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Gliomas are one of the most common primary malignant tumours of the central

nervous system (CNS), of which glioblastomas (GBMs) are themost common and

destructive type. The glioma tumour microenvironment (TME) has unique

characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen

species (ROS) and tumour neovascularization. Therefore, the traditional

treatment effect is limited. As cellular oxidative metabolites, ROS not only

promote the occurrence and development of gliomas but also affect immune

cells in the immune microenvironment. In contrast, either too high or too low

ROS levels are detrimental to the survival of glioma cells, which indicates the

threshold of ROS. Therefore, an in-depth understanding of the mechanisms of

ROS production and scavenging, the threshold of ROS, and the role of ROS in the

glioma TME can provide new methods and strategies for glioma treatment.

Current methods to increase ROS include photodynamic therapy (PDT),

sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and

methods to eliminate ROS include the ingestion of antioxidants. Increasing/

scavenging ROS is potentially applicable treatment, and further studies will help

to provide more effective strategies for glioma treatment.

KEYWORDS

glioma, ROS, tumor microenvironment, antioxidants, photodynamic therapy,
sonodynamic therapy, chemodynamic therapy, nanodrug delivery platforms
1 Introduction

Gliomas are the most common primary malignant tumours of the central nervous system

(CNS), accounting for approximately 30% of all primary brain and CNS tumours and 80% of

malignant brain tumours (1). According to the criteria set by the World Health Organization

(WHO), the malignancy of gliomas is divided into grades I-IV, ranging from mild to severe.
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Glioblastomas (GBMs) are grade IV gliomas and are the most

common type. Unfortunately, GBMs are also the most dangerous,

with relapses being inevitable even after rigorous treatment (2). Due

to the unique characteristics of the glioma tumourmicroenvironment

(TME), such as hypoxia, the blood–brain barrier (BBB), reactive

oxygen species (ROS), and tumour neovascularization, treatment

often show poor efficacy (3–5). The standard treatment for GBMs

is resection followed by radiotherapy and temozolomide (TMZ)

chemotherapy, but the median survival of GBM patients is only

14.6 months (6). In addition, the humanized IgG1 monoclonal

antibody bevacizumab is also commonly used in the clinical

treatment of GBMs (7). According to the available studies, neither

TMZ nor bevacizumab is sufficient to treat gliomas. TMZ causes

alkylation of genomic DNA at the N7 and O6 sites of guanine and at

the N3 site of adenine. When the alkylation lesion at the guanine O6

position is not repaired, it leads to mispairing during DNA

replication, which triggers a break in the DNA strand and causes

GBM cell death (8–10). However, O6-methylguanine-DNA

methyltransferase (MGMT) exists in GBM cells, cleans the alkyl

group produced by TMZ and repairs damaged DNA. The presence of

MGMT is an important reason for the resistance of GBMs to TMZ

(11). Bevacizumab targets a protein called vascular endothelial

growth factor-A (VEGF-A) and slows tumour growth and

proliferation by preventing tumour angiogenesis, thereby depriving

GBM cells of nutrient uptake (7). However, due to tumour

heterogeneity and insufficient pharmacokinetics, it is still difficult

to prevent GBM recurrence with antiangiogenic therapy (12–14).

Therefore, the search for new treatment methods for gliomas has

become a hotspot of current research.

ROS are reactive substances produced by oxygen reduction,

including hydrogen peroxide (H2O2), organic hydroperoxide

(ROOH), singlet oxygen (1O2), ozone (O3), superoxide anion

(O2˙‾), hydroxyl radical (OH·), and peroxyl radical (ROO·) (15),

etc. Certain levels of ROS are required for cell survival and are

involved in cell proliferation and differentiation (16), skeletal

muscle contraction (17), immune response (18) and other

processes. These physiological effects are based on the regulation

of multiple signalling pathways by ROS, such as the nuclear factor-

kappaB (NF-kB), phosphatidylinositol 3-kinase (PI3K)/protein

kinase B (AKT), and mitogen-activated protein kinases (MAPKs)

(19, 20). The normal function of cells also depends on the ROS

threshold, which represents the critical point of intracellular ROS

levels (15, 21). A level of ROS slightly below the threshold is helpful

to maintain normal cell function. However, when ROS persistently

accumulate abnormally beyond the threshold, they may cause

irreversible oxidative damage to cells or even lead to cell death (21).

In gliomas, appropriate amounts of ROS can activate growth-

related signalling pathways, induce DNA mutations, and promote

invasion and metastasis (22–24). However, it has been shown that

inducing ROS accumulation leads to glioma cell death (25, 26). In

contrast, given the critical role of ROS in the cell, the depletion of

ROS also makes it difficult for glioma cells to survive (27, 28).

Therefore, controlling the level of ROS becomes a potential strategy

for glioma treatment. According to the literature, methods to

induce massive ROS production include photodynamic therapy

(PDT) (29), sonodynamic therapy (SDT) (30) and chemodynamic
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therapy (CDT) (31). The main approach to ROS reduction is the

application of various antioxidants (27, 28, 32). All these methods

have the potential to be used to treat gliomas. Therefore, we need to

better understand the mechanisms of ROS production and

clearance in gliomas, as well as their role in the glioma TME.

Meanwhile, the methods based on ROS generation/scavenging also

contribute to the prevention and treatment of gliomas.
2 ROS production and antioxidant
defence systems

ROS production is caused by exogenous environmental stimuli

or endogenous metabolism. Exogenous ROS can be generated by

environmental pollutants, such as heavy metals (33), ultraviolet

radiation (34), asbestos (35), sulfur dioxide (36), and particulate

matter with a diameter of less than 2.5 µm (PM2.5) (37).

Endogenous ROS production is mainly dependent on the

mitochondrial electron transport chain (ETC) (38) and NADPH

oxidases (NOXs) (39). In some cases, peroxisomes (40) and

endoplasmic reticulum membranes (41) have also been identified

as ROS production sites.

When ROS levels are elevated, glioma cells initiate their own

antioxidant defence system in response to oxidative stress (OS).

These antioxidant defence systems consist of a series of enzymes,

such as superoxide dismutase (SOD) (42), catalase (CAT) (43),

glutathione peroxidase (GPX) (44), glutathione reductase (GSR)

(45), haem oxygenase (HMOX) (46), peroxiredoxin (PRDX) (47),

thioredoxin (TRX) (48), and quinone oxidoreductase 1 (NQO1)

(49). Nonenzymes include glutathione (GSH) (50), a-lipoic acid

(51), and coenzyme Q10 (CoQ10) (52). Of note, nuclear factor

erythroid 2-related factor 2 (NRF2) is a basic leucine zipper (bZIP)

transcription factor that is an important controller of the activation

of cellular antioxidant defence systems (53). Under normal

conditions, Kelch-like ECH-associated protein 1 (KEAP1) can

promote the polyubiquitination and degradation of NRF2 to

maintain a certain level of NRF2. However, under OS, KEAP1 is

oxidized, and NRF2 enters the nucleus and binds to the antioxidant

response element (ARE) sequence, thereby activating the expression

of the abovementioned series of antioxidant enzymes (54–58). In

addition, after DNA damage caused by OS, DNA repair

mechanisms in glioma cells are activated to repair damaged DNA

and exert indirect antioxidant effects, such as direct repair (59–61),

base excision repair (BER) (62), mismatch repair (MMR) (63, 64),

and nucleotide excision repair (NER) (65, 66). A summary of the

antioxidant defence systems in glioma cells is presented in Table 1.
3 The role of ROS in the glioma TME

The glioma TME plays an important role in the growth,

invasion, recurrence and drug resistance of gliomas. Its major

components include glioma cells, immune cells, signalling

molecules, stromal cells, and extracellular matrix (ECM) (95).

Immune cells include glioma-associated macrophages/microglia

(GAMs), myeloid-derived suppressor cells (MDSCs), T cells,
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TABLE 1 Glioma-associated antioxidant defence systems.

Classification Name Function Related research Reference

Antioxidant
enzymes

SOD
It catalyses O2

•- to form molecular
oxygen and H2O2.

1) After treatment with the EZH2 inhibitor GSK343, the levels of SOD
decrease and the production of ROS increases in GBM cells, ultimately
leading to cell death.
2) After knocking down the eIF4E gene, there is a decrease in SOD levels and
an increase in H2O2 levels in glioma cells, ultimately leading to cell death.
3) Mutation of BRG1 in gliomas leads to elevated levels of ROS and reduced
expression of SOD, thereby increasing the sensitivity of gliomas to TMZ
treatment.
4) After TMZ treatment, there is an increase in the expression of Sp1, an
upregulation of SOD2, a reduction in ROS levels, ultimately promoting the
survival of GBM cells.

(42, 67–70)

CAT
It decomposes H2O2 generated
by SOD.

1) The overexpression of CAT and reduction of H2O2 contribute to the
resistance of glioma cells to TMZ.
2) Knocking down CEBPD downregulates CAT expression and increases
H2O2 levels, consequently inducing GBM cell death.

(43, 71)

GPX

They are selenium-containing
enzymes that ensure the
detoxification of H2O2 and
lipid peroxides.

