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Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical
University, Beijing, China
Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often

progressive subtype nonalcoholic steatohepatitis (NASH), have emerged as

significant contributors to hepatic morbidity worldwide. The pathophysiology

of NAFLD/NASH is multifaceted, variable, and remains incompletely understood.

The pivotal role of liver-resident and recruited macrophages in the pathogenesis

of NAFLD and NASH is widely acknowledged as a crucial factor in innate

immunity. The remarkable plasticity of macrophages enables them to assume

diverse activation and polarization states, dictated by their immunometabolism

microenvironment and functional requirements. Recent studies in the field of

immunometabolism have elucidated that alterations in the metabolic profile of

macrophages can profoundly influence their activation state and functionality,

thereby influencing various pathological processes. This review primarily focuses

on elucidating the polarization and activation states of macrophages,

highlighting the correlation between their metabolic characteristics and the

transition from pro-inflammatory to anti-inflammatory phenotypes.

Additionally, we explore the potential of targeting macrophage metabolism as

a promising therapeutic approach for the management of NAFLD/NASH.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD), a prominent global public health concern, is

projected to surpass all other indications for liver transplantation in the United States by 2020 (1,

2) . A subset of individuals with NAFLD progresses to a more inflammatory condition known as

nonalcoholic steatohepatitis (NASH), which can further advance to severe liver fibrosis, cirrhosis,

or hepatocellular carcinoma (HCC). Extensive research has been dedicated to understanding the

pathogenesis of NAFLD and NASH, highlighting the significant involvement of innate

immunity (3–6). Within this context, macrophages play a pivotal role in the innate immune

response and are indispensable for the development of NAFLD and NASH (7).

Immunometabolism, currently a burgeoning field of research, focuses on investigating the

metabolic processes of immune cells and exploring the effects of modifying their metabolic

phenotype on their functionality (8–10). The functional behavior of immune cells is intricately

regulated by the microenvironment, which, in turn, exerts a profound influence on their
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257596/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257596/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1257596&domain=pdf&date_stamp=2023-10-04
mailto:dr_langren@126.com
https://doi.org/10.3389/fimmu.2023.1257596
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1257596
https://www.frontiersin.org/journals/immunology


Zhang and Lang 10.3389/fimmu.2023.1257596
metabolism (11). Cytokines, growth factors, and various environmental

signals play a crucial role in modulating the metabolism of immune

cells. Emerging evidence suggests that macrophages undergo metabolic

reprogramming in specific microenvironments, particularly in

inflammatory conditions such as NAFLD/NASH, to meet their

specific requirements and execute effector functions, such as

phagocytosis and cytokine production (4, 12, 13). Exerting control

over the metabolic activity of macrophages holds immense promise in

their engagement in inflammatory conditions. Therefore,

comprehending the metabolic processes and regulatory common

mechanisms governing macrophages becomes imperative to identify

metabolic targets that can potentially impact different stage of diseases

prognosis (14–17).

The purpose of this review is to provide a comprehensive

overview of the current understanding of the metabolic processes

governing macrophages in different states of polarization and

activation. Specifically, within the context of NAFLD/NASH, we

will examine and analyze the latest findings pertaining to the

regulation of macrophage metabolism. Additionally, we will explore

potential metabolic targets for therapeutic interventions and

strategies to modulate macrophage metabolism in the management

of NAFLD/NASH.
2 Macrophages in NAFLD and NASH

2.1 Macrophage polarization

Macrophage polarization refers to the distinct activation state of

macrophages at a specific time and location (18–20). However, it

should be noted that macrophage polarization is not a static or fixed
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state, as macrophages exhibit high plasticity and the ability to

integrate diverse signals from damaged tissue, microorganisms, and

normal tissue environments. This integration of signals leads to the

development of dynamic and unstable polarization states. The

regulation of macrophage polarization involves multiple pathways,

including epigenetic and cell survival mechanisms that govern

macrophage maturation and longevity. Furthermore, the tissue

microenvironment and external factors such as microbial products

and inflammation-related cytokines play crucial roles in macrophage

polarization (Figure 1). These pathways collectively determine the

specific polarization state assumed by macrophages (21).

