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Distinct molecular subtypes
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gene signature with
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Background: As Systemic Sclerosis (SSc) is a connective tissue ailment that

impacts various bodily systems. The study aims to clarify the molecular subtypes

of SSc, with the ultimate objective of establishing a diagnostic model that can

inform clinical treatment decisions.

Methods: Fivemicroarray datasets of SScwere retrieved from theGEOdatabase. To

eliminate batch effects, the combat algorithm was applied. Immune cell infiltration

was evaluated using the xCell algorithm. The ConsensusClusterPlus algorithm was

utilized to identify SSc subtypes. Limma was used to determine differential

expression genes (DEGs). GSEA was used to determine pathway enrichment. A

support vector machine (SVM), Random Forest(RF), Boruta and LASSO algorithm

have been used to select the feature gene. Diagnosticmodels were developed using

SVM, RF, and Logistic Regression (LR). A ROC curve was used to evaluate the

performance of the model. The compound-gene relationship was obtained from

the Comparative Toxicogenomics Database (CTD).

Results: The identification of three immune subtypes in SSc samples was based on

the expression profiles of immune cells. The utilization of 19 key intersectional DEGs

among subtypes facilitated the classification of SSc patients into three robust

subtypes (gene_ClusterA-C). Gene_ClusterA exhibited significant enrichment of B

cells, while gene_ClusterC showed significant enrichment of monocytes. Moderate

activation of various immune cells was observed in gene_ClusterB. We identified 8

feature genes. The SVM model demonstrating superior diagnostic performance.

Furthermore, correlation analysis revealed a robust association between the feature

genes and immune cells. Eight pertinent compounds, namely methotrexate,

resveratrol, paclitaxel, trichloroethylene, formaldehyde, silicon dioxide, benzene,

and tetrachloroethylene, were identified from the CTD.

Conclusion: The present study has effectively devised an innovative molecular

subtyping methodology for patients with SSc and a diagnostic model based on

machine learning to aid in clinical treatment. The study has identified potential

molecular targets for therapy, thereby offering novel perspectives for the

treatment and investigation of SSc.

KEYWORDS

systemic sclerosis, unsupervised machine learning, molecular subtypes, immune
microenvironment, diagnostic
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1 Introduction

Systemic sclerosis (SSc), commonly referred to as scleroderma,

is a rare autoimmune disease affecting connective tissues,

characterized by skin and internal organ fibrosis, autoimmunity,

and vasculopathy, with a significantly higher mortality rate

compared to other rheumatic diseases. The progression rate,

disease manifestations, and response to therapy exhibit significant

variability among individuals (1, 2). Due to its low prevalence, SSc is

considered an orphan disease, and its burden is substantial (3). The

exact cause of SSc remains uncertain, although considerable

evidence suggests that genetic and environmental factors

significantly contribute to its development (4, 5). While

Raynaud’s phenomenon and fatigue are common early symptoms

of SSc, their presentation can vary, making it challenging for

clinicians to accurately diagnose the disease (6). This diagnostic

difficulty may have implications for treatment decisions and

patient outcomes.

Presently, the management of SSc centers on addressing the

symptoms of affected cutaneous and internal organs, including but

not limited to pulmonary, renal, cardiac, pulmonary arterial

hypertension, gastrointestinal, and musculoskeletal involvement

(2) . Conventional therapeutic approaches encompass

pharmacological interventions such as cyclophosphamide (CYC)

and mycophenolate mofetil (MMF), while hematopoietic stem cell

transplantation (HSCT) represents a crucial treatment modality.

Recent research has investigated novel pharmacological

interventions for the management of SSc, such as rituximab and

tocilizumab, among others. The principal immunological indicators

and therapeutic objectives implicated in the pathogenesis of SSc

have been identified, including IL-6, IL-4, IL-13, TGF-B, and others

(7). While significant advancements have been achieved in the

investigation and clinical management of SSc pathogenesis, further

comprehensive inquiry remains necessary.