1) The curcumin analogue ALZ003 promotes AR degradation, enhances ROS
levels, and inhibits GPX4, ultimately resulting in GBM cell death.
2) Plumbagin induces the degradation of GPX4 and elevates ROS levels,
consequently inhibiting the growth of GBMs.

(44, 72, 73)

GSR
It binds to NADPH and prevents
oxidative damage.

Overexpression of GSR decreases ROS levels, thereby promoting glioma
resistance to TMZ.

(45, 74)

HMOX
It catalyses the formation of the
antioxidant bilirubin from heme.

1) Chaetocin sensitizes GBM cells to TRAIL-induced apoptosis by inducing
ROS production and DNA damage. The deficiency of HMOX1 can enhance
the sensitizing effect of chaetocin on TRAIL.
2) Overexpression of NRF2 can increase HMOX1 expression, reduce ROS,
reduce the cytotoxicity of carmustine, and promote glioma cell survival.
3) ATO promotes glioma cell damage and HMOX1 expression by inducing
the production of ROS. Inhibitors of HMOX1 significantly increase glioma
cell death and ROS generation induced by ATO.

(46, 75–77)

PRDX
It contains cysteine residues that
transmit REDOX signals.

Overexpression of PRDX4 leads to the downregulation of ROS, contributing
to the promotion of GSC cell survival.

(47, 78)

TRX
It has a reducing effect and can
eliminate ROS.

The use of TRX inhibitors leads to an increase in ROS levels in GBM cells,
triggering cell death.

(48, 79, 80)

NQO1
It neutralizes ROS in the plasma
membrane and prevent
lipid peroxidation.

1) The drug MNPC inhibits NQO1, leading to increased ROS levels and
promoting GBM cell death.
2) C/EBPb can regulate the transcription of NQO1, neutralize ROS in GBM
cells, and promote proliferation.
3) NQO1 can also bind with the substrate TSB, resulting in the significant
generation of ROS, and promoting GBM cell death.

(49, 81–83)

Antioxidant
nonenzymes

GSH
It contains active
mercaptan groups.

1)The use of ciglitazone promotes the production of ROS, leading to a
decrease in GSH levels and cell death in glioma cells.
2) SAS decreases GSH levels, induces ROS production, and promotes GBM
cell death.
3) Silibinin induces autophagy in glioma, resulting in the depletion of GSH,
elevation of H2O2, and BNIP3-dependent nuclear translocation of AIF,
ultimately leading to glioma cell death.

(50, 84–86)

a-
lipoic
acid

It has both pro-oxidation and
antioxidation effects.

Activation of TRPA1 induces hypoxia and OS in gliomas, potentially resulting
in apoptosis. However, a-lipoic acid has been shown to reverse these effects,
thereby promoting glioma cell survival.

(51, 87)

CoQ10
Its reduced form protects against
lipid peroxidation damage.

CoQ10 reduces ROS levels and shifts the oxidative balance towards a pro-
oxidant state, thereby enhancing the sensitivity of GBM cells to radiation
therapy and chemotherapy.

(52, 88)

DNA
repair enzymes

MGMT

It is one of the direct DNA repair
proteins. It repairs DNA damage
caused by OS by removing
methyl groups.

The upregulation of GBP3 contributes to TMZ resistance in GBMs through
the induction of NRF2 and MGMT expression.

(59–61)

PARP1
PARP1 plays a crucial role in the repair of DNA damage caused by ROS and
facilitates the survival of GBM cells.

(62, 89)

(Continued)
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monocytes, neutrophils, dendritic cells (DCs) and natural killer

(NK) cells. Signalling molecules include chemokines, cytokines,

growth factors, and angiogenesis factors. Stromal cells include

astrocytes and endothelial cells. The extracellular matrix (ECM) is

a three-dimensional structure composed of fibrin, proteoglycans

and other molecules that provides biochemical and structural

support for surrounding cells and plays an important role in

glioma invasion and metastasis (95, 96). Among them, as

important regulatory molecules, the presence of ROS have a

significant impact on the glioma TME. ROS not only affect the

function of immune cells (Figure 1) but also participate in the

process of glioma cell proliferation, invasion, metastasis and death.

These studies will be discussed in this section.
3.1 GAMs

Macrophages and microglia are important cell types in the

immune system. Macrophages are primarily derived from bone

marrow-resident haematopoietic stem cells (112). After entering the

blood, mature mononuclear macrophages can settle in different

tissues, such as the liver, lung, brain, lymph nodes and other organs

and tissues, at which time they will become macrophages.

Macrophages are involved in phagocytosis and clearance of

pathogenic microorganisms, necrotic tissues, and secretion of a

variety of inflammatory mediators involved in immune regulation

and tissue repair (113–115). Microglia are induced by the colony-
Frontiers in Immunology 04
stimulating factor 1 receptor (CSF1R) and are generated from red

myeloid progenitors of the yolk sac. They are self-renewing and

reside in the CNS for a long time (116). Microglia play an important

role in maintaining the homeostasis of the nervous system,

including phagocytosis (117), promoting synapse formation (118),

and supplying nutrients (119).

In the TME, macrophages can manifest as the M1 type

(characterized by inflammatory and antitumour responses) or M2

type (involved in the repair of damaged tissues and anti-

inflammation), but the TME tends to induce the differentiation of

macrophages towards the M2 type (120–122). Anti-inflammatory

factors released by tumours, such as interleukin (IL)-4, IL-10, and

transforming growth factor-b (TGF-b), can promote the

transformation of macrophages into the M2 type (123). M2

macrophages similarly release growth factors, such as vascular

endothelial growth factor (VEGF), epidermal growth factor

(EGF), and fibroblast growth factor (FGF), which promote

tumour cell proliferation, invasion, and metastasis (124).

Glioma-infiltrated macrophages and microglia are collectively

referred to as GAMs, which represent the largest population of cells

infiltrating tumours, accounting for more than 1/3 of the total

tumour mass (125, 126). GAMs play an important role in the

glioma TME and promote tumour progression. First, anti-

inflammatory factors such as IL-10 and TGF-b produced by

GAMs inhibit the function of other immune cells in the TME

and weaken the antitumour immune response (127, 128). Second,

GAMs also secrete matrix metallopeptidase 2 (MMP2) and MMP9,
TABLE 1 Continued

Classification Name Function Related research Reference

PARP1 belongs to BER, which
can recognize, cleave, and repair
DNA damage caused by OS.

MSH2

MSH2 belongs to MMR, which
can recognize and repair
incorrectly paired nucleotides
generated during
DNA replication.

After TMZ treatment, MEX3A expression is increased in GBM cells, binding
to MSH2 mRNA and recruiting the CCR4-NOT complex to facilitate its
degradation. Consequently, this leads to reduced DNA mismatch repair
activity and decreased sensitivity of GBM cells to TMZ.

(63)

MSH6
MSH6 belongs to MMR and
participates in DNA
mismatch repair.

MSH6 leads to TMZ resistance in GBM, and the hypoxic TME induced by
MSH6 may promote GBM metastasis through EMT and angiogenesis.

(64)

XPC
XPC belongs to NER, which can
recognize, excision and repair
DNA damage caused by OS.

Nuclear translocation of XPC leads to TMZ resistance in MGMT-
deficient GBMs.

(65, 66, 90)

Transcription
factors

NRF2
It can lead to activation of the
transcription of AREs.

1) APOC1 reduces ferroptosis in GBMs by inhibiting KEAP1, promoting
NRF2 nuclear translocation, increasing HMOX1 and NQO1 expression, and
downregulating ROS.
2) IR-TMZ can induce the generation of ROS, leading to the upregulation of
NRF2 and promoting GBM recurrence. Blocking the activation of NRF2 can
enhance the sensitivity of GBMs to chemoradiotherapy.
3) S-guanylation of KEAP1 in glioma cells is induced by 8-nitro-cGMP, which
leads to the activation of NRF2. Subsequently, the expression of HMOX1 is
induced, while the level of H2O2 decreases, resulting in the survival of
glioma cells.

(91–94)
EZH2, enhancer of zeste homologue 2; eIF4E, eukaryotic translation initiation factor 4E; BRG1, Brahma-related gene 1; Sp1, Specificity protein 1; CEBPD, CCAAT enhancer-binding protein
delta; AR, androgen receptor; TRAIL,TNF-related apoptosis-inducing ligand; ATO, arsenic trioxide; C/EBPb, CCAAT/enhancer binding protein (C/EBP)beta; TSB, tanshindiol B; SAS,
sulfasalazine; BNIP3, Bcl-2 19-kDa interacting protein 3; AIF,apoptosis inducing factor; TRPA1, transient receptor potential ankyrin 1; GBP3,guanylate binding protein 3; PARP1, poly(ADP-
ribose) polymerase 1; MSH2/6, MutS homologue 2/6; MEX3A, Mex-3 RNA binding family member A; CCR4-NOT, carbon catabolite-repression 4-Not; XPC, xeroderma pigmentosum
complementation group C; APOC1, apolipoprotein C1; IR, irradiation; 8-nitro-cGMP, 8-nitroguanosine 3’,5’-cyclic monophosphate.
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which are able to breakdown matrix proteins, such as collagen and

fibronectin, thereby enabling glioma cells to penetrate and invade

the surrounding stromal tissues (129). Finally, GAMs also secrete

proangiogenic molecules, such as VEGF and CXC motif chemokine

ligand 2 (CXCL2), which have been shown to promote glioma

growth and metastasis (129, 130).