Macrophages possess the ability to differentiate into various

phenotypes, commonly categorized as M1 and M2 types, which

often exhibit contrasting characteristics (Figure 1). The

characteristics and regulation of macrophages are complex and

interconnected, relying on the dynamic nature of their

microenvironment (22). The incomplete characterization of

macrophages and their functional polarization in many studies

present significant challenges in their interpretation (23, 24).

Pharmacological interventions targeting the polarization of

macrophages towards an M2 phenotype have shown partial

reversal of steatosis and hepatocyte apoptosis (25, 26). However,

the efficacy of such interventions may vary depending on the specific

microenvironment and the complexity of the underlying

pathophysiology. Therefore, further investigation is warranted to

gain a deeper understanding of the shared mechanisms governing

macrophage polarization and to identify more effective therapeutic

approaches for NAFLD/NASH (27). Laboratory studies have

demonstrated that M2-type macrophages can induce apoptosis in

M1-type macrophages through the activation of the enzyme arginase,

mediated by the release of interleukin-10 (IL-10) (28) (Figure 2).
FIGURE 1

Main factors contributing to macrophage polarization and activation in NAFLD and NASH. Liver macrophages are derived either from resident KCs or
from recruited circulating monocytes. In vitro, monocytes can be polarized into M1-type or M2-type macrophages, which are associated with
classical and alternative activation, respectively. M1 macrophages contribute to inflammation in NASH, while M2 macrophages exert anti-
inflammatory effects. M2 macrophages secrete IL10, which selectively induces cell death in M1 KCs expressing high levels of iNOS, and this process
involves the activation of arginase. KCs can be activated by LPS through TLRs, FFAs through TLRs, leptin through LEPR originating from adipose
tissue, and cholesterol and oxLDL through CD36 and SRA in the context of NAFLD/NASH. KCs secrete TNF, IL-1b, and IL-6 to maintain neutrophil
homeostasis. Monocytes differentiate into M1 macrophages, further exacerbating hepatic inflammation in NAFLD. NAFLD, nonalcoholic fatty liver
disease; NASH, nonalcoholic steatohepatitis; KCs, Kupffer cells; IL-10, interleukin-10; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide;
TLRs, toll-like receptors; FFAs, free fatty acids; LEPR, leptin receptor; oxLDL, oxidized low-density lipoprotein; SRA, scavenger receptor A; TNF,
tumor necrosis factor; IL-1b, interleukin-1 beta; IL-6, interleukin-6; CCL2, CC-chemokine ligand 2; IFNg, interferon-gamma; IL-4, interleukin-4; IL-
12, interleukin-12; IL-13, interleukin-13.
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FIGURE 2

Macrophage metabolism as therapeutic targets in NAFLD and NASH. The figure primarily focuses on therapeutic targets related to macrophage
metabolism and illustrates four delivery methods. Additionally, it represents four distinct therapeutic approaches. Anti-CD163-dexamethasone
involves delivering the corticosteroid dexamethasone through the CD163 receptor. FXR agonists exert anti-inflammatory and anti-fibrotic effects. In
macrophages, they reduce the production of pro-inflammatory cytokines and promote the polarization of macrophages towards an anti-
inflammatory phenotype. GLP1RAs have multiple targets acting on the GLP1R. They decrease macrophage infiltration in NAFLD and promote the
polarization of macrophages towards an anti-inflammatory phenotype. Pioglitazone acts on the PPARg and exerts anti-inflammatory and anti-fibrotic
effects in NAFLD. It affects both adipose tissue and the liver. Elafibranor is a dual agonist of PPARa and PPARd. It regulates metabolic homeostasis
and inflammation in the liver and adipose tissues, leading to the resolution of NASH. It also reduces macrophage infiltration and promotes an anti-
inflammatory macrophage phenotype. NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; FXR, the farnesoid X receptor;
GLP1RAs, glucagon-like peptide-1 receptor agonists; GLP1R, glucagon-like peptide-1 receptor; PPARg, peroxisome proliferator-activated receptor
gamma; PPARd, peroxisome proliferator-activated receptor delta; PPARa, peroxisome proliferator-activated receptor alpha.
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Animal studies suggest that macrophages exhibiting a pro-

