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Identification of key genes
modules linking diabetic
retinopathy and circadian rhythm
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Background: Diabetic retinopathy (DR) is a leading cause of vision loss worldwide.

Recent studies highlighted the crucial impact of circadian rhythms (CR) on normal

retinopathy in response to the external light cues. However, the role of circadian

rhythms in DR pathogenesis and potential investigational drugs remains unclear.

Methods: To investigate the weather CR affects DR, differential expression analysis

was employed to identify differentially expressed genes (DEGs) from the GEO

database (GSE160306). Functional enrichment analysis was conducted to identify

relevant signaling pathways. LASSO regressionwas utilized to screen pivotal genes.

Weighted gene co-expression network anlaysis (WGCNA) was applied to identify

different modules. Additionally, we use the Comparative Toxicogenomics

Database (CTD) database to search key genes related to drugs or molecular

compounds. The diabetic mouse model received three consecutive

intraperitoneal injections of streptozotocin (STZ) during 3 successive days.

Results: We initially identified six key genes associated with circadian rhythm in

DR, including COL6A3, IGFBP2, IGHG4, KLHDC7A, RPL26P30, and MYL6P4.

Compared to normal tissue, the expression levels of COL6A3 and IGFB2 were

significantly increased in DR model. Furthermore, we identified several signaling

pathways, including death domain binding, insulin-like growth factor I binding,

and proteasome binding. We also observed that COL6A3 was positively

correlated with macrophages (cor=0.628296895, p=9.96E-08) and Th17 cells

(cor=0.665120835, p=9.14E-09), while IGFBP2 showed a negatively correlated

with Tgd (cor=-0.459953045, p=0.000247284) and Th2 cells (cor=-

0.442269719, p=0.000452875). Finally, we identified four drugs associated

with key genes: Resveratrol, Vitamin E, Streptozocin, and Sulindac.

Conclusion: Our findings revealed several key genes related to circadian rhythms

and several relevant drugs in DR, providing a novel insight into themechanism of DR

and potential implications for future DR treatment. This study contributes to a better

understanding of CR in DR and its implications for future therapeutic interventions.
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1 Introduction

Diabetic retinopathy (DR) stands as a significant global cause of

vision loss and represents one of the most prevalent chronic

complications associated with diabetes (1). It is characterized by a

series of distinct retinal microvascular lesions induced by diabetes,

ultimately leading to visual impairment and potential blindness (2).

The manifestations of DR encompass microangioma, exudation,

neovascularization, retinal detachment, and in severe cases,

complete loss of vision (3–5). As the global prevalence of diabetes

continues to escalate, there is a corresponding surge in the incidence

of DR (5). According to the International Diabetes Federation

(IDF), there were 382 million reported cases of diabetes

worldwide in 2013, with China bearing the highest burden of

diabetic patients aged 20-79, totaling 9.8 million individuals (6).

Diabetic retinopathy has emerged as the primary cause of

preventable blindness among adults in numerous countries. The

severity of diabetic retinopathy can be categorized into two distinct

classes: non-proliferative diabetic retinopathy (NPDR) and

proliferative diabetic retinopathy (PDR) (7). NPDR represents the

most prevalent manifestation of diabetic retinopathy. Initially, it is

characterized by features such as edema and the presence of hard

exudates, which are essentially lipids leaked from abnormal blood

vessels, primarily affecting the central retina, and culminating in

blurred central vision (8, 9). In the later stages, PDR is distinguished

by the formation of anomalous blood vessels and the development

of scar tissue on the retinal surface, subsequently establishing firm

adhesions with the posterior vitreous surface (10). This adhesion

leads to traction by the vitreous, potentially resulting in

hemorrhages from the blood vessels into the vitreous cavity. Ling

et al. identified differential DNA methylation of 349 CpG sites

representing 233 unique genes in cases with PDR (11). Epigenetic

mechanisms are expected to be involved in the pathogenesis of PDR

as well (12). NPDR may develop into PDR, where hallmarks of

neovascularization of the retina and vitreous hemorrhage are found.