In the glioma TME, ROS generally induce the generation of M2

GAMs (96, 131). ROS modulator 1 (Romo1), a membrane protein

located on mitochondria, was found to regulate mitochondrial ROS

(mtROS) production in GBMs (132). In GBM mouse models,

overexpression of Romo1 induces ROS generation via mTORC1

signalling, which in turn promotes the polarization of bone

marrow-derived macrophages (BMDMs) to the M2 type, resulting

in a significant suppressive TME (133). In addition, a prognostic

model of human GBMs and ROS showed that high expression of

ROS-related genes such as HSPB1, LSP1 and PTX3 was closely

associated with M2 macrophages and correlated with shorter

survival of GBM patients. This suggests that ROS-related genes
Frontiers in Immunology 05
may be potential targets for GBM treatment. Therefore, inhibiting

the polarization of macrophages towards M2 type and promoting

the polarization towards M1 type may be beneficial for the

treatment of GBMs (134). Besides, GAMs could survive in a high

ROS environment mainly due to the action of antioxidant enzymes.

A study of GBM tissues in humans and mice showed that the active

antioxidant enzyme GPX1 was expressed at higher levels in GAMs

than in GBM cells, resulting in GAMs being able to survive in a high

ROS environment (135). It is known that GPX1 plays an important

role in H2O2 detoxification (136). In summary, the antioxidant

enzymes in GAMs protect them from ROS damage, which is

necessary for the formation of M2 GAMs.
3.2 MDSCs

MDSCs, which are mainly differentiated from haematopoietic

stem cells in the bone marrow, are a group of myeloid cells with
A

B

D

E

F

C

FIGURE 1

The role of ROS in immune cells in the glioma TME. (A) Under ROS stress, tumour cells secrete many cytokines, such as IL-4, IL-6, IL-10, and TGF-b,
which cause macrophage immunosuppression and facilitate the recruitment of M2 tumour-associated macrophages (97–99). The activation of
microglia is mainly manifested as the M1 type, accompanied by the release of a series of inflammatory factors (96, 100). (B) NETs induce glioma cells
to secrete IL-8 to recruit neutrophils, promote the CXCR2/PI3K/AKT/ROS signalling axis, and finally promote the formation of NETs, forming a
positive feedback pathway (101). (C) Cytokines and growth factors, such as granulocyte-macrophage colony stimulating factor (GM-CSF),
granulocyte colony stimulating factor (G-CSF), IL-2, IL-1b, IL-6, and VEGF, can induce the aggregation of MDSCs in tumour hosts (102, 103). In the
plasma of GBM patients, the level of arginase is often increased, which is related to the inhibitory function of MDSCs (102). Arginase I reduces L-
arginine (L-Arg) levels (104), thereby inhibiting T-cell activation (103). Nitric oxide synthase 2 (NOS2) is another major catabolic enzyme for L-Arg
metabolism in MDSCs (105). MDSCs also secrete NO and ROS, which induce T-cell inhibition (105). MDSCs also indirectly affect the activation of T
cells by inducing Tregs (103). CD4+ effector memory T cells (CD4+ TEM) infiltrated by GBM strongly upregulate PD-1, and the corresponding ligand
PD-L1 is expressed in MDSCs from tumours, which are involved in functional T-cell exhaustion (106). (D) The increase in mtROS causes
mitochondrial DNA damage and upregulates the expression of PD-L1 to inhibit T-cell activation (97, 107). ROS produced by Tregs can suppress
effector T cells (CD4+ and CD8+). Effector T cells can induce an increase in ROS in tumour cells through IFN-g and TNF-a, which can damage
tumour cell DNA and lead to tumour cell death. Tregs themselves are more resistant to oxidative stress due to the increased activity of the
antioxidant system, for example, by increasing GSH and upregulating NRF2 (108). Adenosine produced by Tregs can also inhibit effector T-cell
function in an A2AR-dependent manner (109). (E) ROS induce the proliferation of MDSCs and inhibit NK cell function (110). In addition, high levels of
ROS promote PD-L1 expression on cancer cells, thereby inactivating NK cells (111). (F) High levels of ROS can disrupt antigen presentation between
T cells and DCs, which in turn affects the recognition of tumour antigens by T cells (98, 108).
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heterogeneous and immature characteristics (137). In normal

organisms, the levels of MDSCs in the peripheral blood tend to

be very low (138). MDSCs have certain immunomodulatory effects,

which can regulate the inflammatory response, inhibit overactivated

immune cells, prevent excessive immune responses, and reduce

tissue damage (105, 139).

Upon tumour stimulation, MDSCs are activated and released

into peripheral blood and tissues. However, MDSCs often suppress

the immune response and cause tumour escape (140, 141). The

suppressive effect of MDSCs is mainly manifested by inhibiting the

activity of other immune cells, including macrophages (142), CD4+

T cells (106), CD8+ T cells (143), NK cells (144), and DCs (145).

First, MDSCs can highly express arginase-1 (ARG-1), which can

convert arginine to uric acid and ornithine, thereby reducing the

concentration of arginine in the internal environment (105).

Arginine deficiency leads to limited activation of immune cells

such as T cells (146) and NK cells (147), thereby impairing the

immune response and promoting tumour development and

metastasis. Second, MDSCs can secrete immunosuppressive

cytokines, such as TGF-b and IL-10, which can inhibit the

secretion of IL-12 by macrophages, thereby blocking the activity

of cytotoxic T lymphocytes (CTLs) (148, 149). TGFb-1 secreted by

MDSCs also promotes the transformation of CD4+ T cells into

immunosuppressive Tregs (150). Finally, MDSCs can also express

immunosuppressive ligands, such as programmed death ligand-1

(PD-L1), which in turn suppresses T-cell priming and

activation (151).

In gliomas, MDSCs comprise approximately 30% to 50% of the

tumour entity (152). The increase in MDSCs is thought to be

associated with glioma progression and immune escape (153).

Generally, MDSCs can be divided into two main subsets based on

their phenotype and function: monocytic (mMDSCs) and

granulocyte/polymorphonuclear (gMDSCs) (154). Specifically,

mMDSCs represent the major subset in the GBM TME.

mMDSCs in the GBM TME of humans and mice expressed

higher levels of adhesion molecules, such as integrin b1 and

dipeptidyl peptidase 4 (DPP4), leading to enhanced cell adhesion

and further promoting tumour migration and invasion (155). In

addition, MDSCs can promote angiogenesis through the release of

VEGF (156), as well as the release of cytokines such as IL-10, IL-6,

and TGF-b under hypoxic conditions (157), thereby promoting

glioma growth and invasion.

In the TME, MDSCs can survive in a high ROS environment

because of their high expression of NRF2. On the one hand, NRF2

upregulated anti-OS genes in MDSCs and protected MDSCs from

OS damage. On the other hand, NRF2 enhances the

immunosuppressive activity of MDSCs by increasing their ability

to produce ROS (158). In gliomas, ROS in MDSCs play an

important role in maintaining the function of MDSCs (159). ROS

can prevent the differentiation of MDSCs and promote the

formation of an immunosuppressive TME (160). Specifically, ROS

maintain the undifferentiated state of MDSCs by inhibiting the

differentiation of MDSCs into mature immune cells such as

macrophages and DCs (145, 161, 162). This undifferentiated state

allows MDSCs to continue expressing immunosuppressive

molecules such as TGF-b, IL-10 and PD-L1 (163). In addition to
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being able to impair the antigen presentation capacity of DCs (164–

166), these immunosuppressive molecules can also inhibit the

activity of T cells and induce the differentiation of T cells into

Tregs (141, 167). Collectively, high levels of ROS play an important

role in maintaining the undifferentiated state of MDSCs, which in

turn mediates the immunosuppressive TME. Therefore, targeting

MDSCs may become a promising therapeutic strategy.
3.3 T cells

T cells are members of the adaptive immune system that

respond to antigens presented by antigen-presenting cells such as

DCs and macrophages (168). T cells can be divided into CD4+ T

cells and CD8+ T cells based on surface markers and function (169).

CD4+ T cells have antigen receptors on their surface, which can

recognize antigen fragments presented by MHC class II molecules

on the surface of antigen-presenting cells and exert immune

functions by activating other types of immune cells. CD8+ T cells

generally refer to CTLs that can directly kill infected cells by MHC

class I molecules (170). Regulatory T cells (Tregs) are a subset of

CD4+ T cells that express the transcription factor forkhead box

protein 3 (FOXP3) and play a role in inhibiting pathological

immune responses and maintaining homeostasis in the body (171).