inflammatory phenotype contribute to the severity of NAFLD (29,

30). The activation of these macrophages can lead to the production

of pro-inflammatory cytokines and the promotion of oxidative stress,

ultimately driving the progression of liver fibrosis and other

associated complications (31, 32).

The presence of macrophages exhibiting a reparative and anti-

inflammatory phenotype in NAFLD has been associated with

reduced hepatic injury. These macrophages have the ability to

produce cytokines that reduce inflammation and promote tissue

healing, thereby aiding in the mitigation of inflammation and

improvement of liver function (33–38). An important study has

indicated that patients with NASH exhibit higher expression of

markers associated with M2 macrophages, suggesting the potential

role of these macrophages in the regeneration and repair of liver

tissue following hepatocyte damage (39). However, concerns have

been raised regarding the potential risk of developing fibrosis as a

result of this process (39). Selective targeting of macrophages has

shown promise as a therapeutic approach for NASH. Combining

the potent corticosteroid dexamethasone with a typical surface

marker of M2 macrophages (CD163) has demonstrated enhanced
Frontiers in Immunology 03
reduction of necroinflammation and fibrosis in a rat model of

fructose-induced NASH (Figure 2). These positive results suggest

that targeting macrophages based on surface markers could be a

potential strategy for developing novel treatments for NASH (40).

However, further investigation is needed to explore the safety and

efficacy of this approach in human subjects. In summary, the

examples mentioned above illustrate the diverse spectrum of

macrophage polarization observed in NAFLD/NASH, with many

of their in vivo roles still requiring comprehensive understanding.
2.2 Macrophage activation

Macrophages play versatile roles in the human body, including

involvement in embryonic development, tissue repair, and

inflammation (41). They exhibit remarkable plasticity and can

adapt the i r phys i ca l charac ter i s t i c s based on the i r

microenvironment and functional requirements (21, 42).

Consequently, macrophages display a spectrum of activation

states, characterized by variations in their transcriptome in

response to stimuli such as fatty acids, cholesterol, and their
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metabolites (42, 43). Macrophages encounter a wide range of

stimuli in their environment, leading to diverse phenotypes and

functions. Traditionally, macrophages have been classified into two

main categories: ‘classically activated’ or M1 macrophages and

‘alternatively activated’ or M2 macrophages (44–48), as

mentioned earlier. M1 macrophages are responsible for secreting

pro-inflammatory cytokines, while M2 macrophages exhibit an

anti-inflammatory phenotype (49–51) (Figure 1). Macrophages

infiltration and Kupffer cells (KCs) activation were found to

further express pro-inflammatory cytokines in the NASH model

(52). Macrophages dynamically adjust their metabolic

characteristics in response to the surrounding microenvironment,

enabling them to perform their functions during both homeostasis

and inflammation (Figure 1). This metabolic adaptation helps

maintain a delicate balance between pro-inflammatory and anti-

inflammatory responses. The complex process of metabolic

reprogramming in macrophages is regulated by factors such as

cytokines, growth factors, and nutrient availability, and is crucial for

their optimal functioning in both health and disease (53, 54). The

focus of this review is specifically on the macrophage response to

lipids and their metabolites. Lipid metabolism and the interaction

between macrophages and lipid molecules play a significant role in

the regulation of macrophage function and their involvement in

various diseases and pathological conditions. Understanding the

intricacies of how macrophages respond to lipids and their

metabolites can provide valuable insights into the development of

targeted therapeutic strategies for diseases such as NAFLD/NASH.