In the early stages of SSc, the primary event is vascular injury,

which triggers endothelial activation, inflammation mediated by

both innate and adaptive immune responses, vascular remodeling,

and ultimately fibrosis (2, 8). As such, an examination of the gene

expression profiles of peripheral blood mononuclear cells (PBMCs)

in SSc patients is of particular significance in comprehending the

pathogenesis, immune characteristics, subtyping, and clinical

management of SSc patients. At present, SSc is typically

categorized into subtypes according to the degree of skin

involvement, namely diffuse cutaneous SSC and limited cutaneous

SSC (9). This classification based on skin involvement holds

significant clinical implications (1). Additionally, a minor subset

of SSc patients, known as sine scleroderma, exhibit no skin

involvement (10). Presently, there are no alternative or superior

subtype definitions that can effectively guide the clinical

management of SSc, which poses significant challenges in

its treatment.

This study involved the collection of peripheral blood

transcriptome datasets from five SSc gene expression datasets

sourced from the Gene Expression Omnibus (GEO) database.

Through the use of unsupervised machine learning methods,
Frontiers in Immunology 02
three distinct and reliable subtypes of SSc patients were identified.

The exploration of the immune and molecular characteristics of

these subtypes has yielded significant insights that are relevant to

the advancement of research and treatment of SSc. Moreover, a

machine learning diagnostic model was developed utilizing key

genes to aid in the clinical management of SSc. This investigation

considers the vascular alterations that occur during the initial

phases of SSc and introduces an innovative and presently limited

technique for characterizing SSc subtypes, providing a fresh outlook

for the clinical diagnosis and management of SSc.
2 Materials and methods

2.1 Data acquisition

Peripheral blood gene expression data of SSc patients were

collected from the GEO database, encompassing five datasets:

GSE130953 (11), GSE22356 (12), GSE65336 (13), GSE33463 (14),

and GSE179153 (15). The baseline data of the patients were

extracted from the datasets. The GSE179153 dataset was utilized

for constructing the machine learning diagnostic model, while the

remaining datasets were employed for analysis. The analysis

involved 120 SSc patient samples and 113 healthy donor samples.

The microarray datasets were obtained from Affymetrix. The raw

“CEL” files were acquired and subjected to background adjustment

and quantile normalization to produce gene expression matrix files.

The probe annotation of the expression matrix was conducted using

the R ‘idmap2’ package. The correlation between patient samples

within the analysis dataset was calculated utilizing the R base

function ‘cor’, and samples with a correlation coefficient below

0.7 were eliminated. The batch effects between datasets were

eliminated using the “ComBat” algorithm from the ‘sva’ package.

Subsequently, a total of 120 samples from patients with SSc were

utilized for analysis. The datasets employed in this study have been

succinctly outlined in Table 1.
2.2 Immune infiltration analysis

The “xCell” package, a tool that is presently accessible for

identifying cell types across various data sources (16), was utilized

in our study to evaluate immune cell infiltration in SSc samples. We

employed 64 cell types to characterize the peripheral blood immune

cell populations of SSc patients and computed the peripheral blood

immune scores.
2.3 Unsupervised consensus
clustering in SSc

The identification of intrinsic subgroups with shared biological

features can be achieved through the utilization of the

“ConsensusClusterPlus” software package in R (17). In order to

investigate potential subtypes of SSc patients, we employed the
frontiersin.org
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“ConsensusClusterPlus” package for unsupervised clustering. The

K-Means algorithm based on Euclidean distance and Ward-D

linkage was utilized in the analysis, with 1000 iterations

performed to ensure classification stability. The cumulative

distribution function (CDF) values and the incremental area

under the CDF curve were employed as evaluation criteria for

each cluster in the consensus clustering process. Subsequently, the

clustering results were validated through the utilization of principal

component analysis (PCA).
2.4 Identification of differentially expressed
genes between subtypes

The Limma package was employed to discern dissimilarly

expressed genes among subtypes, utilizing the false discovery rate

(FDR) technique to regulate false positives. Significance was

established at adjusted p-values of <= 0.05, while a fold change of

>= 0.32 was deemed indicative of significant differences.
2.5 Characterization of SSc subtypes