In tumours, CD4+ T cells mainly activate other immune cells,

such as CD8+ T cells and NK cells, to enhance the immune response

(172). CD4+ T cells can secrete cytokines, such as interferon-gamma

(IFN-g) and tumour necrosis factor-alpha (TNF-a), which directly

kills tumour cells (173). CD8+ T cells carry specific T-cell antigen

receptors (TCRs) that recognize and bind to tumour cells

expressing specific antigens, thereby releasing cytotoxins, such as

perforin and granzyme, to directly kill tumour cells (174). In

addition, CD8+ T cells can also secrete cytokines, such as IFN-g
and TNF-a, which directly inhibit tumour cell growth and

proliferation (175). Tregs play an indispensable role in

maintaining the homeostasis of the immune system. Tregs

suppress other immune cells and prevent excessive immune

responses by producing inhibitory cytokines such as IL-10, IL-35,

and TGF-b. However, overactive Tregs in turn limit the antitumour

ability of immune cells (176).

In gliomas, T-cell dysfunction is often caused by the strong

immune escape ability of glioma cells. Some studies have shown

that human GBM cells are capable of producing the

immunosuppressive factor TGF-b (177), which inhibits T-cell

activation, thereby weakening the immune response (178). In

addition, the human glioma TME has many immunosuppressive

cells, such as M2 macrophages and Tregs, whose presence usually

inhibits the activity and function of T cells and is associated with

reduced overall survival of patients (179–181). Moreover, human

glioma cells often express immune escape sites on the surface, such

as PD-L1 and B7 homologue 3 (B7-H3), which can bind to immune

checkpoint receptors, thereby inhibiting the activity and function of

T cells (182).

ROS play an important role in regulating T-cell function and

activity. Low levels of ROS can promote the activation and

proliferation of T cells to enhance immune responses (183).
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However, higher levels of ROS can inhibit the secretion of cytokines

by T cells and induce apoptosis (184). In the TME, excessive ROS

may induce apoptosis of T cells, leading to decreased antitumour

ability. For example, ROS produced by neutrophils or tumour cells

can be transferred to T cells and cause OS, thereby causing

hyporeactivity of T cells in cancer patients (185). In mouse

glioma models, the administration of hyperbaric oxygen (HBO)

can induce the generation of ROS in the thymus, which

subsequently inhibits the generation of CD3+ T cells and

promotes glioma growth in vivo (186). Therefore, high levels of

ROS in the TME may lead to impaired T-cell function, which in

turn enhances tumour escape. Targeting ROS in the TME to

enhance the killing ability of T cells may be a potential

therapeutic option.
3.4 Neutrophils

Neutrophils are derived from haematopoietic stem cells in the

bone marrow through differentiation and maturation. When

neutrophils mature, they enter the circulation and are distributed

throughout the body through the blood (187, 188). Neutrophils are

important immune cells of the body that are capable of engulfing

and eliminating pathogens, such as bacteria and viruses (189, 190).

In addition, when tissues are injured or infected, neutrophils rapidly

migrate to the damaged site and release cytokines and chemokines

to trigger local inflammation (191).

The role of neutrophils in tumours is complex. On the one

hand, neutrophils are capable of killing tumour cells by releasing

cytotoxic ROS (192) and by direct cell contact (193). On the other

hand, neutrophils also promote tumour growth and metastasis by

secreting immunosuppressive factors such as TGF-b, IL-6 and IL-8

(194) and interacting with circulating tumour cells (195).

Furthermore, neutrophil extracellular traps play an important role

in tumour progression. In the early stages of tumour invasion and

metastasis, neutrophils can release neutrophil extracellular traps

(NETs), which include DNA, tissue proteins and other substances.

NETs can form channels suitable for tumour cell migration and

protect tumour cells from immune system attack (196, 197).

Neutrophils, as mediators of inflammation, are early markers of

GBM progression (198). Overall, neutrophils promote tumour

growth, invasion, and angiogenesis. Neutrophils contribute to

glioma infiltration by secreting elastase (199). Furthermore,

neutrophils may also become resistant to antineoplastic therapy.

In patients receiving anti-VEGF therapy, neutrophils contribute to

glioma resistance to anti-VEGF therapy by increasing S100A4

expression and angiogenesis in glioma tissues (200). S100A4 is

known to be a biomarker expressed in glioma stem-like cells (GSCs)

that induces the tumorigenic activity of neutrophils (201). In

addition, some studies have shown that the expression of MDSCs

is increased in the peripheral blood of GBM patients, of which the

neutrophilic MDSC subset accounts for the largest proportion,

accounting for approximately 60% (102). Neutrophilic MDSCs

derived from the peripheral blood of GBM patients can inhibit T-

cell proliferation in vitro, which is related to the high expression of

PD-L1 on effector memory CD4+ T cells (106).
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Several studies have shown that ROS are important factors in

promoting the formation of NETs (202–204). In chronic

granulomas, NOXs are activated by protein kinase C (PKC) and

produces ROS. These ROS can act as signalling molecules, causing

neutrophils to release DNA and form a mesh-like structure, which

then combines with the adhered granule proteins to form NETs

(202). Furthermore, in primary mouse and human neutrophils,

members of the MAPK family, such as c-Jun N-terminal kinases

(JNKs) (203), extracellular signal-regulated kinases (ERKs) and p38

(204), can activate NOXs to generate ROS, which in turn induces

the production of NETs. Similarly, ROS are similarly closely related

to NETs in GBM TME. A study in human GBMs showed that NETs

promote IL-8 secretion in GBMs by stimulating the NF-kB
signalling pathway, which in turn stimulates endothelial cells to

generate blood vessels to deliver essential nutrients and oxygen to

the tumour site (101). When IL-8 binds to C-X-C motif receptor 2

(CXCR2) on neutrophils, it mediates the formation of NETs

through the CXCR2/PI3K/AKT/ROS axis. This positive feedback

loop stimulates the interaction between NETs and GBM cells and

leads to profound changes in the TME (101). Recent studies in

murine models of GBMs have additionally demonstrated that

neutrophils promote the necrosis of GBM cells by transferring

particles containing myeloperoxidase into these cells. This

phenomenon induces OS, which is a result of the iron-dependent

accumulation of lipid peroxides in GBM cells (205).
3.5 DCs

DCs, which differentiate from bone marrow haematopoietic

stem cells through common DC progenitors (CDPs), play an

important immunomodulatory role by presenting antigens (206).

In tissues, DCs are usually naturally present and are considered to

serve as a bridge connecting innate and adaptive immunity and are

able to promote the transformation of innate to adaptive immune

responses (207). Innate immunity refers to the immunity possessed

by individuals at birth, which has a wide range of effects and is not

triggered by specific antigens (208). Adaptive immunity is mainly

the ability to respond to and adapt to a specific antigen or pathogen,

which is achieved through T-cell-mediated cellular immunity and

antibody-mediated humoral immunity (209).

Tumour formation is often accompanied by the expression of

tumour antigens. Tumour antigens can be captured and processed

by DCs and subsequently presented to naive T cells to induce their

proliferation and differentiation into effector cells, such as CD8+ T

cells, which subsequently kill the tumours (210). Furthermore, DCs

can produce a variety of immune stimulating factors, such as

cytokines and chemokines, which induce DCs and NK cells to

reach inflammatory sites (211), as well as induce the activation of

tumour-specific T cells (212).

Antigens released by glioma cells can be captured and processed

by DCs, presented to T cells, and activate effector T-cell function

(213). However, glioma cells can often evade immune surveillance

by inhibiting the maturation of DCs. Studies have shown that

tumour-conditioned medium (TCM) collected from the

supernatant of human primary glioma cells can upregulate the
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expression of suppressor of cytokine signalling 1 (SOCS1) in DCs

and then inhibit the NF-kB signalling pathway, thereby limiting the

maturation of DCs. The subsequent suppression of T-cell activity,

as well as IFN-g secretion, results in immune escape of glioma cells

(214). A previous study revealed that mouse gliomas have the ability

to secrete cell factors including TGF-b and IL-10 (215). These

factors are known to impede the maturation and functionality of

DCs within the TME (216).

In addition, recent studies on the role of DCs in the progression

of human GBMs have focused on the maintenance of DC

homeostasis. Overexpression of NRF2 in DCs leads to the

inhibition of DC maturation and subsequently reduces effector T-

cell activation, which may be related to the decrease in ROS levels

mediated by NRF2. In contrast, inhibition of NRF2 promotes the

maturation of CD80+ and CD86+ DCs (217).
3.6 NK cells

NK cells belong to a type of lymphocyte that can eliminate

tumour cells without specific antigens and are an important part of

innate immunity (218). NK cells are derived from bone marrow

haematopoietic stem cells and enter the circulation after maturation

(219). Approximately 5-15% of lymphocytes in normal blood are

NK cells (220).