2.2.1 FAs
Fatty acids (FAs) can undergo metabolism to produce

intermediates that induce liver damage, known as lipotoxicity,

which is considered a key mechanism underlying NAFLD

progression (55). NAFLD is associated with increased lipolysis in

adipose tissues, leading to an elevated influx of free fatty acids

(FFAs) into the liver. The increased arrival of FFAs can exacerbate

lipotoxicity and contribute to liver damage progression. Therefore,

strategies aimed at reducing FAs accumulation or regulating their

metabolism could be potential interventions for preventing and

treating NAFLD. Experimental studies have shown that different

FFAs have distinct effects on macrophages. For instance, in a mouse

monocyte-macrophage cell line, it has been demonstrated that

saturated fatty acids like lauric and palmitic acids stimulate the

toll-like receptor 4 (TLR4) and nuclear factor-kB (NF-kB)
pathways, leading to the production of inflammatory mediators

such as cyclooxygenase 2 (COX2), inducible nitric oxide synthase

(iNOS), and interleukin-1alpha (IL-1a) (56) (Figure 1). In contrast,

unsaturated fatty acids do not have the same effect (56).

Furthermore, it has been shown in animal models that trans-fatty

acids diminish the ability of KCs to engulf particles, alongside FFAs.

Furthermore, animal models have shown that trans-fatty acids

impair the ability of KCs to engulf particles, including FFAs.

Additionally, when exposed to lipopolysaccharide (LPS)

stimulation, these cells, including KCs, exhibit increased

production of tumor necrosis factor (TNF) and macrophage

activation in NAFLD (57) (Figure 1). In laboratory studies,
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primary KCs exposed to peroxidized linoleic acid showed elevated

levels of the pro-inflammatory mediators iNOS and COX2, along

with increased release of TNF (58). Pro-inflammatory cytokines

such as TNF, interleukin-1 beta (IL-1b), and IL-6 can be secreted by

KCs to regulate neutrophil homeostasis and immune response (59–

61) (Figure 1). Moreover, in NAFLD, monocytes can differentiate

into M1 macrophages, exacerbating hepatic inflammation (34, 62).

These findings indicate that oxidized linoleic acid may play a role in

the progression of liver inflammation by promoting the activation

of KCs, which are crucial immune cells involved in NAFLD

development (58, 63) (Figure 1). Moreover, KCs can be activated

in NAFLD through Toll-like receptors (TLRs) by FFAs and

adipokines (Figure 1). Importantly, elevated levels of TNF, IL-1b,
IL-6, and CC-chemokine ligand 2 (CCL2) have been observed in

adipose tissue, further contributing to KC activation through FFAs

and leptin in NAFLD (64).

2.2.2 Cholesterol
In addition to FFAs, there is growing recognition of the

potential pathological contribution of excess cholesterol to the

progression of NAFLD and NASH (65–67). Liver macrophages

have significant interactions with cholesterol. Studies using a mouse

model of high-fat and high-cholesterol (HFHC) NASH have

revealed the formation of hepatic crown-like structures (hCLS) by

hepatic macrophages. Lipogranuloma formation occurs when

macrophages surround remaining lipid droplets from dead

hepatocytes within the hCLS. The activation of macrophages and

the release of pro-inflammatory cytokines and other mediators are

believed to contribute to the advancement of liver damage in NASH

(68, 69) (Figure 1). Apart from cholesterol, the activation of KCs

can also be mediated by oxidized low-density lipoprotein (oxLDL)

through receptors such as CD36 and scavenger receptor A (SRA)

(Figure 1). Additionally, leptin, one of the prominent adipokines,

exerts its effects on KCs through its receptor (LEPR), originating

from adipose tissue. This interaction plays a role in inhibiting

steatosis and lipogenesis (Figure 1). While there is increasing

research on macrophage polarization and its role in the

development of NAFLD and NASH, most studies have relied on

animal models. Consequently, there is a scarcity of human data to

fully support these findings. Further investigations using human

samples and clinical studies are necessary to validate and expand

our understanding of macrophage involvement in NAFLD and

NASH in humans.