The present study employed the “xCell” package to assess the

enrichment of 64 cell types and calculate immune scores in the

robust SSc subtypes, in order to characterize them. Additionally,

SSc-related immune pathways were selected from published

literature and gene set enrichment analysis (GSEA) results,

utilizing gene sets derived from the KEGG and Reactome

databases, to evaluate the enrichment of metabolic pathways

among SSc patient subtypes. Furthermore, the Wilcoxon test was

employed to evaluate the enrichment scores of distinct cell types

and pathway activities across the three subtypes, where statistical

significance was determined at a p-value threshold of less than 0.05.
2.6 Construction of machine learning
diagnostic models

Feature genes were selected using the Least Absolute Shrinkage

and Selection Operator (LASSO) algorithm, Support Vector

Machine (SVM) algorithm, Random forest (RF) and Boruta,

based on the intersection of 19 genes among the three robust

subtypes. LASSO is a well-established algorithm in machine

learning that is commonly employed for feature selection and
Frontiers in Immunology 03
data dimensionality reduction. SVM is a supervised machine

learning algorithm that can effectively classify high-dimensional

large data into a limited number of data points (support vectors),

thereby achieving dimensionality reduction. The R packages

“glmnet” and “e1071” were utilized to implement LASSO and

SVM, respectively. The RF algorithm, which comprises multiple

decision trees, was implemented using the R package

“randomForest”. The Boruta algorithm is a feature selection

method used to identify important features in a dataset that have

statistical significance. It is implemented using the R package

“Boruta”. Following the acquisition of feature genes, an

assessment of the correlation between these genes and immune

cells was conducted. Subsequently, the dataset was partitioned into

training and validation sets in a 7:3 ratio. Diagnostic models were

constructed using the SVM, RF, and Logistic Regression (LR)

algorithms. The LR model, which is a generalized linear

regression analysis model, is frequently employed in data mining

and disease diagnosis. Its implementation is carried out through the

utilization of the base function “glm” in the R programming

language. Ultimately, the efficacy of the three models was

evaluated in both the training and testing sets by means of

Receiver Operating Characteristic (ROC) curves.
2.7 Identification of compounds associated
with SSc

The Comparative Toxicogenomics Database (CTD) was utilized

to conduct a search for SSc, with a subsequent filtration of

compounds associated with the feature genes, as per the

“Chemical-Gene Interactions” tab.
3 Results

3.1 Exploring subtypes in SSc

The present study conducted an initial investigation into

subtypes of SSc by analyzing peripheral blood expression profiles

from a total of 120 SSc patients across four cohorts. To mitigate

batch effects between datasets, the ComBat algorithm was

employed, and the resulting batch effect-corrected changes were

visualized using PCA (Figures 1A, B). Additionally, the xCell

package was utilized to perform convolution on the peripheral

blood expression profiles of the 120 SSc patients. Based on the
TABLE 1 The dataset used in study.

Data set Subjects Experiment type Platforms Tissue

GSE179153 49 SSc vs 25 HC Expression profiling by array GPL10558 Whole Blood

GSE130953 62 SSc vs 62 HC Expression profiling by array GPL10558 Whole Blood

GSE22356 10 SSc vs 10 HC Expression profiling by array GPL570 PBMC

GSE33463 19 SSc vs 41 HC Expression profiling by array GPL6947 PBMC

GSE65336 29SSc Expression profiling by array GPL570 Whole Blood
f
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observed differences in immune cells, the km algorithm with 1000

iterations from the ConsensusClusterPlus package was employed to

perform clustering. Through an analysis of the CDF values and the

incremental area under the CDF curve, we arrived at the

determination that k=3 represents the optimal number of clusters,

a finding that was subsequently confirmed by PCA (Figures 1C–E).