NK cells have the ability to kill tumour cells. First, NK cells kill

tumour cells by making direct contact with tumour cells that

express specific ligands. There are a variety of activated receptors

on the surface of NK cells, such as natural killer group 2 member D

(NKG2D) and natural cytotoxicity receptors (NCRs; NKp46,

NKp44 and NKp30) (221), etc. Among them, NKG2D is one of

the most studied receptors and is able to recognize ligands on the

surface of tumour cells, such as major histocompatibility complex

class I polypeptide-related sequence A and B (MICA/B) and UL16-

binding protein (ULBP). This recognition activates NK cells and

prompts them to kill tumour cells (222). Second, NK cells can kill

tumour cells through the antibody-dependent cellular cytotoxicity

(ADCC) mechanism. When the antigens on the surface of tumour

cells are labelled with specific antibodies, NK cells can bind to the

specific antibodies through the CD16 (FcgRIIIa) receptor on their

surface. Activated NK cells then release particles containing

perforin and granzyme, which trigger apoptosis of antibody-

labelled tumour cells (223, 224). Furthermore, NK cells can

produce cytokines, such as IFN-g and TNF-a, which can enter

tumour cells and thus kill them (225). Moreover, IFN-g released by

NK cells can also inhibit tumour angiogenesis, thereby impeding

tumour nutrient supply (226).

NK cells also have a killing effect on gliomas. First, NK cells can

kill glioma cells by secreting perforin and granzyme B upon

induction by IFN-b (227). Second, NK cells kill gliomas by

specific activating receptors on their surface. When NKG2D and

DNAX accessory molecule-1 (DNAM-1) on the surface of human

NK cells bind to their ligands on the surface of GBM cells, they can

trigger NK cell cytotoxicity and cause GBM cell death (228, 229).

However, human GBM-derived TGF-bmay lead to downregulation

of NKG2D receptors on the surface of NK cells and contribute to
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GBM cell survival, suggesting that blocking TGF-b may be

beneficial in the treatment of GBMs (230). Similarly, NK cells can

also kill GBM cells through ADCC. Cetuximab is a monoclonal

antibody that binds epidermal growth factor receptor (EGFR) on

tumour cells (231). When administered, cetuximab binds to a

human GBM surface antigen (EGFRvIII) and activates fragment

crystallizable (Fc) receptors on NK cells, leading to NK cell-

mediated cytotoxicity against GBM cells (232).

NK cells are often particularly sensitive to the cytotoxic effects

of ROS, and their antitumour activity is often inhibited by ROS in

the solid tumour TME, whereas antioxidant therapy may partially

restore NK cell function (110, 233). Previous studies have shown

that high levels of ROS in rats with fibrosarcoma can limit the

adhesion of NK cells to similarly charged tumour cells by

promoting the accumulation of anionic charges on their surface.

This disadvantage can be prevented by antioxidant molecules such

as CAT and SOD (234). Similarly, in vitro, the CD20 antibody

rituximab triggered monocyte ROS production, which in turn

inhibited the ADCC effect of NK cells on human primary

leukaemia cells. However, antioxidant treatment (histamine

dihydrochloride and diphenylene iodonium chloride) partially

restored the ADCC effect of NK cells (235). At present, although

some studies have suggested the inhibitory effect of ROS on NK cell

activity in the TME, the study of ROS in NK cells in the glioma

TME is still limited. Further studies will help to understand the

effect of ROS on NK cell function in the glioma TME.
3.7 Glioma cells

The threshold of ROS is very important in cancer therapy.

When ROS produced by tumour cells exceed a certain threshold

and cannot be detoxified by antioxidants, it results in high levels of

OS, which drives cancer cell death or cause them to become more

sensitive to treatment. However, a low level of ROS in tumour cells

contributes to their growth, proliferation, invasion and metastasis

(236). Therefore, tumour cells need to maintain their ROS levels to

maintain their survival and invasive abilities (237).

A study of tumour tissues and blood samples from glioma

patients found that abnormal increases in ROS caused DNA

damage in glioma cells, resulting in high expression of the DNA

damage marker 8-oxo-deoxyguanosine (8-oxo-dG) and low

expression of the epigenetic marker 5-methylcytosine (m5C). This

is associated with increased malignancy of gliomas (22). In mouse

models, glioma cells can overexpress aquaporin 8 (AQP8), which

increases ROS levels, resulting in decreased expression of

phosphatase and tensin homolog (PTEN) and increased

expression of phosphorylated (p)-AKT, thereby promoting the

growth and proliferation of gliomas (23). Moreover, the

production of a significant amount of ROS induced by 12-O-

tetradecanoylphorbol-13-acetate (TPA) can activate the MAPK

pathway and cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2)

pathways, subsequently enhancing the in vitro migration and

invasion capability of glioma cells (24). In contrast, high levels of

ROS activate regulated glioma cell death programs, including

apoptosis, necrosis, autophagy, ferroptosis, etc. For example, in
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vitro, salinomycin can activate p53, trigger the opening of

mitochondrial permeability transition pore (mPTP), and induce

the production and accumulation of mtROS, leading to the necrosis

of glioma cells (25). The activation of transient receptor potential

mucolipin 1 (TRPML1) inhibits autophagy in glioma cells in vitro,

leading to ROS production and subsequent induction of apoptosis

(238). Similarly, the increase in ROS induced by isoaaptamine also

leads to apoptosis and autophagy in GBM cells in vitro (26).

Furthermore, the heat shock protein 90 (HSP90) and dynamin-

related protein 1 (DRP1) increase ROS production by regulating the

expression of acyl-coenzyme A synthetase long-chain family

member 4 (ACSL4) and mitochondrial morphology, leading to

ferroptosis of gliomas in mice in vitro and in vivo (239).

Glioma stem-like cells (GSCs) are a subpopulation of GBM cells

with stem cell characteristics. They have self-renewal,

tumourigenicity and multidirectional differentiation potential and

are closely related to the occurrence, development, treatment

resistance and recurrence of GBMs (240). Many studies have

confirmed that ROS are involved in the proliferation, self-renewal

and differentiation of GSCs (241, 242). In a study conducted on

human-derived GSCs, it was found that TGF-b upregulated the

expression of the NOX4 gene, leading to the generation of ROS.

Consequently, this ROS generation promoted GSC proliferation

and maintained their stem cell state (241). Other studies have

shown that serum stimulation in an in vitro environment is able

to cause an increase in mitochondrial ROS within GSCs and

modulate differentiation signalling pathways in GSCs.

Interestingly, in the in vivo environment, increased ROS could

greatly enhance glioma formation, which may be related to the

activation of the NF-kB pathway by ROS (243). Compared with

other tumour cells, GSCs have stronger antioxidant capacity (47). In

vitro, the highly expressed antioxidant protein PRDX4 was able to

mitigate OS in GSCs by reducing ROS generated by the protein

folding process (47, 244). Furthermore, GSCs also inhibit

mitochondrial respiration by increasing the expression of

mitochondrial uncoupling protein 2 (UCP2), thereby alleviating

OS caused by high levels of intracellular ROS and ensuring their

own survival (245).

However, the understanding of the ROS threshold in cancer

cells is still unclear. Measurement of the ROS threshold requires the

consideration of multiple factors, including the concentration and

type of ROS, the activity of intracellular antioxidant enzymes, and

the type and physiological state of tumour cells (246–249).

Therefore, more studies are needed to fully assess ROS thresholds

and determine their impact on tumour cells. Overall, both ROS and

thresholds play a crucial role in glioma cells. This provides a new

research direction for ROS-based glioma therapy.
4 ROS-based glioma therapy

High levels of ROS are usually present in the glioma TME. On

the one hand, these ROS are involved in the formation of a

suppressive TME. On the other hand, they are involved in the

process of glioma proliferation, invasion and migration. However,

there is also a threshold for the levels of ROS in glioma cells. The
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induction of ROS production above the threshold can lead to an

excessive OS response, causing DNA and protein damage and

leading to glioma cell death (250). Conversely, depletion of ROS

may also lead to the blocking of important signalling pathways

involved in ROS, thereby promoting glioma death (27, 28, 32).

Based on these findings, it is suggested that both methods of

inducing ROS production and ROS scavenging have potential in

the glioma treatment. These two therapeutic strategies may help to

suppress glioma growth, enhance the immune response and

improve the efficacy of other antitumour therapies.
4.1 Treatment to increase ROS levels

Excessive ROS can induce tumour death, so amplifying the

effect of ROS may be a good way to kill tumours. For example, the

use of PDT (251), SDT (252), CDT (253), can be beneficial therapies

for GBMs. This part mainly summarizes the research progress of

PDT, SDT and CDT in the treatment of gliomas, and discusses the

application of nanodrug delivery platforms in them.

4.1.1 PDT
PDT is a technique that relies on ROS production to treat

nononcological diseases as well as tumours. Its main components

are excitation light, photosensitizers (PSs) and ROS (254). PSs are

important components in determining the efficacy of PDT (255).

Photoactivated PSs can produce cytotoxic ROS in the presence of

oxygen, resulting in the killing of target cells (256, 257). To date,

numerous PSs have been applied in the studies of gliomas, such as

5-aminolevulinic acid (5-ALA) (258), boronated porphyrin (BOPP)

(259), talaporfin (260), and temoporfin (261). The wavelength of

the light is also important. The optimal PDT wavelength is between

650 and 850 nm and should be consistent with the longest

wavelength absorption band of the PSs, that is, the wavelength

range corresponding to sufficient energy for maximum tissue

penetration to result in sufficient ROS production (262). Notably,

ROS produced by PSs, such as 1O2, O2˙‾, OH, OOH·and H2O2, are

essential for killing tumours. The formation of O2˙‾ and free radicals

is called a type I reaction, and the formation of 1O2 is called a type II

reaction (263, 264).

