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Chronic inflammatory diseases (CIDs), including inflammatory bowel disease

(IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are

thought to emerge from an impaired complex network of inter- and

intracellular biochemical interactions among several proteins and small

chemical compounds under strong influence of genetic and environmental

factors. CIDs are characterised by shared and disease-specific processes,

which is reflected by partially overlapping genetic risk maps and pathogenic

cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular

pathways. The translation of the research findings on CIDs molecular

mechanisms into effective treatments is challenging and may explain the low

remission rates despite modern targeted therapies. Modelling CID-related causal

interactions as networks allows us to tackle the complexity at a systems level and

improve our understanding of the interplay of key pathways. Here we report the

construction, description, and initial applications of the SYSCID map (https://

syscid.elixir-luxembourg.org/), a mechanistic causal interaction network

covering the molecular crosstalk between IBD, RA and SLE. We demonstrate
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that the map serves as an interactive, graphical review of IBD, RA and SLE

molecular mechanisms, and helps to understand the complexity of omics data.

Examples of such application are illustrated using transcriptome data from time-

series gene expression profiles following anti-TNF treatment and data from

genome-wide associations studies that enable us to suggest potential effects

to altered pathways and propose possible mechanistic biomarkers of

treatment response.
KEYWORDS
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1 Introduction

Chronic inflammatory diseases (CIDs) are a group of incurable

immune system disorders of unclear aetiology characterised by a

persistent inflammation that ultimately cause damage in target

tissues and organs (1). Currently, there are no curative treatment

options for CIDs. Available targeted treatments are only beneficial

in a subset of patients. Despite this heterogeneity of response,

currently no biomarkers are available, which would allow

stratifying patients into different therapeutic modalities. Even the

most advanced treatment options have one severe limitation: they

only offer short drug-free remission periods and therefore have to

be given lifelong (2). Regarding prevalence, CIDs, more specifically

their subgroup of immune-mediated inflammatory diseases, are

estimated to affect 5 to 7% of the Western population (3). Finally,

CIDs can result in debilitating physical and psychosocial symptoms

for patients and are a sizable burden to society through loss of

education, absenteeism, and increasing health-care costs (4, 5).

Several molecular mechanisms underlying CIDs have been

converted into clinical treatments (2, 6). For example, biologics,

mainly monoclonal antibodies targeting specific cytokines, emerged

as clinical treatment options; however, their therapeutic potential is

not always achieved in clinical practice (7). This may be explained

by a switch towards alternative molecular pathways that are

insensitive to the mechanism of action of the biologic (8–11).

Finding such alternative molecular pathways is thus important

for understanding the molecular mechanisms of the disease and for

indicating new potential targets for complementary biologics to

achieve better clinical responses. In this regard, the results of

clinical trials of so-called dual targeted therapy for CIDs showed

promising results (12, 13). As CIDs emerge from a complex network

of causal interactions between proteins, small chemical compounds,

environmental factors and different types of cells, the identification of

such alternative pathways and their targets should be based on their

role in the network to assure their downstream effects. Such exercise

requires, however, the construction and the analysis of a network

encompassing CID-related causal interactions – events in which a

phenotype or state of one biomolecule is affected by another
02
phenotype or biomolecule under the context of the CID of interest

–, covering relevant mechanistic details.

In response to this demand, we present the SYSCID map (https://

syscid.elixir-luxembourg.org/), a network of mechanistically resolved

causal interactions related to three CIDs - inflammatory bowel disease

(IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus

(SLE) (https://syscid.elixir-luxembourg.org). As these CIDs share a

significant amount of genetic disease risk loci and immunological

features as well as large data sets and clinically validated markers of

individual disease phenotypes (1), we consider them an important

starting point for systematic exploration of common and specific

mechanisms involved in the pathophysiology of CIDs. The SYSCID

map is constructed based on literature review and represents disease

mechanisms as an interactive diagram following graphical systems

biology standards. The SYSCID map is a standardised knowledge

repository for the IBD, RA and SLE and a hypothesis-generating

resource for new discoveries. Here, we demonstrate how the SYSCID

map can be used for these purposes. First, we discuss the scope of the

literature used to construct the map as an interactive, graphically

guided review of IBD, RA and SLE molecular pathogenesis. We then

demonstrate the process of omics data interpretation using the map to

identify potential effects of altered pathways and propose mechanistic

biomarkers (14).
2 Methods

2.1 Map construction and availability

Knowledge about IBD-, RA- and SLE-relevant causal interaction

were captured from biomedical literature and then encoded into a

diagrammatic visualisation format, i.e., the map, by using the

CellDesigner tool (15) following the Systems Biology Graphical

Notation (SBGN) standard (16; https://sbgn.github.io/learning); the

only exception is the representation of drugs for which we used the

CellDesigner own glyph. The SYSCID map was then uploaded into

the MINERVA platform (17) (https://syscid.elixir-luxembourg.org/

minerva/) for easy access and exploration (Figure 1). Details are

found below.
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2.2 Capturing IBD-, RA- and SLE-related
causal interactions from literature

The SYSCID map was constructed by following most of the

recommendations in the recently published guidelines for disease

maps construction (18). At first, we manually curated reviews and

original peer-reviewed research papers suggested by domain experts

from the SYSCID consortium. These papers were published

between 1989 and 2021, being most of them (~88%) published

between 2010 and 2020 (see Table S10 for the list of Pubmed IDs of

curated papers). While most of these domain expert-selected papers

describe relevant experimentally proven causal interactions under

the context of IBD, RA and SLE, some other papers describe

experimentally proven general immune processes-related causal

interactions that were added to the map to cover missing disease-

specific information. Most of causal interactions were directly

assigned to compartments (i.e., organs, tissues, cells and

organelles) based on information present in the paper itself; in

some cases, this assignment was inferred based on common

knowledge about the most usual locations where a given causal

interaction takes place. We also captured details concerning causal

interactions (e.g., gene variant and phosphorylated or citrullinated

residues) when they were available in the paper.
2.3 Encoding causal interactions
into diagrams