To further investigate the differences in gene expression between

the identified subtypes, we generated a heatmap, which revealed a

significant upregulation of genes in cluster C, a significant

downregulation of genes in cluster B, and intermediate expression

levels in cluster A (Figure 1F). Moreover, we computed

microenvironment scores, immune scores, and stromal scores for

the various subtypes. The results demonstrated that cluster C had

the highest microenvironment and immune scores, cluster B had

the lowest scores, and cluster A fell between clusters B and C

(Figures 1G, H), which corresponded to the heatmap results. As for

the stromal score, cluster B had the highest score, cluster A had the

lowest score, and Cluster C was in the middle (Figure 1I). Since the
Frontiers in Immunology 04
gene expression data were derived from peripheral blood, the

stromal score might not be meaningful. However, overall, these

results suggest that stratifying SSc patients based on the immune

cell composition in peripheral blood is effective. In summary, the

findings indicate that the stratification of SSC patients according to

the composition of immune cells in the peripheral blood is a

viable approach.
3.2 Identification of robust subtypes in SSc

In order to develop a more comprehensive definition of SSc

subtypes, the limma package was utilized to compute differential

gene expression among the three subtypes. Through the

implementation of a Venn diagram, 19 significant DEGs were

identified (Figure 2A), which served as crucial factors in

distinguishing the three subtypes. Subsequently, an unsupervised

clustering analysis was conducted on the SSc samples, resulting in
A B

D E F

G IH

C

FIGURE 1

Preliminary investigation and molecular features of SSc subtypes. PCA of expression matrix for four different datasets before batch correction (A) and
after batch correction (B). (C) Heatmap of consensus matrix at k = 3. (D) Cumulative distribution frequency (CDF) curve of clustered samples. (E)
PCA plot showing three subtypes after classification. (F) Heatmap showing gene expression differences between subtypes. Microenvironment scores
(G), immune scores (H), and stromal scores (I) for different subtypes were calculated using the Xcell package.
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the identification of three more robust subtypes (gene_clusterA-C)

using the ConsensusClusterPlus algorithm (Figure 2B), based on

the aforementioned 19 key DEGs. The PCA further confirmed the

findings (Figure 2C). The heatmap revealed that gene_clusterA

manifested significantly elevated expression levels across all 19

genes, gene_clusterC exhibited significantly reduced expression

levels, and gene_clusterB displayed moderate expression

levels (Figure 2D).
3.3 Molecular features of robust
subtypes in SSc

In order to comprehend the molecular attributes and

physiological roles of the three resilient subtypes, we conducted an

investigation into their prevalence across 64 cell types and immune-

related pathways (Figure 3). Our findings indicate that gene_clusterA

subtype demonstrated a notably greater prevalence of B cells and T

cells in comparison to the other subtypes, particularly in B cell-related

enrichments and the B cell receptor signaling pathway. Furthermore,

gene_clusterA exhibited a high degree of enrichment in TCR

signaling transduction and CD28-dependent PI3K-AKT signaling.

Monocytes exhibited anomalous activity in gene_clusterC, which was

notably enriched in interleukin-related responses, encompassing
Frontiers in Immunology 05
interleukin 1, 6, 10, and 17 signalings, as well as the processing of

interleukin 1. Additionally, gene_clusterC demonstrated elevated

scores in various signaling pathways, including the chemokine

signaling pathway, cytokine-cytokine receptor interaction, mTOR

signaling pathway, Nod-like receptor signaling pathway, Notch

signaling pathway, PPAR signaling pathway, Toll-like receptor

signaling pathway, and VEGF signaling pathway. It is noteworthy

that gene_clusterB demonstrates moderate activation throughout all

cells and pathways. Utilizing these molecular characteristics, we have

classified the gene_clusterA subtype as B-cell rich, gene_clusterB as

intermediate, and gene_clusterC as monocyte activated.
3.4 Construction of machine learning
diagnostic models

In order to enhance the precision of marker genes, we utilized

SVM, LASSO regression, RF and Boruta for feature selection from a

pool of 19 key DEGs (Figures 4A–E). Ultimately, we identified 8 feature

genes, namely “FAM3C”, “BTLA”, “STRBP”, “RASGRP3”, “CD79A”,

“MS4A1”, “CXCR5”, and “TCL1A” (Figure 4F). To establish

dependable clinical classifiers for SSc subtypes, we developed

classification models using SVM, RF, and LR. The dataset

GSE179153 was partitioned into a training set and a validation set at
A B

DC

FIGURE 2

Identification of robust SSc subtypes. (A) Venn diagram identified 19 significant DEGs. (B) Three robust SSc subtypes were identified through
unsupervised consensus clustering based on the 19 key DEGs. (C) PCA plot displays the distribution of the three subtypes. (D) Heatmap shows the
expression differences of the 19 significant DEGs among the subtypes.
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a ratio of 7:3. The efficacy of the SVM, RF, and LR models was