PDT has been approved by the United States Food and Drug

Administration (FDA) for the treatment of a variety of cancers,

including skin cancer, oesophageal cancer, and lung cancer (265–

267). PDT has been studied since the 1980s (268, 269), and has

shown promising efficacy in many glioma preclinical studies (270–

272). A bibliometric analysis of literature in the field of cancer PDT

(CPDT) reveals that research on CPDT is showing a rapid growth

trend over the past 20 years. Among them, nanotechnology-based

PDT and enhanced PDT are the current research hotspots (273).

However, PDT has still not been widely adopted due to its potential

toxicity to healthy brain tissues, limited light penetration, and poor

targeting (251, 274, 275).

In the past 10 years, three promising phase I/II clinical trials of

PDT for glioma treatment have been conducted in adults and one

has been conducted in minors. A total of four clinical trials were

conducted for three drugs (photofrin, ALA, photobac®) (Table 2).
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TABLE 2 Summary of completed/ongoing phase I/II clinical trials of ROS-generated PDT/SDT for glioma treatment by July 2023 (based
on clinicaltrials.gov).

NCT
Number

Phases Conditions Interventions Age Enrolment
Primary end-

point
and duration

Status
Related

publications

PDT

NCT01682746 Phase 1 Brain Tumour
Photofrin

photodynamic
therapy

6
months

to
18

years

5

More than 33% of
subjects

experienced
neurotoxicity,

photosensitivity,
ocular sensitivity,
or other toxicities
greater than or
equal to CTCAE
grade 4 (4 weeks).

Completed
in 2018

_____

NCT03048240
Not

Applicable
GBM

5-ALA
photodynamic

therapy

≥18
years

10

At least 6/10
patients benefited

without
unacceptable and

unexpected
toxicities
(4 weeks).

Completed
in 2021

(276)

NCT04391062 Phase 2 GBM
5-ALA

photodynamic
therapy

≥18
years

21

Dose level above
which dose-

limiting toxicities
is observed in

more than 33%of
subjects in an arm

(4 weeks).

Enrolment
ongoing

_____

NCT05363826 Phase 1
GBM or

Gliosarcoma

Photobac®

photodynamic
therapy

≥18
years

30

Toxicity (24
hours); MTD (1
week); Photobac®

concentration in
tumour tissues (1
hour); Photobac®

concentration in
blood (12 weeks);
PFS (18 months);
OS (18 months)

Enrolment
ongoing

_____

NCT04469699 Phase 2
GBM

Multiforme

Drug: Stereotactic
biopsy followed by

stereotactical
photodynamic
therapy with 5-
aminolevulinic

acid

18
years
to
75

years

106

PFS (at least 1.5
years and a

maximum of 5
years) or until
progression
or death

Enrolment
ongoing

_____

NCT03897491 Phase 2 GBM
5-aminolevulinic
acid powder for
oral solution

18
years
to
70

years

20

To determine the
incidence of
treatment-

emergent Adverse
Events (2 weeks)

Enrolment
ongoing

_____

SDT

NCT04559685
Early
phase 1

High
Grade Glioma

Sonodynamic
therapy with MRg-
FUS combined

with ALA

≥18
years

30

Biological changes;
Imaging changes
before and after
surgery (14 days)

Enrolment
ongoing

_____

NCT05362409 Phase 1
High

Grade Glioma

Sonodynamic
therapy with 5-
ALA combined
with CV01-
delivered
ultrasound

≥18
years

48

Incidence of
adverse events; To
determine the

MTDu
(12 months)

Enrolment
ongoing

_____

NCT05123534
Phase1/
Phase2

Glioma
Sonodynamic

therapy with MRg-
≥5

years
27

Safety and
Tolerability of

Enrolment
ongoing

_____

(Continued)
F
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Among them, NCT01682746 included 5 adolescent patients with

brain tumours. The incidence of serious adverse events within 1

month of PDT treatment, the progression-free survival and the

overall survival within 3 years were recorded, but no results of this

clinical trial were reported. NCT03048240 included 10 adult

patients with newly diagnosed GBM who were treated with 5-

ALA fluorescence-guided surgery followed by intraoperative PDT

(based on clinicaltrials.gov). At the interim analysis, the median

progression-free survival (mPFS) was 17.1 months, and the median

overall survival (mOS) was 23.1 months (276). This clinical trial

result indicates that intraoperative PDT is a good option for treating

recurrent gliomas.

The tumour killing mechanisms of PDT are various, including

inducing immunogenic cell death (ICD), destroying tumour blood

vessels and inducing the release of inflammatory mediators in

addition to the direct killing caused by high ROS. The

combination of PDT and subsequent immune response induced

by PDT is referred to as photodynamic immunotherapy (PDIT)

(262, 277, 278). ICD refers to the death of tumour cells after PDT,

which stimulates the immune system to produce a strong immune

response by releasing damage-associated molecular patterns

(DAMPs), cytokines, tumour-associated antigens (TAA) and

other signalling molecules (279). These DAMPs can be

recognized by the immune system and activate antitumour

immune responses. DAMPs mainly include calreticulin (CALR),

heat shock proteins 70/90 (HSP70/90), ATP, high-mobility group

box-1 (HMGB1) nuclear protein, type I interferons (IFNs) and

members of the IL-1 cytokine family, etc. In addition, ROS

produced by PDT can destroy tumour blood vessels, limit tumour

nutrient supply, and stimulate antitumour immune responses

(262). Cytokines are able to trigger an inflammatory response that

further enhances immune cell infiltration and activation (280, 281).

The mechanism of PDIT in gliomas is illustrated in Figure 2.

4.1.2 SDT
Ultrasound (US) is a kind of mechanical vibration wave with

strong tissue penetration ability that has been widely used in

ultrasound imaging and ultrasound therapy. Among the US-

derived techniques, SDT based on ROS production is a good

strategy. Research on SDT began in the 1990s (289, 290). Based

on the bibliometric analysis of SDT, studies have shown that since

2000, SDT has experienced rapid growth and has mainly focused on

the fields of nanomaterials and cancer treatment, achieving

significant results (291). The mechanism of SDT is to use low-
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frequency ultrasound to trigger sonosensitizers that accumulate at

the tumour site, producing ROS and cavitation bubbles to kill the

tumours. These ROS produce significant toxic effects on tumour

cells in the 1 mm range (292, 293). The advantage of SDT is mainly

that ultrasound can penetrate to a depth of 10 cm, which can kill

tumours in deeper locations (294, 295). At present, most of the

sonosensitizers used in reported SDT are photosensitizers or are

derived from photosensitizers (296). However, SDT also has

difficulty achieving the ideal tumour killing effect due to the

presence of the BBB and the poor targeting effect of

sonosensitizers such as porphyrins (297). Notably, TMZ can not

only penetrate the BBB but also act as a sonosensitizer to induce

necroptosis in GBMs. This provides new potential options for

treating GBMs with SDT (293).

According to the literature, although SDT has been studied in

gliomas for less than 20 years, it has shown promising efficacy in

preclinical studies (30, 298, 299). However, due to the maturity of

the technology and the factors of ultrasound equipment and other

objective reasons, the research results of SDT are less than those of

PDT, and clinical research is also in its infancy. At present, there are

three clinical trials of SDT in gliomas under recruitment (based on

clinicaltrials.gov), as shown in Table 2. More clinical trials are

needed to verify the efficacy of SDT in the glioma treatment.

4.1.3 CDT
The concept of CDT was first proposed in 2016 by Bu, Shi et al.

(300). CDT is dependent on transition metal ions in the TME to

produce high levels of OH· through Fenton/Fenton-like reactions,

resulting in tumour killing (301). The Fenton reaction refers to the

complex chemical reaction of ferrous ions with H2O2, which

eventually generates highly toxic OH· (302). Catalysts for Fenton-

like reactions are usually other transition metals, such as copper

(Cu) and manganese (Mn) (303, 304). Compared with PDT, the

advantage of CDT is that it does not require laser irradiation, so it

can avoid the limitations caused by light penetrating the tissues.

Alternatively, the TME is characterized by acidity and H2O2

overexpression, which favours Fenton/Fenton-like reactions.