The retrieved causal interactions were then encoded into a

diagrammatic visualisation format using the CellDesigner tool (15)

by adopting its own standard visual syntax, the CellDesigner’s

Systems Biology Markup Language (SBML) extension. The

encoding process was performed following the Systems Biology

Graphical Notation (SBGN) standard (16; https://sbgn.github.io/

learning). We used both SBGN Process Description (PD) and

Activity Flow (AF) languages. In PD, a causal interaction is
Frontiers in Immunology 03
represented as a state transition of a biochemical entity (regulated

entity) with biochemical details about the type of molecular

transition and how it is modified by a regulator entity. In AF, a

causal interaction is represented as a simple directed connection

between two entities with information about the type of regulation,

i.e., activation or inhibition.
2.4 Identification and annotation of the
map elements

All entities (proteins, RNAs, genes, complexes, metabolites,

drugs and phenotypes), compartments (organelles, cells, tissues

and organs) and interactions in the map were properly annotated

to ensure the map interoperability with systems biology tools and

external databases. For this end, we followed the Minimal

Information Requested In the Annotation of Models (MIRIAM)

(19), a standard for annotating and curating computational models

and maps. Proteins, RNAs and genes were identified by their

corresponding HUGO Gene Nomenclature Committee (HGNC,

https://www.genenames.org) official symbols so that the

MINERVA platform, the tool used to for visualization and

navigation through the map (see more details below), could

automatically assign additional annotations (Ensembl, Entrez

Gene, RefSeq and Uniprot identifiers [IDs]) to these entities; in

case of symbols or terms not recognized by HGNC, these additional

annotations were manually assigned. Complexes were identified by

their Gene Ontology (GO) cellular component terms and

corresponding IDs (20, 21). Metabolites were identified by their

ChEBI names (22; https://www.ebi.ac.uk/chebi) and corresponding

IDs. Drugs were identified by their Drugbank (23); https://

go.drugbank.com/) generic names and corresponding IDs.

Phenotypes were identified by their GO biological process terms

and corresponding IDs (http://geneontology.org/docs/ontology-

documentation) (20, 21) in case of phenotypes representing

biological processes or Medical Subject Headings (MeSH) terms
FIGURE 1

Building the SYSCID map Domain experts from the SYSCID project selected and provided curators with the papers potentially reporting molecular
processes related to inflammatory bowel diseases (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Curators then extracted
relevant molecular processes from the selected papers and encoded the extracted knowledge into the CellDesigner format; in addition, curators
manually defined pathways, i.e., subsets of molecular processes leading to a specific phenotype, covering specific regions of the map. The SYSCID
map was uploaded to the MINERVA platform and then made publicly accessible so that SYSCID domains experts could review it. After some rounds
of reviews and refinement, a final improved version of the map was uploaded to MINERVA.
frontiersin.org

https://sbgn.github.io/learning
https://sbgn.github.io/learning
https://www.genenames.org
https://www.ebi.ac.uk/chebi
https://go.drugbank.com/
https://go.drugbank.com/
http://geneontology.org/docs/ontology-documentation
http://geneontology.org/docs/ontology-documentation
https://doi.org/10.3389/fimmu.2023.1257321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Acencio et al. 10.3389/fimmu.2023.1257321
and corresponding IDs (https://www.ncbi.nlm.nih.gov/mesh) in

case of phenotypes representing disease-related elements.

For annotations not automatically retrieved by MINERVA, we

used the MIRIAM-dedicated section of CellDesigner to add

annotations. For adding references to the interactions, i.e.,

Pubmed IDs of the papers from which the interactions were

collected, we used the relation “bqbiol: isDescribedby”; for adding

all other annotations, we used the relation “bqmodel:isEncodeby”.
2.5 Map availability and visualisation in the
MINERVA platform

The SYSCID map is available as an online interactive map using

the Molecular Interaction NEtwoRks VisuAlization (MINERVA)

platform (17) (https://syscid.elixir-luxembourg.org/minerva/).

MINERVA is a standalone web server for visual exploration,

analysis and management of molecular networks encoded in

systems biology formats, including CellDesigner, SBML and

SBGN. MINERVA provides automated content annotation and

verification and enables, among other features, the overlaying of

experimental data (e.g., transcriptomics, gene variant data etc) on

the visualised networks. For more details about the functionalities

available in MINERVA, please consult the MINERVA

documentation at https://minerva.pages.uni.lu/doc/.
2.6 Integration of omics data to the map

IBD-, RA- and SLE-associated variants extracted from the Gene

Wide-Association Studies (GWAS) Catalogue (24) and SYSCID-

derived transcriptome data were integrated to the SYSCID map by

using the MINERVA platform as detailed described below and

following the instructions provided in the MINERVA pages

(https://minerva.pages.uni.lu/doc/user_manual/v16.0/index/

#upload-of-user-provided-overlay-data).

2.6.1 Integration of GWAS catalogue data to
the map

For the analysis of possible mechanistic effects of IBD, RA and

SLE-associated gene variants on downstream molecular processes

in SYSCID map, we first obtained relevant data from the Gene

Wide-Association Studies (GWAS) catalogue (24). We collected

data on 04.11.2022 by using the Experimental Factor Ontology

(EFO) identifiers of IBD (EFO_0003767 for IBD, EFO_0000384 for

Crohn’s disease and EFO_0000729 for ulcerative colitis), RA

(EFO_0000685) and SLE (EFO_0002690).

We filtered each of the three datasets - IBD, RA and SLE - to

exclude variants that are intergenic or fall into non-coding

transcripts (mature miRNA, non-coding transcript exon, non-

coding transcript intron and non-coding transcript splice region).