evaluated in both sets using ROC curves. In the training set, the AUC

values of the SVM, RF, and LR models were 0.7591, 1.000, and 0.7609,

respectively (Figure 4G). In the validation set, the AUC values were

0.8408, 0.7306, and 0.829, respectively (Figure 4H). Overall, the three

machine learning models, which were based on the 8 feature genes,

demonstrated exceptional predictive performance, with the SVM

model exhibiting the highest performance.
Frontiers in Immunology 06
3.5 Correlation between feature genes and
immune cells

In order to examine the association between the diagnostic

model and SSc, an analysis was conducted to determine the

correlation between the 8 feature genes and immune cells present

in the peripheral blood of SSc patients (Figure 5). Notably, these 8

genes exhibited a robust correlation with B cells (including naïve B
A

B

FIGURE 3

Molecular features of subtypes exhibited by immune cells and immune-related pathways. (A) Enrichment scores of immune cell infiltration in
different subtypes. (B) Enrichment scores of SSc-related immune pathways in different subtypes.
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cells, memory B cells, and other B cell subtypes), monocytes, and

epithelial cells. This discovery is in strong agreement with our prior

analysis and serves to reinforce the precision of our SSc

subtype classification.
3.6 Exploration of potential therapeutic
drugs for SSc

Nine compounds of relevance were screened in the CTD, based

on the 8 feature genes (Table 2). The expression of BTLA is

decreased by trichloroethylene, while methotrexate affects the

expression of CD79A and formaldehyde results in a decrease in

CD79A expression. CXCR5 expression is increased by silicon

dioxide. Additionally, the sensitivity of SSc patients to paclitaxel

is influenced by the FAM3C protein. Silicon dioxide has been

observed to elicit an upregulation of MS4A1 expression, whereas

the administration of [hydroxychloroquine + methotrexate +
Frontiers in Immunology 07
sulfasalazine] combination therapy has been shown to induce a

downregulation of MS4A1 expression. Conversely, formaldehyde

exposure has been associated with a reduction in MS4A1

expression. Analogues of silicon dioxide or [rheumatoid arthritis

drugs combined with methotrexate] have both been found to result

in a decrease in RASGRP3 expression. Resveratrol and benzene

exposure have been linked to a decrease in STRBP expression, while

trichloroethylene and tetrachloroethylene exposure have been

associated with an increase in STRBP gene expression. Additional

investigation is necessary to examine the correlation between said

compounds and SSc.
4 Discussion

SSc is a chronic fibrotic disease that arises from autoimmune

dysfunction (18). It poses a rare and formidable challenge for

treatment (19, 20). Early vascular damage in the disease
A B

D E F

G H

C

FIGURE 4

Construction of Machine Learning Diagnostic Models. (A–E) Feature genes screening in the Boruta, LASSO, RF and SVM algorithms. (F) Four machine
learning algorithms selected feature genes and the Venn diagram of their intersection. AUC curves of the three models in the training set (G) and
validation set (H).
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progression serves as a link between immune abnormalities and

fibrosis, thereby triggering pathological cascades in multiple organs

(21, 22). Furthermore, the early detection of SSc onset is arduous,

and prior research has not established a definitive molecular

subtype classification for SSc, and there is a dearth of valuable

biomarkers for the disease. This study has successfully identified
Frontiers in Immunology 08
three distinct and resilient subtypes of SSc, specifically characterized

as B-cell rich, intermediate, and monocytes activate types.

Subsequently, a diagnostic model has been developed to aid in

clinical management.

The xCell algorithm was utilized in this study to examine

peripheral blood expression profiles from four datasets of SSc
FIGURE 5

Correlation between the 8 feature genes and immune cell.
TABLE 2 Interactions between compounds and genes related to SSc in the CTD database.