However, when the pH at the tumour site is too high or H2O2

production within the tumour is insufficient, the Fenton/Fenton-

like reaction will be insensitive, and CDT efficiency will be reduced

(305). In general, CDT has the advantages of strong targeting, low

adverse reactions, regulation of TME hypoxia, and low treatment

cost, so it has great potential to be used in tumour therapy (301). In

the glioma treatment, CDT is still in the preclinical stage, and no
TABLE 2 Continued

NCT
Number

Phases Conditions Interventions Age Enrolment
Primary end-

point
and duration

Status
Related

publications

FUS combined
with ALA

SDT (12 months);
MTD (3 weeks);
Recommended
Phase 2 Dose
(3 weeks)
CTCAE, Common Terminology Criteria for Adverse Events; MTD, Maximum tolerated dose; MRg-FUS, MR-Guided Focused Ultrasound device; MTDu, Maximum Tolerable Duration.
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clinical trials have been carried out. However, it has been shown

that CDT has good therapeutic efficacy and can exert more anti-

glioma effects in combination with PDT (306) and photothermal

therapy (PTT) (307).

4.1.4 Breaking through the BBB to enhance PDT/
SDT/CDT

The BBB is a physical, chemical and biological barrier structure

formed by capillary endothelial cells in the brain, surrounding

astrocytes and muscle rings. The main function of the BBB is to

maintain the stability of the brain environment, regulate the entry

of nutrients, and prevent harmful substances from entering the

brain through the blood (308, 309). Brain endothelial cells are

composed of hydrophobic lipid bilayers with tight junctions.

Therefore, drugs with large polarity and molecular weight often

have difficulty passing the BBB (310). However, research has shown

that human glioma cells can infiltrate through the perivascular

space and extensively invade the brain away from the tumour mass.

In this process, glioma cells displace the end feet of astrocytes,

thereby disrupting the BBB, which may be beneficial for drug

therapy (311, 312). However, effectively overcoming the

limitations of the BBB remains a challenge. Currently, nanodrug

delivery platforms (313), microbubble-enhanced focused
Frontiers in Immunology 12
ultrasound (MB-FUS) (314) and magnetic resonance-guided

focused ultrasound (MRg-FUS) (315) are three promising

approaches to break through the BBB.

Nanotechnology is the study and application of particles or

structures between 1 and 100 nm, where it can maximize drug

transport and targeted delivery (316–318). Nanodrug delivery

platforms are the application of nanotechnology in medicine. In

general, nanodrug delivery platforms are usually composed of

nanocores, nanocarriers, targeting ligands, drugs and surface

modifications or may not completely contain these parts. Among

them, the nanocore is the main component of the platform, mainly

serving to support and stabilize the nanodrug delivery platform. It

can be composed of materials such as gold (319), silicon (320),

magnetic materials (321), etc. Nanocarriers refer to carriers that

carry drugs on nanocores. An ideal nanocarrier can stably

encapsulate drugs inside and release them at the appropriate time

(322). Types of nanocarriers include gold nanoparticles, magnetic

nanoparticles, carbon nanotubes, polymer micelles, and liposomes

(323), etc. Targeting ligands attached to the nanocore include

antibodies (324) and targeting peptides (325), which can precisely

target the target. Nanocarriers can carry drugs, which include PSs

such as chlorin e6 (Ce6) (326), immune checkpoint inhibitors such

as nivolumab (327), and chemotherapy drugs such as doxorubicin
A

B D

C

FIGURE 2

Mechanism of photodynamic immunotherapy for gliomas. (A) 0PS is activated to a singlet state (1PS*) after absorbing photons (hv). 1PS* can lose
energy through internal conversion to heat and fluorescence. 1PS* can form a triplet state (3PS*) through the intersystem crossing process (ISC). 3PS*
can be restored to 0PS by emitting phosphorescence and can also react with neighbouring molecules in two types of reactions (type I and type II).
In type I reactions, 3PS* transfers an electron or a proton to form organic free radicals (O2-, OOH·, H2O2, OH·, etc.) that interact with cellular oxygen
to produce cytotoxic ROS. In a type II reaction, the energy of 3PS* can be directly transferred to molecular oxygen (3O2) to form singlet oxygen
(1O2). This results in various biological effects (264, 282, 283). (B) The most common types of cell death induced by PDT include apoptosis (284),
autophagy (285), necrosis (286), necroptosis (287), and ferroptosis (270). (C) ROS produced by PDT can also cause vascular occlusion, leading to
vascular damage, thereby affecting the blood supply of tumour cells (288). (D) PSs can induce immunogenic cell death (ICD), resulting in the
exposure and release of DAMPs, such as ATP, HMGB1, CALR, HSP70/90, etc (262). The released DAMPs promote DC recruitment and maturation
and present tumour antigens to T cells, leading to the activation of CD8+ T cells, which subsequently migrate in vivo to kill tumour cells (264).
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(DOX) (328). Surface modification refers to the modification of the

surface of the nanoplatform, such as polyethylene glycol (PEG), to

enhance the hydropathy, stability, and biocompatibility of the

nanoplatform and improve the retention time in vivo (329).

In general, a well-functioning nanodrug delivery platform can

typically enhance the therapeutic effects of PDT (330), SDT (331),

and CDT (332) for the treatment of glioma. Moreover, optimizing

key components of nanodrug delivery platforms can be an effective

strategy to break through the BBB. First, the targeting of the

nanoplatform should be enhanced. Transferrin (TF), for example,

targets a transferrin receptor (TFR) that is overexpressed on the

surface of brain capillary endothelial cells and malignant brain

tumours. Related studies have shown that TF-bound nanoplatforms

can effectively cross the BBB and target gliomas (333, 334). Second,

the development of new nanocarriers, such as nanotubes, gold

nanoparticles, and magnetic nanoparticles, makes it easier for

drugs to reach the glioma site (335–337). Furthermore, polymers

such as polyethylene glycol (PEG) and polylactic-co-glycolic acid

(PLGA) can be used to encapsulate the drug to allow crossing of the

BBB. The advantages of such polymers are good biocompatibility,

easy surface modification, etc., and the ability to control the rate of

drug release (329, 338). When a nanodrug delivery platform is

combined with PDT, SDT, and CDT, it will greatly increase the

targeting ability of the three therapeutic strategies and the level of

ROS production, leading to a “1 + 1 > 2” therapeutic effect. The

summary of glioma-related research on the nanodrug delivery

platforms combined with PDT, SDT, and CDT is shown in Table 3.

In addition to nanodrug delivery platforms, the use of MB-FUS

(348–350) and MRg-FUS (315) to open the BBB for drug delivery

both has great potential. Microbubbles are essentially small bubbles

of biocompatible gases, such as nitrogen or perfluorocarbon,

encapsulated in a lipid, protein, or polymer membrane (351). As

blood with microbubbles flows through the brain, ultrasound waves

are emitted precisely to target areas. The ultrasound stimulates

microbubbles to oscillate violently and burst, producing a

temporary, local pressure change that can temporarily open the

tight junctions of the BBB and increase its permeability. In this way,

drugs or macromolecules that cannot penetrate the BBB can enter

the brain tissues, thus allowing for the effective treatment of gliomas

(343, 352, 353). In recent studies, MB-FUS achieved BBB opening

and increased drug aggregation in GBM regions to enhance

antitumour effects (354–357). Notably, the method of opening the

BBB using ultrasound microbubbles is reversible, does not damage

neurons, and the BBB heals a few hours after exposure (358). Thus,

this method has great potential for application. This technique is

still in its early stages, and promising results have been

demonstrated in clinical trials in glioma patients (359).

Furthermore, as another method to open the BBB, MRg-FUS can

accurately focus ultrasonic waves on the GBM region and provide

real-time monitoring and guidance during therapy provided

through magnetic resonance imaging (MRI). Ultrasound energy

can raise the temperature of the BBB region, thus enhancing

permeability. Consequently, platinum nanoparticles can more

effectively penetrate the GBM tissues, thereby inhibiting the

growth of GBM cells (315).
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4.2 Treatment to scavenge/reduce
ROS levels

Antioxidants are a class of compounds that inhibit oxidation by

scavenging ROS and reducing OS, and they can help reduce or

block oxidative reactions in cells (360). When OS occurs,

antioxidants interact with ROS to capture and neutralize ROS,

thereby protecting cells from oxidative damage (361). Common

antioxidants include vitamin C, vitamin E, a-carotene, selenium,

etc., which can be obtained through food intake or supplements

(362). Furthermore, the use of antioxidants can inhibit

tumorigenesis by preventing OS caused by various causes, and the

mechanism is to repair damaged DNA and inhibit cancer

occurrence, including gene mutations, oxidative chromosomal

damage, and lipid peroxidation of cell membranes (131, 363).

There is considerable evidence that intake of antioxidants may

help reduce the risk of gliomas (364). For example, CoQ10 can act

as a ROS scavenger to increase the sensitivity of gliomas to TMZ,

thereby inhibiting the invasion of glioma cells in vitro and in vivo.

Mechanistically, CoQ10 can integrate into the mitochondrial

membrane and reduce ROS production. It also reduced the

expression of MMP9 and epithelial-mesenchymal transition

(EMT) markers (28, 365). Naringenin is an antioxidant.

Naringenin supplementation for 1 month can reduce lipid

peroxidation and decrease the expression of PKC, NF-kB, cyclin
D1(CCND1) and cyclin-dependent kinase 4 (CDK4), thereby

inhibiting the proliferation of glioma cells in mouse models (27).