We excluded intergenic variants as they do not seem to have a

relationship with the closest genes as indicated in GWAS but,

instead, they seem to impact more distant genes, even those

located in different chromosomes (25). Variants in non-coding
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transcripts are irrelevant to the SYSCID map as virtually all

causal interactions in the map take place between proteins or

DNA binding transcription factors and their protein-coding

target genes. Finally, we prepared a MINERVA-compatible file for

the creation of a visual overlay of these variants in SYSCID map in

the MINERVA platform (https://syscid.elixir-luxembourg.org/,

“General Overlays” tab).

2.6.2 Integration of transcriptome data to
the map

For the analysis of transcriptome data integration with the map,

we used the transcriptome dataset published by Mishra et al. (26)

concerning the detection of DEGs by comparing gene expression

profiles of RNA extracted from whole blood of remitting and non-

remitting IBD patients at six time points (4, 24 and 72 h and 2, 6

and 14 weeks) after infliximab exposure with gene expression

profiles determined in baseline, i.e., before drug exposure. We

focused specifically on DEGs determined at 4 h in remitting

patients as, according to authors, the most profound alterations

occurred at this time point. This dataset is available at the NCBI

GEO website under the accession number GSE191328 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE191328 and via

the Supplementary Information of the original paper.

We downloaded the dataset from the above-mentioned

Supplementary Information and extracted the columns related to

4 h after drug exposure, i.e., LFC_4h and padj_4h, and the column

containing DEG’s HGNC symbols. We removed DEGs with an

adjusted p-value ≥ 0.05 (in column padj_4h) and then normalized

the log2 fold change values (in column LFC_4h) of remaining DEGs

to the [-1,1] range (Table S6). Finally, we prepared the file for the

creation of a visual overlay of these DEGs in SYSCID map in the

MINERVA platform (https://syscid.elixir-luxembourg.org,

“General overlays” tab).

2.6.3 Selection of proteins matched against
variants and DEGs for further analysis

After integrating variant data from the GWAS catalogue and

selected DEGs from Mishra et al. (26) in SYSCID map, we

shortlisted the proteins matched against variants and DEGs, i.e.,

possibly altered proteins, for potential further analyses. To this end,

possibly altered proteins were eligible for potential further analyses

if they were (1) activating, inhibiting or catalysing at least one

downstream molecular process or (2) activating or inhibiting a

downstream molecule. Among the eligible proteins, we prioritized

pairs of possibly altered proteins directly linked by a

molecular process.

2.6.4 Functional enrichment analysis in MINERVA
To check if some of the manually annotated pathways in the

SYSCID map were enriched in IBD, RA or SLE-associated gene

variants or DEGs, we used the MINERVA’s GSEA plugin (27) as

described in detail here: https://minerva.pages.uni.lu/doc/plugins/

gsea-plugin/. In brief, the MINERVA’s GSEA plugin considers as

the background gene list all genes present in the map; as the

pathway database source, the plugin considers the list of
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annotated pathways (Table S1) in the own map. The statistical test

used is the hypergeometric test and the obtained p-values are

adjusted for multiple comparisons by using the Bonferroni test.

Enriched pathways were those with adjusted p-value < 0.05.
3 Results

3.1 Aim and structure of the SYSCID map

CIDs, such as IBD, RA and SLE, are characterised by a chronic

inflammatory state that emerges from a complex network of inter-

and intracellular biochemical interactions among several proteins and

small chemical compounds under strong influence of genetic and

environmental factors (1). The SYSCID map focuses on presenting

this complex network as a diagrammatic visualisation using systems

biology standards (Figure 2). By using the MINERVA Platform (17,

27), users can explore the map interactively, request specific

knowledge and visualise omics data contextualising it to related

disease mechanisms. Contents of the SYSCID Map are annotated

using ontologies and controlled vocabularies, and available to connect

to computational workflows via a programmatic endpoint. The

SYSCID map can be freely accessible by accessing https://

syscid.elixir-luxembourg.org.

The SYSCID map contains 1494 causal interactions between

714 molecules (341 proteins, 173 mRNAs, 76 genes, 124 complexes,

31 metabolites and 20 drugs), 80 different cell types (taking into

consideration general types and different states of the same cell type,

e.g., leucocyte and mature and immature plasmacytoid dendritic

cells) and 131 phenotypes (24 pathological and 107 non-

pathological processes) that are distributed across compartments

representing organs and tissues relevant for each disease: gut

(lamina propria, epithelium and lumen), skin, oral cavity, adipose

tissue, kidney, synovial joint, primary (thymus) and secondary

(lymph node, spleen and bone marrow) lymphatic organs and

peripheral blood (Figure 2). Molecular mechanisms of selected

biologics used to treat CIDs are depicted in the submap “Anti-

inflammatory mechanisms of selected biologics” embedded in the

main map (Table S1). Additionally, to facilitate both exploration of

molecular processes and visualisation of omics data, we manually

annotated 66 pathways (Table S1) - subsets of molecular processes

linked to a specific phenotype or biologic - covering most of the

map. These pathways were grouped into eight major

pathophysiological features of CIDs as shown in Figure 3 and

Table S1.
3.2 The SYSCID map contents: a graphical
review of mechanisms at the crosstalk of
IBD, RA and SLE

The SYSCID map was built based on the review of IBD-, RA-

and SLE-relevant literature and, as such, the exploration of SYSCID

map contents leads naturally to a graphical review of key molecular

mechanisms of these diseases. In this section, we summarize the

contents of the map and try to show that it can serve the purpose of
Frontiers in Immunology 05
a user-friendly graphical review. To this end, we grouped the above-

mentioned 66 manually annotated pathways into eight main

pathophysiological features of these CIDs - that were, in turn,

grouped into three types of immune system responses - and briefly

described some relevant aspects of each pathway (Figure 3 and

Table S1).

