can re-activate the Src family of tyrosine kinases, break the

inhibition and trigger the intracellular signaling cascade, resulting

in an increase in 69+ T cells and 69+ NK cells, inducing CD8+ and

activating CD56+ tumor-infiltrating cells to achieve specific killing

of TNBC cells (44).
2.3.2 Cancer-associated fibroblasts and
adipose stromal cells

Cancer-associated fibroblasts (CAF), also known as tumor

mesenchymal stromal cells (MSC), are associated with

extracellular matrix (ECM) remodeling, leukocyte recruitment,

and immunosuppression in cancer (83), and can induce

epithelial-mesenchymal transition (EMT) of cancer cells. Related
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from different lineages. Some of them are derived from white

adipose tissue (WAT) around the tumor, and adipose stromal

cells (ASC) are MSC in WAT (84). It is one of the most

abundant cell components around the breast tissue, which can

cause changes in tumor cell phenotype and promote epithelial-

mesenchymal transition and invasiveness of TNBC cells by

secreting tumor growth-related hormones and cytokines.

Therefore, targeting ASC and depleting it is a new method for the

treatment of TNBC. D-CAN peptide, which is made of cyclic

peptide WAT7 (sequence CSWKYWFGEC), can induce the

apoptosis of ASC and interfere with invasive TNBC (45).
3 The combinations of peptides
target TNBC to exert
immunomodulatory effects

In addition to targeting triple-negative breast cancer in a single

form to exert immunomodulatory effects, there are many

combinations of peptides, such as vaccines, exosomes,

microRNAs, checkpoint inhibitors, etc. These combinations show

good results in TNBC treatment (85) Table 2.
3.1 Breast cancer vaccine

Cancer vaccines mainly recognize tumor-associated antigens by

stimulating the immune system to produce corresponding

antibodies to achieve the effect of prevention and treatment. In

TNBC, many new antigens have been identified, such as a cancer-

testis antigen, folate receptor a (Fra), human a-lactalbumin, and so

on (87). However, many of these antigens are short peptides with

poor immunogenicity and cannot stimulate the cellular immune

response well. Therefore, adjuvants are generally added to these

antigenic peptides to enhance the immune response and improve

the efficacy of the vaccine. Common adjuvants are MPL or MF

(107). NY-ESO-1, the first cancer-testis antigen, is a highly

immunogenic antigen target present in triple-negative breast

cancer. Studies have developed the NY-ESO-1 vaccine using

cowpea mosaic virus (CPMV) as an adjuvant (86). CPMV has

strong immune stimulation due to its protein structure and capsized

nucleic acid, which enhances the uptake of NY-ESO-1 peptide by

antigen-presenting cells and the subsequent response of CD8+ T

cells. Secondly, folate receptor a (Fra) TPIV200 is also a candidate

vaccine and is being studied (87). Human a-lactalbumin is an

antigen that is only expressed in the lactating mammary gland of

normal tissues, but is also expressed in TNBC, and has the potential

to be a candidate vaccine target (88). The combination of antigen

peptides and adjuvants to make vaccines stimulate the body to

strengthen the humoral immune response and a cellular immune

response is believed to play a greater role in the prevention and

treatment of triple-negative breast cancer in the future.
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TABLE 2 The mechanism by which the combinations of peptides target TNBC to exert its immunomodulatory effects.

Catalog Peptide
name

Peptide sequence Combination
modalities

Target Mechanism Reference

Breast cancer vaccine NY-ESO-1
peptide

SLLMWITQV-LSPG-C NY-ESO-1 vaccine NY-ESO-1 Activating the response of CD8+
T cells

(86)

TPIV200
peptide

/ TPIV200 vaccine TPIV200 Activating the response of CD8+
T cells

(87)

Human a-
lactalbumin
peptide

/ Human a-
lactalbumin
vaccine

Human a-
lactalbumin

Activating the response of CD8+
T cells

(88)

Engineered exosomes c-Met
binding
peptide

/ Engineered
macrophage-

derived exosomes

Inhibiting the EMT (89)

MicroRNA and other
immune-related
molecular pathways

uPA / Elivering anti-miR
21 (pa21) and
miR205 (p205)

uPAR microRNA-21 ↓
microRNA-205 ↑

(90)