Astaxanthin is a natural carotenoid, and adonixanthin is a product

of its formation (366). Studies have confirmed that both have strong

antioxidant capacity, which can cross the BBB and protect brain

tissues from ischaemia or hemorrhage (367, 368). In mouse glioma

models, astaxanthin and adonixanthin intake increased p38

phosphorylation in glioma cells, leading to cell cycle arrest.

Furthermore, adonixanthin was able to reduce the expression of

MMP2 and fibronectin downstream of ERK1/2 and AKT signalling

pathways and inhibit invasion and metastasis in both in vitro and in

vivo GBM models (369). Chrysin is a kind of flavonoid with

antioxidant properties. The p38-MAPK pathway is activated in

rat glioma cells treated with chrysin, resulting in the accumulation

of p21 (WAF1/CIP1) protein, decreased activities of CDK2 and

CDK4, and cell cycle arrest in G1 phase (32). Similarly, hypoxia-

inducible factor-1alpha (HIF-1a) expression was blocked when the

antioxidant melatonin was used, resulting in a significant inhibition

of MMP2 and VEGF expression, thereby inhibiting GBM cell

migration and invasion in vitro (370). Moreover, antioxidants

quercetin (QE), baicalein (BE) and myricetin (ME) effectively

downregulated ROS and MMP9 and inhibited glioma cell

invasion/migration events in vitro (24).

However, some studies have shown that intake of antioxidants,

such as carotenoids (371), vitamin E (372), and coffee (373), is not

associated with the risk of developing gliomas. This may be related

to factors such as bioavailability, dose, BBB permeability, and

tumour heterogeneity (364). Therefore, the role of ROS

scavenging using antioxidants in glioma therapy still needs to be

confirmed by more studies.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1259797
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1259797
5 Conclusion

ROS are products of cellular redox and play important

functions in cells. Excessively high or low ROS levels are

detrimental to cell survival. That is, there is a threshold for

intracellular ROS, and when a large accumulation of ROS exceeds

the threshold and cannot be neutralized by the antioxidant defence

system, it leads to OS and thus cell death. For gliomas, there is also a

threshold for ROS. Appropriate ROS levels can aid survival, but
Frontiers in Immunology 14
high levels of ROS can also lead to their own death. Therefore, ROS-

based therapies are particularly important.

Currently, there are two common therapeutic approaches

involving ROS in the therapy of glioma, which are increasing ROS

levels to induce cell death or using antioxidants to inhibit

progression. In terms of increasing ROS, PDT/SDT/CDT is the

representative approach. With the development of modern

nanotechnology, the corresponding drugs can better pass through

the BBB. Preclinical studies have shown that PDT/SDT/CDT
TABLE 3 Summary of nanodrug delivery platforms used for glioma PDT/SDT/CDT.

Categories Nanocarriers Drugs
Targeting
ligands

Target
receptors

Results References

PDT

MRN [Ru(bpy)2(tip)]
2+

TF,
aptamer
AS1411

TFR,
nucleolin

The glioma cells undergo apoptosis. (334)

nanotube IR780, DOX ——— ——— The glioma cells undergo apoptosis. (335)

AuNs ICG, DOX TF TFR It effectively kills glioma cells. (336)

GuIX nanoparticle
porphyrin
molecule

KDKPPR NRP-1 Glioma vessels are occluded, causing growth delay. (337)

polyethylene
glycol

IR780,
camptothecin

iRGD peptide
avb3/5,
NRP-1

The glioma cells undergo apoptosis. (339)

albumin CAP _____ _____ The glioma cells undergo apoptosis and necrosis. (340)

lipidosome Ce6, LOMs _____ _____
The generation of a large amount of O2 promotes
the effect of PDT in the glioma treatment.

(341)

BN Ce6, DOX platelet
tumour
vascular

endothelium

A large amount of ROS is generated, which
subsequently leads to the death of glioma cells.

(342)

FLs ICG, DOX G-Anti G
neuropilin-1
on glioma

cells

The production of ROS leads to the death of the
majority of glioma cells.

(325)

SDT

liposome
sinoporphyrin

sodium
iRGD peptide

avb3/5,
NRP-1

SDT enhances its effect by increasing the
production of a significant quantity of ROS,
leading to the subsequent death of glioma cells.

(331)

liposome Ce6, HCQ ANG-2 LRP1

Nanosensitizers have a strong response to
ultrasound, leading to the generation of a
large amount of ROS and subsequently
causing glioma cell apoptosis.

(343)

SiO2 nanoparticle CAT, ICG
aptamer
AS1411

nucleolin
CAT catalyzes the generation of O2 from H2O2,
alleviating tumour hypoxia and improving the
efficiency of SDT.

(344)

nanocrystal ppIX, MnO2 holo-TF TFR
O2 is produced in large quantities and Mn2+

is released to achieve efficient SDT.
(345)

CDT

polymeric micelle Mn2+, TMZ iRGD
avb3

integrin,
NRP-1

TMZ、Mn2+and O2 release. Subsequently,
glioma cells undergo death.

(346)

Hb@GOx
nanoparticle

Hb, GOx _____ _____
The levels of H2O2 and OH· increase in
glioma cells. Subsequently, glioma cells
undergo death.

(253)

liposome Ce6, SPIOCs _____ _____
The levels of H2O2 and OH· increase in
glioma cells. Glioma cells subsequently die.

(347)
MRN, mesoporous ruthenium nanoparticles; AuNs, gold nanoparticles; ICG, indocyanine green; DOX, doxorubicin; TF(R), transferrin (receptor); NRP-1, neuropilin-1; avb3/5, integrin alpha V
beta 3/5; CAP , chloro-aluminiumphtalocyanine; LOMs, lipid-coated oxygen microbubbles; BN, boron nitride; FLs, fluorescent poly(levodopamine) nanoparticles; HCQ, hydroxychloroquine;
ANG-2, angiopep-2; LRP1, low density lipoprotein receptor-related protein 1; ppIX, protoporphyrin; holo-TF, holo-transferrin; Hb, hemoglobin; Gox, glucose oxidase; SPIOCs,
superparamagnetic iron oxide nanoclusters
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combined with nanotechnology shows potent antiglioma effects and

has good potential for clinical application. Conversely, ROS

reduction using antioxidants has also been shown to inhibit

glioma initiation and progression. Nonetheless, both strategies

have limitations. In addition to the unclear clinical efficacy of

antioxidants for cancer treatment reported in the literature, there

are also issues such as the uncertain toxicity and biosafety of

nanomaterials (374, 375), and the uncertain stability and retention

time of nanodrug delivery platforms (376). Therefore, in the future

development of nanodrug delivery platforms targeting gliomas, it is

necessary to enhance the targeting and stability of nanoparticles and

improve the ability to cross the BBB and biosafety to provide effective

treatment while reducing adverse reactions. At present, although

there are still many obstacles to ROS-based therapy, ROS still have

the potential to be widely used as a therapeutic target for gliomas.
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85. Pérez-Ortiz JM, Tranque P, Vaquero CF, Domingo B, Molina F, Calvo S, et al.
Glitazones differentially regulate primary astrocyte and glioma cell survival.
Involvement of reactive oxygen species and peroxisome proliferator-activated
receptor-gamma. J Biol Chem (2004) 279(10):8976–85. doi: 10.1074/jbc.M308518200

86. Wang C, He C, Lu S, Wang X, Wang L, Liang S, et al. Autophagy activated by
silibinin contributes to glioma cell death via induction of oxidative stress-mediated
bnip3-dependent nuclear translocation of aif. Cell Death Dis (2020) 11(8):630.
doi: 10.1038/s41419-020-02866-3

87. Fasipe B, Faria A, Laher I. Potential for novel therapeutic uses of alpha lipoic
ac id . Curr med i c ina l Chem (2023) 30(35) : 3942–54 . do i : 10 . 2174 /
0929867329666221006115329

88. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress
mitigation by antioxidants - an overview on their chemistry and influences on health
status. Eur J medicinal Chem (2021) 209:112891. doi: 10.1016/j.ejmech.2020.112891
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237. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, ME LL. Oxidative stress
and cancer: an overview. Ageing Res Rev (2013) 12(1):376–90. doi: 10.1016/
j.arr.2012.10.004

238. Liu Y, Wang X, Zhu W, Sui Z, Wei X, Zhang Y, et al. Trpml1-induced
autophagy inhibition triggers mitochondrial mediated apoptosis. Cancer Lett (2022)
541:215752. doi: 10.1016/j.canlet.2022.215752
Frontiers in Immunology 20
239. Miao Z, Tian W, Ye Y, Gu W, Bao Z, Xu L, et al. Hsp90 induces acsl4-
dependent glioma ferroptosis via dephosphorylating ser637 at drp1. Cell Death Dis
(2022) 13(6):548. doi: 10.1038/s41419-022-04997-1

240. Ji CC, Hu YY, Cheng G, Liang L, Gao B, Ren YP, et al. A ketogenic diet
attenuates proliferation and stemness of glioma stem−Like cells by altering metabolism
resulting in increased ros production. Int J Oncol (2020) 56(2):606–17. doi: 10.3892/
ijo.2019.4942
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