3.2.1 Innate immune system
3.2.1.1 Non-immune cells-mediated regulation of
inflammation

The immune system is regulated not only by immune cells, but

also by non-immune cells, such as epithelial cells, epidermal

keratinocytes and synoviocytes, that, beyond forming a physical

barrier against external agents, also produce bioactive effectors and

regulators of the immune response (28). Therefore, it is expected

that abnormal activities of non-immune cells related to the immune

system regulation may be involved in the pathogenesis of

inflammatory diseases (28). The SYSCID map depicts some of the

molecular processes involved in these abnormal activities regarding

fibroblast-like synoviocytes (FLS), gut epithelial cells and epidermal

keratinocytes (Figure 3). FLSs, the dominant non-immune cells of

synovial tissues, contribute to joint inflammation and destruction in

RA (29). The SYSCID map illustrates regulation of production of

molecules promoting joint destruction by FLS, including alarmins

(30) and adipokines. (31, 32). Alarmins (S100A8 and S100A9),

stimulated by IL22, and MMP1, MMP3 and prostaglandin E2,

induced by adipokine, are all associated to joint destruction (33–

35). Another FLS-driven proinflammatory mechanism is

production of CXCL2, CXCL8, IL6 and PTGS2, regulated by the

RNA-binding protein ZFP36 (36) and the proinflammatory

interleukin IL1B. In addition to IL1B, the FLS activity is also

stimulated by TNF. The SYSCID map illustrates regulation of

TNF-induced inflammatory programs by MTORC1 depending on

the availability of amino acids glutamine, arginine and leucine (37).

The presence of these amino acids favours the TNF induction of

STAT1-dependent genes, such as CXCL11 and TNFSF13B, while

their absence leads to TNF-induced expression of NFkB-dependent

genes, such as IL6, CXCL8 and PTGS2 (37). As shown in the map,

gut epithelial cells can also modulate the immune response via the

production of proinflammatory proteins mediated by microbial

tryptophan-derived metabolites (38), endoplasmic reticulum stress

(39) and gasdermin-D (40).

3.2.1.2 Regulation of phagocytes activity

Macrophages and neutrophils are key regulators of

inflammatory processes via the production of cytokines and

chemokines, extracellular traps (ETs) or through the interaction

with other immune cells (41, 42). Their activities are tightly

regulated, and their dysfunction is associated with the three CIDs

as illustrated in the SYSCID map (Figure 3). One of encoded

mechanisms is CEBPD-mediated regulation of macrophage

activity in RA (43), representing pro-inflammatory protein IL1B

promoting the expression of the transcription factor CEBPD, which

regulates several pro-inflammatory proteins. Another mechanism

of regulation involves TLR3-induced PKM (44) linking glycolysis

pathway and pro-inflammatory activity of macrophages in RA
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https://syscid.elixir-luxembourg.org
https://syscid.elixir-luxembourg.org
https://doi.org/10.3389/fimmu.2023.1257321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Acencio et al. 10.3389/fimmu.2023.1257321
(Vander 45). Still, the SYSCID map encodes a novel function for

pro-apoptotic protein BCL2L11 in SLE (46); this protein suppresses

pro-inflammatory macrophage activity by inhibiting TBK1 kinase

that, in turn, activates IRF3, a transcription factor that promotes the

expression of several pro-inflammatory proteins (47). Finally,

regarding regulation of neutrophils activity, the SYSCID map

shows that ETs, which promote IBDs through the impairment of

gut epithelial barrier (48), are generated by PADI4-catalyzed

citrullination of H3 histones in neutrophils (49).

3.2.1.3 Regulation of the gut epithelial barrier

The intestinal epithelial barrier (IEB) is one of the largest

interfaces between the external and body environments (50). The
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IEB is tightly regulated, and its pathology may contribute to the

aetiology of IBD, but - via licensing of immune responses - also to

other CIDs such as RA and SLE (51). Intercellular junction

structures (52) and the activities of gut microbiota and

intraepithelial lymphocytes (IELs) are pivotal regulators of IEB

(53). Molecular mechanisms involved in these three types of IEB

regulation are present in the SYSCID map. One of them is

regulation of the stability of gut epithelial adherens junctions

involving INAVA, E-cadherin and CYTH1-activated ARF6 (54,

55). The map shows how the absence of anti-inflammatory immune

cells (e.g., CD4/CD8aa T cells) as well as the context-dependent

pro- and anti-inflammatory effects of microbiota-derived

tryptophan metabolites (e.g., indole, indole-3-acetate, tryptamine)
FIGURE 2

General overview of the SYSCID map The upper panel shows a pictorial overview of the most relevant IBD, RA and SLE-related organs, tissues,
phenotypes, cells and molecules; the lower panel shows the MINERVA network visualization of the SYSCID map (https://syscid.elixir-luxembourg.
org) with all its molecular entities and causal interactions confined in different compartments, e.g., cells and organs. The disease-specific causal
interactions tend to occur in certain niches in the map; for instance, while RA-related interactions tend to happen in synovial joint, lymphoid organs,
blood vessel, gut lumen and oral cavity, SLE-related interactions tend to take place in lymphoid organs, blood vessel, kidney and skin; IBD-related
interactions, in turn, tend to appear mainly in gut (lumen, epithelium and lamina propria) and blood vessels.
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and cytokines (e.g., IL22) are important for the IEB homeostasis.

Concerning IL22, the SYSCID map illustrates pro- and anti-

inflammatory outcomes regulated by this interleukin, and its

regulation by the protein ATG16L1 in engaging the CGAS–

STING pathway (56).