Elivering anti-
miRNA-21 or

anti-miRNA-10b

microRNA-21 ↓
microRNA-10b ↓

(24)

cyclic RGD
peptide

/ siRNA TNBC cells Inhibiting the Wnt/ EMT signal
transduction

(91)

GE11
peptide

YHWYGYTPQNVIGGGGC siRNA EGFR Inhibiting EGFR (92)

Immune checkpoint
inhibitors(ICI)

DPPA-1 NYSKPTDRQYHF PD-L1 PD1 Inhibiting the interaction between
PD1 and PD-L1

(93)

anti-PD-L1
peptide

CLQKTPKQC PD-L1 PD-L1 Inhibiting the expression of the
PD-1/ PD-L1 interaction axis

(94)

PEP NYSKPTDRQYHF PD-L1 PD-L1 Inhibiting the circulation of PD-
L1

(95)

Adoptive cell therapy-
chimeric antigen receptor
T cells

NCL
peptide

KMAPPPKEV;
VLSNLSYSA

NCL-specific T
cells

NCL Secific killing of NCL
overexpressed tumor cells

(94)

PLAC1
peptide

VLCSIDWFM PLAC1-specific
TCR engineered T

cell

PLAC 1 Specific killing of PLAC 1
overexpressed tumor cells

(96)

Drug-
peptide
conjugates

Cell
penetrating
peptide

CPP RLYMRYYSPTTRRYG Elivering DOX TNBC cells Causing a short or long-term
stable imbalance of the membrane
at the binding site of the two, and
CPP can flow into tumor cells.

(97)

ZER-HPbCD 98)

Elivering Rictor
siRNA

(99)

Tumor penetrating
peptide

iRG / Elivering DOX TNBC cells Making anticancer drugs enter
tumor cells to enhance the

therapeutic effect

(100)

Other peptides TH19P01 Ac-GVRAKAGVRN(Nle)
FKSESY

Elivering DOX SORT1 Selective treatment of TNBC cells
expressing SORT1

(101)

GE 11 YHWYGYTPQNVI Elivering DOX EGFR Selective treatment of TNBC cells
expressing EGFR

(102)

18-4
peptide

/ Elivering DOX K1 Selective treatment of TNBC cells
expressing K1

(11)

EBP CAHKHVHHVPVRL Elivering DOX Endothelial
glycoprotein

Selective treatment of TNBC cells
expressing endothelial

glycoprotein

(103)

BP 10
peptide

CPWKRMEKKRSHL Elivering DOX PROCR Selective treatment of TNBC cells
expressing PROCR

(104)

/ Elivering DOX Integrins (30)

(Continued)
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3.2 Engineered exosomes

Exosomes are extracellular vesicles that can be found in almost

all cells and affect the growth and metastasis of tumor cells by

participating in many cell signal transduction processes. They have

now been used to deliver some important molecules (87). It has

been reported that when the antigen peptide in cancer is carried by

exosomes, the body will produce stronger immune stimulation on

it, so exosomes are also tried to be used as immunogen carriers

(108). Studies have produced engineered macrophage-derived

exosomes for carrying c-Met binding peptides. C-Met is a

mesenchymal-epithelial transforming factor, and its abnormal

signals will lead to poor prognosis and increased metastasis of

triple-negative breast cancer (89). Using c-Met binding peptides

combined with exosomes can enhance the immune response

and inhibit the expression of c-Met, thereby achieving

therapeutic effects.
3.3 MicroRNA and other immune-related
molecular pathways

The growth, metastasis, and recurrence of TNBC are also

closely related to the imbalance of immune-related molecules

such as microRNAs (miRNA) and short interfering RNA (siRNA)

(87). Regulating the expression of these molecules by targeting the

delivery of miRNA or siRNA can well inhibit breast cancer cells.