To summarize, saturated fatty acids, cholesterol, and lipid

byproducts have been demonstrated to directly stimulate

macrophages and enhance their vulnerability to activation caused

by endotoxins, leading to an inflammatory reaction.
2.3 KCs and monocyte-derived
macrophages

Macrophages, as integral constituents of the innate immune

system, display remarkable heterogeneity within the hepatic

environment, encompassing liver-resident KCs and recruited
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monocyte-derived macrophages (70, 71). Both liver-resident KCs

and recently recruited monocyte-derived macrophages play pivotal

roles in modulating inflammation, fibrogenesis, and fibrolysis in the

context of NAFLD and NASH (72). A study has provided evidence

supporting a positive correlation between the abundance of KCs in

biopsy samples and the severity of NAFLD in patients (73). KCs

possess the capacity to attract immune cells that undergo

differentiation toward the M1 phenotype, thus eliciting the

production of pro-inflammatory cytokines subsequent to liver

injury (22, 74–76).

In addition to liver-resident KCs, macrophages derived from

monocytes also play a significant role in the progression of NAFLD

and NASH. Unlike KCs, recruited monocytes exhibit distinct

morphological characteristics, providing evidence for the

existence of one of the two major subpopulations of hepatic

macrophages in NAFLD (77). The higher presence of CC-

chemokine receptor 2+ (CCR2+) macrophages in patients with

more severe NAFLD suggests that monocyte-derived

macrophages, rather than KCs, contribute significantly to the

pathogenesis of NAFLD (12). This notion is supported by the

observation of increased infiltration of monocytes that rapidly

differentiate into pro-inflammatory macrophages in an animal

model, further highlighting the importance of monocyte-derived

macrophages in NAFLD (78). In patients with NASH accompanied

by fibrosis and cirrhosis, there was a notable increase in the number

of pro-inflammatory macrophages expressing CCR2 in the portal

areas, providing further evidence for the involvement of monocyte-

derived macrophages in fibrosis development (79).
3 Crosstalk between lipid-laden
macrophages and KCs

Lipid-laden macrophages, including hepatic stellate cells

(HSCs) and KCs, exert their effects in the context of NAFLD and

NASH through multifaceted mechanisms. Among the critical

cytokines produced, transforming growth factor-beta (TGF-b)
plays a significant role in the pathogenesis of inflammation and

fibrosis in NAFLD (80). Liver macrophages play a pivotal role in

fibrosis development in NAFLD and other liver diseases, as they

release cytokines such as IL-6 and TGFb, which serve as activators

of HSCs and myofibroblasts (81–83).

Leptin and adiponectin, prominent adipokines, exhibit

interactions not only with liver macrophages but also directly with

HSCs. In the context of NAFLD, elevated levels of leptin have been

observed, and they are correlated with disease severity. Leptin acts

through its receptor and demonstrates potential anti-steatotic

properties by enhancing fatty acid oxidation and suppressing

hepatic de novo lipogenesis (84). However, it is noteworthy that

leptin also contributes to the exacerbation of hepatic inflammation

and fibrosis in NAFLD (84). On the contrary, adiponectin levels are

reduced in individuals with NAFLD, while elevated levels appear to

confer protection against obesity, NAFLD, and NASH (85). Through

its interaction with adiponectin receptor protein 1 and 2, adiponectin
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activates AMP-activated protein kinase and induces peroxisome

proliferator-activated receptor alpha (PPARa), thereby promoting

fatty acid oxidation and reducing hepatic steatosis. Additionally,

adiponectin alleviates hepatic inflammation and fibrosis by

inhibiting the proliferation and migration of activated HSCs,

among other effects (86). Leptin is known to contribute to the

fibrogenic phenotype of macrophages. Previous research has

demonstrated that leptin can enhance the expression of the

primary pro-fibrogenic cytokine TGFb1 in isolated Kupffer cells,

potentially through the involvement of the leptin receptor (87). A

more comprehensive investigation conducted revealed that leptin

induces the upregulation of TGFb1 and connective tissue growth

factor in KCs, with this effect being dependent on the presence of the

leptin receptor and involving the activation of signal transducer and

activator of transcription 3 (STAT3) and NF-kB, among other factors

(88). This process leads to increased activation of quiescent HSCs,

resulting in amplified expression of fibrogenic genes, notably TGFb1.
Notably, leptin has the ability to directly stimulate fibrogenesis by