3.2.1.4 Microbiota dysbiosis

Microbiota dysbiosis is a disruption to the microbiota

homeostasis in tissues in direct contact with the external

environment caused especially in response to exposure to

environmental chemicals and food components. Resulting

changes in the microbiota composition are linked to IBD, RA and

SLE (57–59). Microbiota-derived metabolites are particularly

implicated in the pathogenesis of CIDs as they seem to be

essential in maintaining immunological equilibrium (60).

Moreover, microbial mimic peptides are increasingly associated

with CIDs; in this case, similarities between foreign and self-

peptides favour an activation of autoreactive immune cells (61).

The SYSCID map shows which bacterial genera produce

immunoregulatory small compounds in IBD, e.g., Roseburia and

Faecalibacterium for butyrate and Bifidobacteirum for acetate, and

mimic peptides in RA, i.e., Eggerthella, Clostridium, Bacteroides,

Cryptobacterium, Actinomyces, Atopobium and Oribacterium for

peptides like COL11A2 and HLA-DRB1*0401. Moreover, the

SYSCID map also displays which metabolic processes are altered

due to microbiota dysbiosis in the CIDs of interest, such as the

glucuronate breakdown in IBD, and the heme metabolic process

in RA.

3.2.2 Adaptive immune system
3.2.2.1 Generation, activation and direct effects
of autoantibodies

Self-reactive cytotoxic and helper T cells and self-reactive B cells

with their terminally differentiated counterparts, the antibody-

secreting plasma cells, are hallmarks of SLE and RA. Due to the

failure of the peripheral tolerance processes, self-reactive naive T

and B cells are not eliminated and become activated instead (62).
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RA- and SLE-relevant mechanisms associated with differentiation

of self-reactive B and plasma cells are represented in SYSCID map

such as, for example, the mechanisms of B cells differentiation

stimulated by IL10, secreted either by dendritic cells (63) or by Th1

cells (64). Dendritic cells also influence B cell differentiation via

TLR-activated signalling protein MYD88 (65). Moreover, the

SYSCID map illustrates B cell differentiation stimulated by IL4

produced by Tfh2 cells, and its modulation by transcription factor

ETS1 (66). Finally, B cell differentiation can also take place outside

germinal centres driven by TLR7 in an IL21-mediated fashion

(67–69).

The abovementioned activation of self-reactive plasma cells

drives the production and activation of autoantibodies, a hallmark

of RA and SLE. In RA, the most common and specific

autoantibodies are against citrullinated protein antigens (ACPAs),

mostly derived from proteins that are highly expressed but not

specific for synovial joints such as vimentin and fibrinogen (70, 71).

The SYSCID map depicts the presence of some of these ACPAs (72,

73) in joint and secondary lymphoid organs, and their general

(arthritis) and specific (osteoclastogenesis) effects. (72, 74–76). The

SYSCID map also illustrates the association of glycosylation level of

antibodies with their level of inflammatory activity (77), particularly

the effect of the IL23A-Th17 cell-IL22 axis on the inhibition of the

expression of the ST6GAL1 enzyme in plasmablasts, driving

secretion of desialylated autoantibodies with a proinflammatory

activity (78).

3.2.2.2 Regulation of effector T cells activity

Effector helper (CD4) and cytotoxic (CD8) T cells play a central

role in regulation of the immune system, and their regulation is

closely related to IBD (79–81), RA (82) and SLE (83, 84). While

helper T cells produce and release cytokines to aid other immune

cells, cytotoxic T cells directly kill cells expressing antigens on their

surface. The SYSCID map contains several pathways describing the

activity of effector T cells and how these cells are regulated at

multiple levels. At the innate immune system level, the map shows

that T cells are indirectly regulated by Toll-like receptors (TLRs)
FIGURE 3

Pathophysiological features of IBD, RA and SLE in SYSCID map The 66 pathways in the map can be grouped into eight major pathophysiological
features - associated with adaptive, innate or mixed immune system - and are linked to each other via six bacterial or endogenous metabolites
(ellipses), 17 cytokines and a cytokine-induced protein (TNFAIP6) (rectangles containing official gene symbols from the Human Gene Nomenclature
Committee [HGNC]).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1257321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Acencio et al. 10.3389/fimmu.2023.1257321
pathways in conventional dendritic cells via the adaptor protein

MYD88 in SLE (65). At the adaptive immune system level, the

SYSCID map shows that T cells can be regulated via the influence of

the phosphatase PTPN2 on their intrinsic T-cell receptor (TCR)

signalling (85) and by metabolites such as glucose, tryptophan and

ATP. In particular, the SYSCID map illustrates pyroptosis of

pathogenic follicular helper T cells in SLE, induced by ATP-

stimulated purinergic receptor P2X7 (86).

3.2.2.3 Regulation of regulatory B and T cells

The main actors able to suppress the immune system are

regulatory T cells (87) and regulatory B cells (88). In autoimmune

diseases such as IBD, RA and SLE, multiple molecular mechanisms

inhibit the suppressive function of the regulatory cells (89, 90). The

SYSCID map illustrates pathways covering a range of molecular

mechanisms underlying the suppression of regulatory cells function

such as, for example, the activation of protein receptor TNFRSF4

(OX40) in OX40L/OX40-mediated Treg cells dysfunction (68) and

the inhibition of Treg cells inhibitory function by TNF (91)

and leptin (92). Additionally, three interleukins, namely IL9, IL21

and IL6, are also involved in Treg cells suppression. While IL9

negatively influences the ILC2-dependent Treg activation (93), IL21

suppresses the activation of follicular Treg cells (94–96). Regarding

IL6, Svensson et al. (97) reported that this interleukin mediates the

conversion of regulatory T cells into effector Th17 cells. Under IL6

influence, the fate of regulatory T cells depends on the decreased

expression of the phosphatase PTPN2. When PTPN2 is expressed,

the IL6-driven production of IL17A is inhibited and Treg cells keep

their regulatory state. Otherwise, IL17A is produced, and T cells

become Th17 cells (97).