MiRNAs are generally small non-coding RNA molecules

composed of about 20 nucleotides. MiRNAs can bind to the

complementary sequence bases of endogenous mRNAs and

regulate gene expression by interacting with the 3’ untranslated

region of the target gene, thereby interfering with the transcription

and translation of specific genes (109). In TNBC, the disordered

expression of miRNAs can lead to the growth, metastasis, and

recurrence of tumor cells. Among them, the overexpression of

microRNA-21, miRNA-10b, and miRNA-21 and the down-

regulation of microRNA-205 often occur (24, 90). In the

corresponding study, plasmid anti-miR21 (pa21) and plasmid

miR205 (p205) were coated in urokinase plasminogen activator

peptide (uPA). UPA can target urokinase plasminogen activator

receptor (uPAR) in the TNBC cell membrane, thereby delivering
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anti-miR 21 (pa21) and miR205 (p205) to tumor cells, playing a role

in simultaneously down-regulating microRNA-21 levels and up-

regulating microRNA-205 levels (90). At the same time, there are

also studies using uPA to target the delivery of anti-miRNA-21 or

anti-miRNA-10b, antagonizing the accumulation of multiple

endogenous miRNAs to achieve the purpose of treatment (24).

Immune-related molecules In addition to the aforementioned

miRNAs, there are short interfering RNAs (siRNAs). The siRNA

molecule is a double-stranded short-chain oligonucleotide that can

specifically match the sequence of the mRNA molecule, thereby

causing specific gene silencing, which is of great significance for the

treatment of cancer(110). The experimental cyclic RGD peptide

delivery therapeutic siRNA can down-regulate PRC 2-mediated H3

K27 trimethylation and Wnt/EMT signal transduction, which

changes the phosphorylation spectrum of several kinases in

TNBC cells and affects the carcinogenic relationship (91). In

addition to the use of cyclic RGD peptides to deliver siRNA,

GE11 peptide is also used, which is an anti-EGFR peptide that

can actively bind to TNBC cells overexpressing epidermal growth

factor receptor (EGFR), which is beneficial for siRNA to better

target these tumor cells (92).
3.4 Immune checkpoint inhibitors

Immune checkpoints determine the activation or inhibition of

the host immune response in anti-tumor immunity. Common

immune checkpoints are PD-L1 and PD-L2. Tumor cells evade

immune surveillance of T cells by up-regulating programmed death

ligand (PD-L1) on the cell surface (111). Moreover, studies have

shown that the expression of PD-L1 is much higher in TNBC cells

than in other subtypes of breast cancer(112). Therefore, the use of

immune checkpoint inhibitors (ICI) can restore the host’s immune

response and enhance the clearance of tumor cells. At the same

time, some studies have found that some peptides can act as

immune checkpoint inhibitors and have good anti-tumor effects.

The general method used to block immune checkpoints is to block

the interaction between programmed cell death protein 1 (PD1) and

PD-L1, such as a D-peptide antagonist (DPPA-1), DPPA-1 is the

hydrolysis release product LAG-DPPA-1 of the sequence MMP-2

on the CD peptide (93). In addition, the anti-PD-L1 peptide can be
TABLE 2 Continued

Catalog Peptide
name

Peptide sequence Combination
modalities

Target Mechanism Reference

AXT050
peptide

Selective treatment of TNBC cells
expressing integrins

tLyP-
1peptide

CGNKRTR Elivering DOX
and paclitaxel

The
scavenger
receptor

type BI and
NRP-1

Selective treatment of TNBC cells
expressing the scavenger receptor

type BI and NRP-1

(27; 105)

iNGRt
peptide

CRNGR Elivering DTX NRP-1 Selective treatment of TNBC cells
expressing NRP-1

(106)
/, The structure of the peptide is not mentioned in the current reference, and it is not clear.
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used to directly target PD-L1, activate autophagy by inhibiting PD-

L1, and restore T cell-mediated killing in TNBC tumors (94).

Although blocking PD-L1 does prevent the expression of the PD-

1/PD-L1 interaction axis to a certain extent, it generally shows a

good therapeutic effect. In some patients, PD-L1 is circulating in

tumor cells, and then PD-L1 is re-expressed on the cell surface

(113). Therefore, blocking the circulation of PD-L1 is the key. Some

studies have proposed the use of PD-L1 targeting D peptide

(NYSKPTDRQYHF, PEP). After PEP binds to PD-L1 on the

surface of cancer cells, it will guide PD-L1 into lysosomes,

making PD-L1 degraded and unable to circulate again, thereby

down-regulating the expression of PD-L1 and restoring the killing

effect of T cells on TNBC tumor cells (95).
3.5 Adoptive cell therapy-chimeric
antigen receptor T cells

Adoptive cell therapy (ACT) is a highly effective and promising

treatment method, which is generally activated by tumor-specific

lymphocytes including TIL, CD8 + cells and CD4 + helper cells, or

other cells of the immune system such as NK cells and DC cells, and

then infused into patients to kill tumor cells. Chimeric antigen

receptor T cell therapy is a kind of adoptive cell therapy. These T

cells can specifically recognize tumor-specific antigen (TSA) or

tumor-associated antigen (TAA), especially TSA, through specific

T cell receptors (TCR) to achieve tumor-targeted therapy (87).