activating HSCs both in vitro and in vivo (89). These findings indicate

that leptin possesses a potent pro-fibrogenic effect, as it induces the

expression of pro-inflammatory and pro-fibrotic genes in KCs and

directly drives HSC-mediated fibrogenesis.
4 Macrophage metabolism as
therapeutic targets in NAFLD/NASH

In NASH, a model of liver injury, the liver’s capacity to process

excessive amounts of sugars and fats, which are the main metabolic

energy sources, becomes impaired. This condition, known as

substrate-overload lipotoxicity, leads to the accumulation of

harmful lipid species (90–92). The presence of these metabolites

can induce stress in liver cells, resulting in damage and eventual cell

death. Over time, this process can contribute to the development of

fibrosis and genetic instability (25, 93, 94). Consequently,

individuals with NASH are at an increased risk of developing

cirrhosis and HCC. Macrophages play a significant role in various

inflammatory conditions and have a crucial impact on the

progression and prognosis of these diseases. In the context of

NAFLD, macrophages have been found to be key cells influencing

disease advancement. Therefore, targeting macrophages has

emerged as a promising therapeutic strategy for various disorders,

including NAFLD. Recent discoveries in macrophage metabolism

in NAFLD have shed light on potential therapeutic interventions.

Strategies aimed at targeting macrophage metabolism could help

modulate their functions and alleviate the inflammatory processes

associated with NAFLD. These strategies may involve manipulating

specific metabolic pathways or targeting key enzymes or receptors

involved in macrophage metabolism. By understanding and

targeting macrophage metabolism, it may be possible to develop

novel therapeutic approaches for NAFLD and related conditions.

However, further research is needed to fully elucidate the

underlying specific mechanisms for NAFLD and evaluate the

efficacy and safety of these strategies in clinical settings.
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4.1 FXR as a therapeutic target on KCs
for NAFLD/NASH

KCs play an important role in NAFLD/NASH progression and

a promising target for intervention. Indeed, certain medications

have the potential to indirectly influence NAFLD by targeting KCs.

The farnesoid X receptor (FXR), also known as the bile acid

receptor, has shown promising therapeutic benefits in the

treatment of NAFLD (Figure 2). Clinical trial data supports the

effectiveness of obeticholic acid, an FXR agonist, in inhibiting

hepatic glucose and lipid metabolism, as well as exhibiting anti-

inflammatory and anti-fibrotic properties in NAFLD (95). FXR

agonists have been found to decrease the production of pro-

inflammatory cytokines in KCs by attenuating liver inflammation

induced by LPS (96). Moreover, in both laboratory settings and

living organisms, FXR agonists have been shown to transform

macrophages into an anti-inflammatory phenotype (97, 98)

(Figure 2). These findings suggest that the beneficial effects of

FXR activators in NASH may be partially due to their impact on

KCs. Currently, a comprehensive phase III clinical trial is underway

to evaluate the efficacy of obeticholic acid in patients with NASH

and fibrosis (4).
4.2 GLP1R and PPAR as promising targets
on KCs for NAFLD/NASH

Indeed, the use of glucagon-like peptide-1 receptor agonists

(GLP1RAs) has shown promise as a potential therapeutic strategy

for NASH. GLP1RAs are agonists of the glucagon-like peptide-1

receptor (99–101)(Figure 2). In a clinical study, liraglutide

demonstrated partial histological improvement in NASH (102).