3.2.3 Mixed innate and adaptive immune system
3.2.3.1 Effects of biologic drugs

Several biologic drugs used to treat IBD, RA and SLE, including

abatacept, adalimumab, anifrolumab, anakinra, belimumab,

canakinumab, certolizumab, etanercept, golimumab, infliximab,

ixekizumab, risankizumab, rituximab, secukinumab, sarilumab,

tocilizumab, vedolizumab and ustekinumab are represented in the

SYSCID map, specifically in the submap “Anti-inflammatory

mechanisms of selected biologics” (Table S1). This submap shows

anti-inflammatory mechanisms of most of these biologics, excluding

anakinra, canakinumab, ixekizumab, sarilumab, ustekinumab and

anifrolumab, for which the map contains only direct targets. Among

the biologic drugs present in the submap, vedolizumab seems to be the

one that affects the greatest number of phenotypes. This drug is used to

treat IBD by inhibition of the integrin a4b7 (heterodimer ITGA4-

ITGB7). Through this inhibition, vedolizumab downregulates the

expression of several proteins that favour disease progression and

stimulates the conversion of pro-inflammatory M1 macrophages into

anti-inflammatory M2 macrophage (98). Interestingly, as shown in the

biologics submap, this conversion is also stimulated by adalimumab

and infliximab by the mechanism of TNF receptor:Fc receptor co-

stimulation. Still regarding infliximab, the submap shows this biologic

restores monocytes apoptosis sensitivity via downregulation of miR-

29b and consequent upregulation of the apoptosis-inducing protein
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HBP1, one of the miR-29b targets (99). Moreover, infliximab, as well as

certolizumab pegol, favours CIDs remission through downregulation

of the proinflammatory protein GDF1 via upregulation of TGFB1 in

PBMCs (100). Finally, it is worth to mention that anti-TNF drugs, such

as infliximab, have been demonstrated to cause clinical symptoms that

mimic lupus in treated patients (101). Called anti-TNF-induced lupus

(ATIL), this entity is characterized by the presence of many types of

autoantibodies as represented in the map: antinuclear, anti-dsDNA,

anti-histone, anti-Smith and anti-citrullinated protein antibodies (101).
3.3 Exploration of the SYSCID map

The SYSCID map is a graphical review of the molecular

mechanisms of IBD, RA and SLE which supports integrated

visualisation of omics data. Below, we describe how the map

combined with genome-wide association studies (GWAS) and

transcriptome data highlights potential molecular mechanisms

affected by gene variants or differentially expressed genes (DEGs).

Such integration is useful to detect gaps between knowledge about

mechanisms of diseases and omics-derived observations. Moreover,

it can lead to the discovery of potential mechanistic biomarkers, i.e.,

activation of cellular pathways (102) that are specific to the

mechanisms underlying a given disease (14).

3.3.1 Suggesting mechanistic consequences
of gene variants

We collected genes harbouring variants, i.e., single nucleotide

polymorphisms (SNPs), associated with IBD, RA and SLE from the

GWAS catalogue (24) (see “Material and Methods”; Tables S2 to

S5). These genes, hereafter called disease-associated genes (DAGs),

were integrated with the SYSCID map as a publicly available

dataset. As a result, out of the 897 DAGs in total (Table S2), i) 45

matched the contents of the map for IBD (Table S3), ii) 53 for RA

(Table S4), and iii) 35 for SLE (Table S5). For these DAGs, we

performed a SYSCID map-based pathway enrichment analysis (as

described in “Methods”), separately for each disease. One pathway

was enriched for RA DAGs and three for IBD and SLE DAGs, as

shown in Table 1. The single enriched pathway in RA DAGs is the

“Regulation of IL10 production in Th1 cells” (adjusted p = 0.0095).

Interestingly, this pathway was also enriched in IBD (adjusted p =

0.00125) and SLE DAGs (adjusted p = 0.0003) and is the top

enriched pathway in all three CIDs.

By integrating the GWAS catalogue data to the SYSCID map, we

could indicate a specific immunological feature potentially common

to these three CIDs, namely, the regulation of IL10 production in Th1

cells. The production of IL10 in IBD, RA and SLE dictates their

course: while in SLE patients IL10 favours B cell differentiation and

autoantibody production as shown in the SYSCID map (see pathway

“IL10-mediated B cell differentiation”), a dysfunction of IL10

production makes mice prone to spontaneous colitis (103, 104).

Still regarding IBD, the SYSCIDmap indicates that deficiency of IL10

induces chronic endoplasmic reticulum stress in the gut and

promotes IBD-like disease in mice (103). Finally, in RA, unlike SLE

and similar to IBD, IL10 has been linked to reduced expression of
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proinflammatory proteins and consequent alleviation of joint

inflammation (105).

We extended the pathway enrichment analysis performed after

the integration of DAGs to the SYSCID map to investigate their

influence at the mechanistic level. To this end, we manually

inspected the pathways of the SYSCID map for proteins encoded

by the matched DAGs that directly influence other proteins.

In this regard, the pathway “Regulation of the stability of gut

epithelial adherens junctions” is an interesting case. As already

described in the previous section, the protein encoded by a

mutated version of INAVA (rs41313912, missense variant,

Tyr333Phe), which is associated with increased risk of IBD (54), is

not able to impede the ARF6-mediated internalisation of CDH1 and

the consequent destabilisation of the adherens junctions (55). This

happens because this mutated version of INAVA is more prone to

ubiquitination than its wild-type version. If INAVA is degraded by

proteasome, then CYTH1 is stabilised and directly promotes the

ARF6-mediated internalisation of CDH1 (55). Although this

missense variant is not present in the GWAS catalogue as this

study is not eligible for inclusion in the GWAS Catalogue (https://

www.ebi.ac.uk/gwas/docs/methods), it is still an interesting example

of mechanistic downstream consequences of a gene variant.