One of the chimeric antigen receptor T cells mentioned first is

nucleolin (NCL) specific T cells. NCL is a protein that exists in the

nucleolus, cytoplasm, and cell surface of eukaryotic cells, and has a

variety of biological functions because NCL is overexpressed in TNBC

and is associated with metastasis and poor prognosis of TNBC cells

(114). Therefore, NCL has become a potential target for TNBC

treatment. Researchers have engineered NCL-specific T cells and

found that they have a good specific killing effect on NCL-

overexpressing tumor cells (94). In addition, there is also a PLAC1-

specific TCR-engineered T cell. Placenta-specific antigen 1 (PLAC1) is

one of the cancer-testis antigens (CTA), which is expressed in

malignant tumors such as breast cancer and is related to the

proliferation and migration of tumor cells(115). Effective

engineering of CD8 + T cells to express TCRs that recognize

human leukocyte antigen (HLA) -restricted PLAC1 peptides can

specifically kill tumor cells overexpressing PLAC1. Although PLAC1

is also expressed in normal tissues of the testis and placenta, it is not

affected by TCR-engineered T cells because germ cells do not express

MHC molecules and do not present antigens(116).
3.6 Drug-peptide conjugates

Drug-peptide conjugates (PDC) are a unique class of drug

carriers that couple small molecule drugs with peptides. These

peptides can modify and deliver the corresponding drugs to

tumor cells, enhance the intracellular transport of drugs, and

improve the lethality of the corresponding drugs (117). There are

many kinds of peptides applied in PDC, among which cell-
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penetrating peptide (CPP) and tumor-penetrating peptide (TTP)

are the most widely used. At the same time, some other peptides are

being studied, which are mainly modified by small-sized drugs such

as oligonucleotides and chemotherapeutic drugs.

3.6.1 Cell-penetrating peptide
CPP is composed of natural amino acids with high

biocompatibility and effective tissue penetration. The positively

charged amino acids on CPP and the negatively charged

membrane phospholipid bilayer on the surface of tumor cells

form an electrostatic interaction. At the same time, the

hydrophobic amino acids of CPP interact with the hydrophobic

core of the tumor cell membrane, which makes the lipid bilayer

sparse, causing a short or long-term stable imbalance of the

membrane at the binding site of the two, and CPP can flow into

tumor cells (117).

Because the lack of targeting of chemotherapeutic drugs often

damages normal tissue cells to produce toxic effects, the use of CPP-

modified chemotherapeutic drugs has become a research hotspot.

Some studies have modified the chemotherapeutic drug doxorubicin

(DOX) with tumor-homing CPP (RLYMRYYSPTTRRYG) and

loaded it into nanoparticles (NP) and found that it has good blood

compatibility and biocompatibility. The effect of inhibiting the

growth of TNBC cells is more significant than that of DOX alone

(97). In addition to some commonly used chemotherapeutic drugs,

some natural anticancer drugs have gradually attracted people’s

attention. Here, the anticancer drug Zerumbone (ZER, M.218.34g/

mol) derived from the rhizome of wild ginger Zingiber Zerumbet

Smith is mentioned. It is a sesquiterpene compound that can increase

the activation of Bax to induce apoptosis of breast cancer cells and

inhibit the proliferation of tumor cells by inhibiting the expression of

the Ki-67 protein (118). ZER achieves targeted therapy of ZER by

using CPP-modified ZER (ZER-HPbCD) encapsulated in

hydroxypropyl-b-cyclodextrin (98). In addition, oligonucleotides

have always been a good choice for the treatment of cancer, such

as small interfering RNA (siRNA), which can effectively target the

table of silent genes (119). However, due to the relatively unstable

physiological environment of naked siRNA in the blood system,

digestive system, and intracellular lysosomes, it is easy to be removed

when used alone, so the CPP delivery method shows great potential.