The primary treatment approach for NPDR typically revolves

around laser photocoagulation targeting macular edema, whereas

managing recurrent hemorrhages features prominently in the

treatment of PDR. The intricate molecular mechanisms governing

the pathogenesis and progression of DR remain largely elusive. To

identify novel pivotal genes that are involved in the etiology and

progression of DR could be helpful to the research and treatment

of DR.

While the pathogenesis of DR is complex and multifactorial,

emerging evidence suggests a compelling association between

circadian rhythm disruption and the development of DR (13–15).

Circadian rhythms, characterized by biological oscillations

synchronized with the 24-hour day-night cycle, play a crucial role

in regulating various biological and pathological processes (16). These

rhythms are synchronized with external light cues, enabling

organisms to adapt to the daily environmental changes (17, 18).

Emerging evidence has implicated circadian rhythm disturbances in

tumorigenesis and several other diseases. Notably, the involvement of

circadian rhythm in the etiology of colorectal cancer (16), prostate

cancer (19), and bladder cancer (20) has been well-documented.

Furthermore, accumulating evidence highlights the significant role of
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circadian rhythm in modulating the cellular microenvironment (21–

23). The eye as a light-sensing organ plays a key role in regulating the

circadian rhythms. Consequently, the disruption of circadian rhythm

has profound effects on normal ocular regulation. Circadian rhythm

dysfunction at multiple levels has been implicated in the pathogenesis

of DR (24). For instance, the retinal neuropil is known to express the

classic clock genes (e.g., Bmal, Clock, Per1), and retinal circadian

system plays a vital role in a range of physiological functions of the

eye, like visual processing, disc shedding and phagocytosis, and

susceptibility to light-induced photoreceptor damage (17, 25).

Silencing of retinal Bmal, for instance, has been shown to

significantly decrease cone viability, lead to abnormalities in rod

bipolar cells, and thinning of the outer plexiform layer in aged mice

(26). Additionally, the knockout of Per1 and Per2 genes in the retina

has been found to downregulate blue cone opsin and impact its

spatial distribution during early postnatal development and

throughout maturation (27). Considering the significant influence

of the microenvironment on the etiology and progression of various

diseases, investigating the intricate relationship between circadian

rhythm and the microenvironment holds great potential for

advancing our understanding and improving treatment strategies

for diabetic retinopathy.

Circadian rhythm dysfunction manifests in diverse facets of

DR, ranging from diurnal variations in retinal structure to cellular

dysfunction and metabolic imbalances (17, 28). Intriguingly, a rat

model of type 2 diabetes exhibited downregulation of a diverse

array of clock genes (29). Perturbations in circadian rhythm can

profoundly impact the retinal microenvironment, inciting chronic

low-grade inflammation and oxidative stress, both cardinal

features of DR. Aberrant expression of clock genes within retinal

cells regulates the release of pro-inflammatory cytokines,

chemokines, and reactive oxygen species (30). These molecular

aberrations contribute to the activation of inflammatory pathways

and the ensuing impairment of the blood-retinal barrier, thereby

facilitating immune cell infiltration into retinal tissue and

amplifying retinal damage. Furthermore, circadian rhythm

disturbances extend their reach to metabolism and energy

homeostasis. For instance, disrupted circadian rhythmicity has

been associated with perturbed glucose metabolism and

compromised mitochondrial function (31, 32). Nonetheless, the

specific impact of circadian rhythm disruption on metabolic

disorders in the context of diabetic retinopathy still eludes us,

despite the well-established metabolic foundation of this ocular

ailment. Comprehending the intricate relationship between

circadian rhythm disturbances and the progression of diabetic

retinopathy holds immense potential in illuminating novel

therapeutic avenues for addressing this debilitating disorder with

a propensity for sight loss.