Furthermore, dipeptidyl peptidase 4 inhibitors, which indirectly

activate the glucagon-like peptide-1 (GLP1) receptor, have been

found to decrease the number of pro-inflammatory monocytes in

the liver and shift macrophage polarization towards the M2 anti-

inflammatory phenotype in mice fed a methionine-choline-deficient

(MCD) diet (103). These findings suggest that GLP1RAs hold

significant promise for the treatment of NASH by influencing

inflammatory pathways and improving liver histology (Figure 2).

Furthermore, the stimulation of peroxisome proliferator-activated

receptor gamma (PPARg) through agonists like pioglitazone

promotes the conversion of macrophages into an anti-

inflammatory state. This conversion has been shown to alleviate

hepatic steatosis by enhancing the uptake and breakdown of fatty

acids (104–106). Similarly, peroxisome proliferator-activated receptor

delta (PPARd) plays a crucial role in controlling the polarization of

KCs towards the anti-inflammatory M2 phenotype (104) (Figure 2).

Elafibranor, a dual agonist for PPARa and PPARd, has shown

improved effectiveness in treating NASH compared to a placebo

without negatively impacting fibrosis progression (107) (Figure 2).

These findings collectively suggest that modulating the characteristics

of macrophages may represent a viable target for the treatment of

NASH. The use of GLP1RAs, PPARg agonists like pioglitazone, and
dual PPARa/PPARd agonists like elafibranor hold promise in
Frontiers in Immunology 06
influencing macrophage polarization, inflammatory pathways, and

improving liver histology in NASH.
4.3 CCR2 and CCR5 as potential treatment
strategies on HSCs for NAFLD/NASH

The recruitment of monocytes plays a pivotal role in the

advancement of NAFLD and offers a potential avenue for

intervention. In an animal model of NASH, the administration of

cenicriviroc, a dual antagonist targeting CCR2 and CCR5, exhibited

significant improvements in fibrosis and inflammation (108). A

subsequent study provided additional evidence of the beneficial

effects of cenicriviroc on macrophage numbers and fibrosis in

mouse models of NASH (109). In some clinical trials, it was

observed that a significantly higher proportion of patients treated

with cenicriviroc experienced improvements in fibrosis compared

to those in the placebo group. Nevertheless, there was no discernible

discrepancy observed among the groups with regards to the primary

outcome of attaining a NAFLD activity without exacerbating

fibrosis (110). This finding could potentially be ascribed to the

presence of both CCR2 and CCR5 on HSCs, as the inhibition of

chemokines may have hindered both detrimental and advantageous

activation and recruitment of macrophages (111).
4.4 Macrophage biomarkers

The proposition that macrophage involvement in the pathogenesis

of NAFLD and NASH suggests that markers of macrophage activation

could potentially serve as biomarkers for disease severity and treatment

response. In a cohort study, the levels of soluble CD36, an indicative

marker for macrophage lipid accumulation, were measured (112). The

findings revealed elevated levels of soluble CD36 in individuals with

impaired glucose regulation, metabolic syndrome, and an increased

likelihood of fatty liver, as determined by noninvasive steatosis

estimates (113, 114). Moreover, several studies have reported

sCD163, a macrophage activation marker specific to certain lineages,

as a promising biomarker for predicting liver disease severity (115–

119). In two distinct cohorts comprising 195 participants each, sCD163

demonstrated a strong ability to predict advanced fibrosis in adults

diagnosed with NAFLD, as evidenced by receiver operating

characteristic (AUROC) values of 0.77 and 0.80. Hence, it is

reasonable to propose that sCD163 may serve as a distinctive

biomarker for macrophages, enabling the anticipation of NASH

disease activity, fibrosis, and treatment response. Furthermore,

circulating microparticles, originating from activated or apoptotic

cells and retaining the surface characteristics of their parent cells,

show significant potential as prognostic markers for histological NASH

(120). Recent studies have witnessed a notable increase in the

investigation of macrophage markers associated with NAFLD/

NASH. However, thus far, none of these markers have been

examined as predictive biomarkers with clinical outcomes in

NAFLD. This observation emphasizes the need for extensive future

research in this field.
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4.5 Therapeutic strategies and
delivery pathways