Importantly, INAVA also has IBD-related variants according to the

GWAS catalogue, namely rs12131796, rs35730213, rs55838263,

rs7554511 and rs905634, and the genes CYTH1 and CDH1, coding

for proteins downstream to INAVA, also have IBD-related variants

according to the GWAS catalogue: rs17736589 for CYTH1, and

rs16958356 and rs16958356 for CDH1. Therefore, gut epithelial

adherens junctions seem to be heavily affected by genetic variation.

Another example of mechanistic interpretation of GWAS data

is protein encoded by a PADI2 gene bearing two intron RA-

associated variants (rs2235909 and rs761426) in pathway

“Induction of osteoclastogenesis by autoantibodies against

citrullinated proteins”. This enzyme citrullinates other proteins.

In RA, PADI2 citrullinates, among others, the protein vimentin, a

potential target of the anti–citrullinated protein auto-antibodies

(ACPAs) (71). Therefore, given the intronic location of variations,

the mechanistic link between PADI2 variants and the development

of RA could be an increased amount of citrullinated vimentin in

synovial joint due either to a potential alternative spliced form of

PADI2 encoding for a more enzymatically active PADI2 or to an
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upregulation of this enzyme. There is evidence for the latter case:

the RA risk T allele of rs761426 significantly increases expression

levels of PADI2 in whole blood (106).

The above examples show that, through the integration of

GWAS data with SYSCID map, we could identify pathways that

are likely to be common to the three CIDs of interest and formulate

some hypotheses about how IBD and RA can be affected by altered

proteins encoded by, respectively, IBD- and RA-associated

genetic variants.

3.3.2 Analysis and interpretation of altered
gene expression

We integrated transcriptome data with the SYSCID map to

demonstrate possible mechanistic consequences related to

differentially expressed genes (DEGs). To this end, we used the

dataset from the study of therapy response in IBD patients treated

with anti-TNF therapy, i.e., infliximab (26). We selected this study

because it tries to address one of the most CIDs-related clinically

relevant challenges: the low remission rates of the current treatment

options for these diseases.

In this study, DEGs were calculated by comparing gene

expression profiles of RNA extracted from whole blood of

remitting and non-remitting IBD patients at six time points (4, 24

and 72 h and 2, 6 and 14 weeks) after infliximab exposure with gene

expression profiles determined in baseline, i.e., before drug

exposure. We focused specifically on DEGs determined at 4 h in

remitting patients as, according to the authors, the most significant

alterations occurred at this time point. Of the 2722 DEGs at 4 h

(compared with baseline; Table S6), 79 could be matched to their

corresponding proteins in the SYSCID map (Table S7). Among

them, 29 (highlighted in Table S7) were considered eligible, i.e., they

are modifiers of downstream molecular processes or molecules

(more details in “Methods”), for the mechanistic interpretation of

their alterations and possible consequences linked to the induction

of remission in IBD patients after anti-TNF therapy exposure. We

here selected specifically the protein TBK1 for further analysis as it

is the only eligible protein that is mechanistically and directly linked

to another possible altered protein, the transcription factor IRF3.

TBK1 is a serine/threonine-protein kinase involved in multiple

signalling pathways, including the TLR-triggered activation of IRF3,

a sequence-specific DNA binding transcription factor (dbTF) that

activates the transcription of type I interferon (IFN) genes and some

IFN-stimulated genes (ISG), among other target genes (47). TBK1

directly phosphorylates IRF3 and, as a result, this protein migrates

to the nucleus to initiate the transcription of their target genes (47).

IRF3 is upregulated at 4h after infliximab exposure compared to

baseline only in patients that attain remission at week 14. At first

sight, it is surprising to find this gene upregulated after anti-TNF

therapy as we would expect an equally upregulation of IRF3’s target

type I IFN genes and ISGs that, in turn, are associated with a poor

clinical response to infliximab treatment (107). However, when we

check which known IRF3’s target genes - according to the Dorothea

gene regulatory network, https://saezlab.github.io/dorothea/ (Table

S8) - are upregulated among the DEGs at 4h, we find no type I IFN

genes and ISGs, except for CCL5, among the list of 14 DEGs (Table

S9); therefore, most of the type I IFN genes and ISGs were not
TABLE 1 Annotated pathways significantly enriched (adjusted p < 0.05)
in DAGs matching their corresponding proteins in SYSCID map.

Enriched pathway Adjusted p-value

IBD RA SLE

IBD microbiota 0.0482 – –

Regulation of IL10 production in Th1 cells 0.0125 0.0095 0.0003

Regulation of Th17 cell activity – – 0.0330

Regulation of the stability of gut epithelial
adherens junctions

0.0125 – –

B cell differentiation – – 0.0013
- Annotated pathways not significantly enriched in any DAG matching their corresponding
proteins in the SYSCID map.
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affected in infliximab-treated remitting patients, which is in

agreement with the above-mentioned study by van Baarsen.

These 14 IRF3’s target DEGs, which are not present in SYSCID

map and are not currently associated with IBD, are known to be

involved in antiviral defence, regulation of cell cycle transition and

immune cell migration according to annotations from the Gene

Ontology (GO) database (20, 21).

Interestingly, while IRF3 is upregulated 4h post-exposure to

infliximab, compared to baseline, TBK1 is downregulated (Figure 4).

As shown above, it seems that IRF3 potentially activates only the

transcription of a selected set of non-type I IFN genes and non-ISGs at

4h after infliximab exposure. We therefore hypothesize that, due to

lower amounts of TBK1, hypophosphorylated forms of IRF3 would be

generated and such forms would be able to transcribe only these non-

type I IFN genes and non-ISGs. This hypothesis relies on the

experimental observation that incremental IRF3 phosphorylation

progressively changes the IRF3 conformation in a way that it

becomes competent for the induction of IFNB (108).