In some experiments, CPP-modified GO nanoparticles loaded with

Rictor siRNA were injected into nude mice, which significantly

inhibited the growth of TNBC tumors. This may be because Rictor

siRNA further inhibited the phosphorylation of Akt and p70s6k by

inhibiting the expression of Rictor, as well as the subsequent PI3K/

Akt/mTOR signal transduction (99).
3.6.2 Tumor penetrating peptide
TTP is mainly targeted at tumor cells, and drug delivery

destroys cancer cells through different mechanisms. IRG is a

commonly used cyclic tumor penetrating peptide, which is

composed of a disulfide-linked RGD module and an overlapping

C-terminal R module (120). The RGD module can bind to the

highly expressed avb3 or avb5 integrin on TNBC tumor cells,

making anticancer drugs enter tumor cells to enhance the
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therapeutic effect (121). Studies have confirmed that RGD-modified

RBC membrane and then encapsulating DOX can ensure its good

biological stability and low cytotoxicity in vivo (99).

3.6.3 Other peptides
PDC has a class of antibody-drug conjugates (ADC), which

recognize TAA or TSA through corresponding antibodies. These

peptides as antibodies do not have anti-cancer effects themselves,

but after binding to tumor cells, they can deliver the corresponding

drugs and kill the target cancer cells by internalizing the cells (87).

There are many potential peptides in ADC. The following will list

some peptides that are being studied in recent years.

The first thing to be mentioned is the newly developed peptide

TH19P01 targeting neurotensin receptor 3 (SORT1). SORT1

belongs to the receptor of the VPS10P family and is abnormally

expressed in human cancers such as breast cancer, ovarian cancer,

and pancreatic cancer. TH19P01 can be combined with many

anticancer drugs such as DOX, and then selectively treat TNBC

cells containing SORT1 (101). Epidermal growth factor receptor

(EGFR) has become a promising target because it is overexpressed

in TNBC cancer cells. A twelve peptide named GE 11

(YHWYGYTPQNVI) can effectively bind EGFR and release DOX

to kill tumor cells (102). In addition, keratin 1 (K1) is a novel

receptor that is highly expressed on breast cancer cells and can also

be used as a target for drug delivery. Peptide 18-4 was designed and

then conjugated with a DOX-containing acid-sensitive hydrazone

linker to achieve targeted killing of cancer cells(11). In addition,

endothelial glycoprotein binding peptide (EBP) can also be used to

modify DOX and target TNBC cells(103). Similarly, peptide BP 10

has a strong affinity for the new cancer stem cell marker protein C

receptor (PROCR) in tumor tissues of TNBC patients. By targeting

TNBC cells expressing PROCR, DOX is released and the treatment

efficiency is improved (104). The AXT 050 peptide is a collagen-IV-

derived peptide that can target tumor-associated integrins and

increase the accumulation of drugs in tumor cells (30). Here we

also mention a tumor-homing peptide tLyP-1 peptide that can load

DOX and paclitaxel and target tumor cells by binding to the

overexpressed scavenger receptor type B I and neuropilin receptor

1 (NRP-1) in TNBC cells(27, 91, 105). The iNGRt peptide can also

target NRP-1, which enhances anticancer activity by attaching to

the surface of NP loaded with the anticancer drug docetaxel

(DTX) (106).
4 Conclusion

TNBC is a highly heterogeneous subtype of breast cancer, and

its incidence is increasing year by year. Due to the lack of effective

therapeutic targets, it has a higher recurrence and metastasis rate,

and mortality rate than ordinary breast cancer. Surgery plus

chemotherapy is the main method of clinical treatment of TNBC,

but the curative effect is very little (17). So far, the treatment

progress of TNBC has lagged far behind other breast cancer
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subtypes, and the treatment of TNBC is still a huge challenge.

With the continuous improvement of the understanding of the

immunogenicity of TNBC, TNBC immunotherapy has developed

rapidly in recent years and has shown strong therapeutic potential

(122). However, there are still some challenges in the

immunotherapy of TNBC. For example, some patients have poor

responses to immunotherapy, and highly accurate prediction

methods are needed to screen out responders for treatment and

further explore the reasons for poor responses. Many TNBC-

associated antigens are not only highly expressed in tumor cells,

but also expressed in normal cells to varying degrees.