Currently, the majority of therapeutic strategies targeting

macrophages rely on receptor-mediated phagocytosis to achieve

specificity (121–123). In this approach, compounds are custom-

designed to encapsulate therapeutics and possess surface

modifications that can be recognized by macrophage receptors

(124). Although these receptors are not exclusive to macrophages,

they enable the selective identification of cells exhibiting distinct

phenotypes and activation states. This receptor-based approach offers

a precise and targeted means of delivering therapeutic agents into

macrophages, therebyminimizing off-target effects (125). Once inside

macrophages, a variety of therapeutic interventions, including

depletion, proliferation control, inflammation modulation, and

gene silencing, are commonly employed (Figure 2). An alternative

strategy involves altering the signaling pathways responsible for

macrophage-mediated inflammation. Introduction of anti-

inflammatory agents into the macrophage cytoplasm allows for the

modulation of inflammatory cytokine production and release (126,

127). By employing these therapeutic approaches and utilizing

methods that specifically target different subsets of macrophages, a

multitude of methodologies can effectively regulate macrophage

numbers and improve the state of NASH.

Four primary delivery methods have been identified for targeted

administration of therapeutic agents to macrophages: nanoparticles,

liposomes, glucan shell microparticles, and oligopeptide complexes

(Figure 2). The rational approach of utilizing nanoparticles for

macrophage-specific drug delivery has been conceptualized and

implemented. Although nanoparticle technologies have been

developed for targeting macrophage receptors in various diseases,

their potential in treating NAFLD/NASH remains unexplored.

Similar to nanoparticles, liposome shells can be modified to

incorporate ligands or antibodies that selectively target specific

macrophage phenotypes based on receptor specificity. Exploiting

the inherent phagocytic properties of macrophages (128, 129),

liposomes can gain entry into these cells. For instance, clodronate-

loaded liposomes have been utilized to induce apoptosis in

macrophages upon internalization, leading to their depletion.

Insights from fields beyond metabolism in the realm of liposome

delivery may offer valuable perspectives for addressing NAFLD/

NASH. A recent investigation has explored the use of yeast-derived

beta-glucans (Y-BGs) as a distinct encapsulation mechanism with the

ability to target macrophages independently of their activation status

(130). Administration of Y-BGs orally has been shown to promote

the production of IL-10, an anti-inflammatory cytokine (131).

Experimental studies have demonstrated that Y-BGs enhance anti-

inflammatory activity in macrophages through an IL-10-mediated

mechanism (132). Delivering genes to specific tissues without relying

on viruses can be challenging, but the application of oligopeptides in

conjunction with gene-modulating compounds offers a promising

solution for such cases (133–135). This fortuitous finding holds

potential for precise transportation of non-viral gene-modifying

technology to adipose deposits and adipose tissue macrophages,

facilitating targeted outcomes (136).
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5 Conclusions and future perspectives

Exploring the metabolic activities of macrophages presents new

potential for the treatment of NAFLD/NASH. Considering the

crucial involvement of macrophages in inflammatory and

metabolic disorders, focusing on macrophage metabolism emerges

as a promising approach. However, future investigations into

macrophage metabolism face certain challenges and considerations.

These include accurately targeting macrophages or identifying

metabolic targets that do not inadvertently yield positive outcomes.

Furthermore, macrophages possess the ability to alter their

phenotype and potentially their metabolic state during different

stages of disease, which could hinder the effectiveness of metabolic

targeting. Nevertheless, a substantial portion of macrophage

metabolism research lacks sufficient in vivo experimental evidence.

Various factors within the microenvironment can influence the

metabolism and functionality of macrophages. Thus, employing

specialized experimental techniques will be crucial for advancing

macrophage metabolism studies into an in vivo context. It is

anticipated that significant breakthroughs in macrophage

metabolism will lead to therapeutic targets capable of influencing

disease outcomes in NAFLD/NASH.
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