To phosphorylate and activate IRF3, TBK1 per se should

physically interact with the scaffold protein TANK. Although this

protein is not present in SYSCID map, it may also be involved in

infliximab-lead remission in IBD patients since its encoding gene,

TANK, is downregulated 4h after inflixumab exposure in

comparison to baseline. So, we can hypothesize that low amounts

of TANK would impair the TBK1’s capacity to phosphorylate IRF3.

As TBK1 itself is also downregulated, then IRF3 phosphorylation
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would be greatly reduced. This fact warrants the addition of TANK

to the SYSCID map and suggests that the combination of

downregulated TANK and TBK1 and IRF3 hypo-phosphorylation

could be a potential mechanistic molecular biomarker for remission

in IBD patients.

The above example shows that, through the integration of omics

data within SYSCID map, we could formulate two related and

testable hypotheses - (1) differential transcription of IRF3 target

genes is modulated by differential IRF3 phosphorylation states and

(2) TBK1 capacity to phosphorylate IRF3 is impaired by low

amounts of TANK - and suggest an expansion of SYSCID map

via the addition of the TANK-TBK1 interaction. Moreover, we also

could suggest a potential mechanistic molecular biomarker for

remission, i.e., low TANK , low TBK1 and IRF3 hypo-

phosphorylation (Figure 4). Finally, although not directed related

to the content of the map but triggered by the integration of omics

data within SYSCID map, we were also able to detect a new set of

genes that should be investigated due to their potential involvement

in the infliximab-lead remission in IBD patients.
4 Discussion

Representing molecular processes underlying a disease in the

form of networks has become increasingly popular in systems

biomedicine. Undoubtedly, the analysis and exploration of these
FIGURE 4

Possible outcomes after the integration of omics data within the SYSCID map Testable hypotheses can be formulated, such as that the differential
transcription of IRF3 target genes is modulated by differential IRF3 phosphorylation states (right) and that TBK1 capacity to phosphorylate IRF3 is
impaired by low amounts of TANK (below). TANK, in fact, was not originally present in the map; however, by checking an external signalling
pathways database - in this case, Omnipath (https://omnipathdb.org/) -, this protein could be added to the map to clearly show the TANK-TBK1
interaction. Finally, potential mechanistic molecular biomarkers can be suggested; in this case, the combination of underexpressed TBK1,
upregulated IRF3 and hypophosphorylated IRF3 is suggested as biomarker for remission. Light green, pink and blue-purple rectangles are,
respectively, unaltered, upregulated and downregulated proteins; yellow rectangles represent genes and dark green parallelograms represent
mRNAs. All proteins, mRNAs and genes are identified by HGNC symbols.
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networks have led to valuable insights into how diseases may

emerge from the complex interactions between numerous

biological components. Additionally, the analysis of these disease

networks can also be useful for suggesting biomarkers and drug

targets. However, these networks are generic, implying that

interactions among their elements do not necessarily reflect true

interactions under the context of a specific disease. Moreover,

generic networks lack cell specificity and usually do not have

proper annotations.

When building a disease map, we aim to move from the generic

characterization of a disease to a more disease-specific molecular

mechanistic network considering different cell types, tissues, organs

and disease states (109). Based on this disease specificity, we assume

that such a type of network can provide more insights into

mechanisms of the disease of interest than the generic one.

Although such assumption lacks formal demonstration, an

increasing number of studies reporting methods to enhance

generic networks specifically for a disease (110–112) indicates

that scientific community has recognized how critical is a disease-

specific network to better prioritize drug targets and biomarkers

candidates for a disease of interest.

Based on the above-mentioned considerations and the

successful applications of previous disease-specific molecular

mechanistic networks, the disease maps (113–115), we opted for

the construction of the network representing the IBD, RA and SLE-

specific molecular mechanisms in a disease map format, i.e., the

SYSCID map. We could demonstrate that this map can be useful as

an interactive, graphical review of IBD, RA and SLE molecular

mechanisms and, when integrated with transcriptome and GWAS

data, the map can be used to indicate potential effects on altered

pathways and propose possible mechanistic biomarkers.
4.1 Limitations of the study

It is important to emphasize that SYSCID map, as for other

disease maps, does not cover all knowledge encompassing IBD, RA

and SLE-specific molecular mechanisms. As this map was

constructed via manual biocuration of domain experts-suggested

biomedical literature on these CIDs, the molecular mechanisms

present in the map reflect the coverage limitation intrinsic to the

laborious and time-demanding biocuration process. Nonetheless,

the SYSCID map seems to cover key mechanisms for the CIDs of

interest as shown in Figure 2 and Table S1. To expand the map and

keep it as updated as possible, periodic revisions are planned.

Finally, the long-term sustainability of the SYSCID map will be

guaranteed by the ELIXIR Luxembourg’s “Disease Map” service

(https://elixir-luxembourg.org/services/catalog/minerva/).
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Differentially expressed genes (DEGs) from GSE191328 dataset (t = 4h
vs baseline).
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SUPPLEMENTARY TABLE 7

DEGs (t = 4h after treatment vs baseline) from GSE191328 dataset that could
be integrated into the map.

SUPPLEMENTARY TABLE 8

IRF3 Target genes (according to Dorothea’s TF-TG network, confidence A
to C).

SUPPLEMENTARY TABLE 9

IRF3 target genes (according to Dorothea’s TF-TG network; confidence A
to C) in DEGs (t = 4h after treatment vs baseline) from the GSE191328

dataset.

SUPPLEMENTARY TABLE 10

Publications used for manual curation and construction of the SYSCID map.
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