Chemical
Name

Gene
Symbol

Interaction

Trichloroethylene BTLA Trichloroethylene results in decreased expression of BTLA mRNA

Methotrexate CD79A Methotrexate affects the expression of CD79A mRNA

Trichloroethylene CD79A Trichloroethylene results in increased expression of CD79A mRNA

Formaldehyde CD79A Formaldehyde results in decreased expression of CD79A mRNA

Silicon Dioxide CXCR5 Silicon Dioxide results in increased expression of CXCR5 mRNA

Paclitaxel FAM3C FAM3C protein affects the susceptibility to Paclitaxel

Silicon Dioxide MS4A1 Silicon Dioxide results in increased expression of MS4A1 mRNA

Methotrexate MS4A1
[Hydroxychloroquine co-treated with Methotrexate co-treated with Sulfasalazine] results in decreased expression of MS4A1

mRNA

Formaldehyde MS4A1 Formaldehyde results in decreased expression of MS4A1 mRNA

Silicon Dioxide RASGRP3 Silicon Dioxide analog results in decreased expression of RASGRP3 mRNA

Antirheumatic RASGRP3 [Antirheumatic Agents co-treated with Methotrexate] results in decreased expression of RASGRP3 mRNA

Resveratrol STRBP Resveratrol results in decreased expression of STRBP protein

Benzene STRBP Benzene results in decreased expression of STRBP mRNA

Trichloroethylene STRBP Trichloroethylene results in increased expression of STRBP mRNA

Tetrachloroethylene STRBP Tetrachloroethylene results in increased expression of STRBP mRNA
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patients. Our findings revealed notable variations in immune cells

among SSc patients, which were used to conduct preliminary

clustering. Further differential analysis was performed between

the identified clusters.By employing the 19 essential DEGs, we

have successfully distinguished three resilient subtypes of SSc

patients, namely gene_clusterA (characterized by B cell

enrichment), gene_clusterB (intermediate in nature), and

gene_clusterC (marked by monocyte activation). Significantly, our

results were validated by prior investigations (23, 24). Patients with

SSc who exhibited a subtype enriched with B cells demonstrated

heightened activity of diverse B cell subpopulations in their

peripheral blood, including memory and naïve B cells. Notably, B

cells play a pivotal role in the pathogenesis of SSc by producing

cytokines such as IL-6 and TGF-b (25, 26), engaging in self-

activation with T cells (27), stimulating fibroblasts (28), and

contributing to endothelial cell activation and injury (29, 30),

among other pathways, which ultimately lead to the inflammatory

and fibrotic phenotypic manifestations of SSc. Moreover, the B cell-

enriched subtype of SSc patients exhibited a significant enrichment

in two signaling pathways, namely the CD28-dependent PI3K-AKT

signaling and TCR signaling. The activation of PI3K by the co-

stimulatory receptor CD28 leads to the generation of PIP3 on the

plasma membrane. Akt is involved in the CD28-mediated co-

stimulation of T cell activation (31, 32). Furthermore, individuals

with SSc who exhibit a monocyte-activated subtype demonstrate a

noteworthy increase in the abundance of monocytes in their

peripheral blood. This observation is consistent with prior

research, such as the work of Alain Lescoat et al, which posits

that monocyte adhesion may escalate in SSc due to the loss of CD52

(33). Macrophages derived from monocytes expressing CD163 or

CD204 may serve as potential regulators of fibrosis in the skin of

individuals with SSc (34, 35). The utilization of flow cytometry by

Laure Ricard et al. revealed a noteworthy elevation in 6-Sulfo

LacNAc monocytes, intermediate monocytes, and non-classical

monocytes in individuals with SSc (24), with a more pronounced

increase in SlanMo cells observed in those with diffuse SSc.

Furthermore, the subtype activated by monocytes exhibited a

notable enrichment in interleukin-mediated responses,

encompassing signaling pathways for interleukin-1, interleukin-6,

interleukin-10, interleukin-17, and interleukin-1 processing.

Interleukins are recognized as significant contributors to the

advancement of SSc (36–39). In conclusion, our identification and

description of SSc subtypes may serve as promising avenues for

future therapeutic research in SSc.