Immunotherapy targeting these antigens may damage normal

tissues and cause adverse reactions(123). TNBC cells have strong

migration ability and poor response to targeted drug treatment.

Therefore, it is necessary to further find new TNBC-specific

therapeutic targets and promote personalized treatment in the

direction of future development.

In the future, the combination of targeted therapy and

immunotherapy is also expected to improve the efficacy of anti-

tumor therapy. The combination of the two has a synergistic

therapeutic effect, which may be better than the simple superposition

of the effects of a single component (124). Targeted therapy can

accurately overcome various forms of immunosuppression in the

tumor microenvironment and promote anti-tumor immune

regulation. The combination of targeted therapy and immunotherapy

includes a combination of various immunotherapy drugs and new

treatments such as standard therapy and targeted therapy (125).

Among these new treatments, peptides have become a new star in

anti-tumor therapy because of their advantages such as small molecular

weight, high biocompatibility, and easy synthesis, and numerous

researchers have been competing to study them. Of course, peptides

also have some shortcomings, such as being unstable and easily

decomposed in vivo, having short half-life, and most cannot be taken

orally(123). For various reasons, the research of many peptides as drugs

has been stuck in the theoretical stage, failing to carry out clinical trials

and further promotion, but it is believed that there will be a

breakthrough shortly.

At the same time, with the development of sequencing

technology and medical big data processing, it has become a hot

spot in current medical development to adopt accurate medical

strategies to deal with highly heterogeneous diseases such as tumors

and to select reasonable combination therapy according to the

tumor characteristics of each patient (126). Using whole exome

sequencing, targeted sequencing, and transcriptome sequencing, we

can analyze the tumor-specific cancer driver genes and the

abnormal signaling pathways involved in each patient’s tumor,

such as PI3K/AKT, RAS/MAPK, DNA damage repair, cell cycle

regulation, and transcriptional regulation (127). Most of the drugs

targeting these pathways are currently in clinical trials, and the

treatment strategies combined with other therapies, including anti-

PD-1/PDL1 antibodies, have attracted much attention. In the

future, clinical trials with larger sample sizes will be carried out to

explore their effects on survival and disease development (17). It is
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believed that through further research, the treatment of TNBC will

achieve greater breakthroughs in the future.
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Glossary

TNBC triple-negative breast cancer

ER estrogen receptor

PR progesterone receptor

HER2 human epidermal growth factor receptor 2

PCR pathological complete response

ICI immune checkpoint inhibitors

GPCRs G protein-coupled receptors

PAR1 protease-activated receptor 1

OBR obesity hormone receptor

CSPG4 chondroitin sulfate proteoglycan 4

FZD7 Frizzle-7

PCNA proliferating cell nuclear antigen

IDCL interdomain connector loop

PIP-box PCNA interacting protein box

SID Sin 3-interacting domain

VEGF vascular endothelial growth factor

API-5 anti-apoptotic protein-5

TME tumor microenvironment

TAM tumor-associated macrophages

EMT epithelial-mesenchymal transition

CAF cancer-associated fibroblasts

MSC mesenchymal stromal cells

WAT white adipose tissue

ASC adipose stromal cells

Fra folate receptor a

CPMV cowpea mosaic virus

miRNA microRNAs

siRNA short interfering RNA

pa 21 plasmid anti-miR21

p205 plasmid miR205

uPA urokinase plasminogen activator peptide

uPAR urokinase plasminogen activator receptor

pa 21 anti-miR 21

p205 miR205

EGFR epidermal growth factor receptor

PD-L1 programmed death ligand

PD1 protein 1

ACT adoptive cell therapy

(Continued)
F
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TSA tumor-specific antigen

TAA tumor-associated antigen

TCR T cell receptor

NCL nucleolin

PLAC1 placenta-specific antigen 1

CTA cancer-testis antigens

HLA human leukocyte antigen

PDC drug-peptide conjugates

CPP cell penetrating peptide

TTP tumor penetrating peptide

DOX doxorubicin

NP nanoparticles

ADC antibody drug conjugates

SORT1 neurotensin receptor 3

K1 keratin 1

PROCR protein C receptor

DTX docetaxel.
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