Dimensionality reduction was performed on the 19 key DEGs

using SVM, RF, Boruta and LASSO regression, resulting in the

identification of 8 feature genes, namely FAM3C, BTLA, STRBP,

RASGRP3, CD79A, MS4A1, CXCR5, and TCL1A. Subsequently,

clinical diagnostic models were constructed based on the

aforementioned 8 feature genes. The model shows good predictive

performance in both training set and validation set. BTLA, a

constituent of the CD28 superfamily, plays a pivotal role as a co-

signaling molecule. Its principal role involves hindering the

activation and proliferation of T cells, B cells, and DC cells.

Recent investigations have shed light on the notable importance
Frontiers in Immunology 09
of BTLA in the realm of autoimmune diseases, as it has

demonstrated efficacy in mitigating conditions such as multiple

sclerosis (MS), active systemic lupus erythematosus, and

rheumatoid arthritis (RA) (40). STRBP is a protein that exhibits

affinity for nuclear RNA in spermatids. Trang T Le et al. employed

machine learning algorithms to identify a potential association

between STRBP and the differentiation cluster cell surface

biomarker in the blood of patients with SLE (41). CD79,

consisting of CD79A and CD79B, is predominantly expressed in

B cells and B-cell tumors, and plays a crucial role in the expression

and function of B-cell antigen receptors. CD79A can be utilized as a

primary diagnostic marker for B-cell-related diseases (42), and has

been implicated in various pathological conditions. Notably, Ian R

Hardy and colleagues have proposed the use of monoclonal

antibodies targeting CD79B as a means to collectively suppress B

cells and prevent autoimmunity, with the added benefit of

facilitating rapid immune recovery, unlike other approaches that

induce B cell death (43). This implies that targeting CD79A has

significant potential for the treatment of SSc. The gene MS4A1, also

known as CD20, encodes a surface molecule present on B-cells that

plays a crucial role in their development and differentiation into

plasma cells. It is worth noting that rituximab, a chimeric antibody

specifically targeting CD20, has exhibited effectiveness in treating

fibrotic lesions in SSc and has been approved for the management of

SSc and SSc-ILD in certain countries (44). The CXCR5 receptor

interacts with CXCL13, a chemoattractant that attracts B-cells. The

CXCL13-CXCR5 axis fulfills various biological functions, including

the regulation of cancer cell growth, proliferation, invasion, and

metastasis (45). Additionally, this axis is implicated in the

pathogenesis of several autoimmune diseases (46). TCL1A

functions as a co-activator of the serine/threonine kinase Akt,

facilitating cell survival, growth, and proliferation through various

interactions. TCL1A has the ability to modulate B-cell

differentiation and regulation (47). In summary, these feature

genes are highly associated with immunity, which provides an

important reference for exploring their role in SSc.

By utilizing the CTD, we have successfully identified 9

compounds that exhibit an association with SSc and exert an

impact on the eight feature genes. Notably, methotrexate stands out

as the most frequently employed immunosuppressant in SSc patients

(48). The European League Against Rheumatism advocates for

methotrexate as the primary treatment option for early diffuse SSc’s

skin manifestations (49). The impact of Resveratrol on SSc has been

noted, as it has the potential to enhance fibrosis and mitigate

inflammatory responses in SSc through the modulation of the

SIRT1/mTOR signaling pathway (50). Paclitaxel is a highly

efficacious natural anticancer agent; however, there have been

documented cases of SSc development in cancer patients

undergoing paclitaxel treatment (51). The precise mechanisms

underlying this phenomenon remain to be elucidated. Additionally,

the other compounds, namely trichloroethylene, formaldehyde,

benzene, and tetrachloroethylene, are all recognized environmental

exposure factors associated with SSc. These compounds are typical

occupational exposure substances, and their association with SSc has

been reported in the scientific literature (52–54).
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5 Conclusion

This study utilized peripheral blood expression profiling data to

identify three molecular subtypes of SSc and examined their

molecular characteristics. Additionally, a machine learning

diagnostic model was developed to aid in clinical identification.

Furthermore, this investigation revealed previously unexplored

therapeutic targets and compounds for SSc, offering novel insights

for future research in this field. Despite the utilization of rigorous

bioinformatics methods, this study is not without limitations. It is

imperative to conduct molecular experimental validation to

corroborate the findings. Furthermore, additional comprehensive

research is required to fully explore the potential therapeutic targets

and related drugs for SSc.
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