Considering the extensive influence of circadian rhythm

disorder in cancers and cardiovascular disease, we speculated that

circadian rhythm could also exert an important effect on the

development of DR. Consequently, the principal objective of this

study was to employ bioinformatics analysis to identify the key

genes underlying the development of DR. Our study sought to

elucidate the relationship between the circadian rhythm and DR,

ultimately revealing novel key genes and potential mechanistic
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insights crucial for the management of this debilitating

ocular condition.
2 Methods

2.1 Data acquisition

In this study, the dataset utilized for analyzing differential gene

expression and conducting weighted gene co-expression network

analysis (WGCNA) was obtained from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). Specifically, the dataset GSE160306

was selected, comprising a collection of 20 normal samples and 39

samples from individuals diagnosed with DR. The Illumina HiSeq

4000 platform (Homo sapiens) was employed for sequencing the

samples, ensuring high-quality data for subsequent analyses. To

investigate the role of circadian rhythm in the context of DR, a

comprehensive search was conducted within the Molecular

Signatures Database (MsigDB) to identify genes associated with

circadian rhythm (CRRS). The criteria used for gene selection

involved excluding any duplicated or overlapping genes. As a

result, a total of 300 circadian rhythm-related genes that met the

defined criteria were successfully extracted from the MsigDB

database. By integrating these curated circadian rhythm-related

genes with the GSE160306 dataset, this study aimed to gain

deeper insights into the relationship between circadian rhythm

and DR. This approach holds promise for identifying novel key

genes and uncovering potential underlying mechanisms that could

pave the way for innovative treatment strategies targeting DR.
2.2 Differential expression analysis

To assess differential gene expression between normal samples

and those affected by DR, differential expression analysis was

performed using the R package ‘DESeq2’ (33). DESeq2 is based on

the negative binomial distribution and offers a robust approach for

analyzing count data obtained from high-throughput sequencing

assays, leveraging the negative binomial distribution. By modeling

the negative binomial distribution, DESeq2 effectively accounts for

the inherent dispersion in gene expression levels across samples.

Estimate variance-mean dependence in count data from high-

throughput sequencing assays and test for differential expression

based on a model using the negative binomial distribution. This

approach enhances the reliability and validity of the results obtained.
2.3 Weighted gene co-expression
network analysis

Weighted correlation network analysis (WGCNA) can be

utilized to identify clusters (modules) of highly associated genes,

summarize such clusters based on the module eigengene, and relate

modules to external clinical traits (34). In brief, we preprocessed the

raw gene expression profile data to remove low-quality reads, and

correct for batch effects and technical variations between samples by
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quantifying expression levels, and normalizing the data. Then, a

correlation or similarity matrix is constructed to represent gene

relationships. Using a soft thresholding approach, highly co-

expressed gene modules are identified. The modules are analyzed

for preservation and significance. Hub genes with high connectivity

within each module are identified. Functional enrichment analysis

is performed to understand the biological processes associated with

the modules and hub genes. Correlation networks can be used to

screen candidate hub genes or therapeutic molecules.
2.4 LASSO analysis

Lasso regression is a type of linear regression that uses

shrinkage. Shrinkage is where data values are shrunk toward a

central point, like the mean. After preprocessing the input dataset,

we choose the relevant features from the available independent

variables to construct the model. Use domain knowledge, statistical

methods, or machine learning algorithms to select features that

have potential predictive power. And then the objective is to

minimize the loss function, which is composed of a squared error

term. The L1 regularization term penalizes the absolute values of the

regression coefficients, promoting sparsity in the parameter set. The

lasso procedure encourages simple, sparse models (i.e., models with

fewer parameters). We interpret the model results based on the

coefficients obtained, which indicate variable importance and

positive/negative relationships with the target variable. This

regression is well-suited for models showing high levels of

muticollinearity or when you want to automate certain parts of

model selection, like variable selection/parameter elimination.
2.5 Functional enrichment analysis

To conduct functional annotation of differentially expressed genes

(DEGs), we utilized the R package “clusterProfiler” (version: 3.18.1)

(35). This package offers a wide range of functional annotation tools

that assist researchers in understanding the biological significance of

specific gene sets. The clusterProfiler package relies on the

Bioconductor annotation data GO.db and KEGG.db, which provide

comprehensive maps for gene ontology (GO) analysis and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) corpus, respectively.

We perform the differential expression analysis using appropriate

statistical methods (edgeR or DESeq2) to obtain a list of DEGs based

on defined criteria such as fold change and statistical significance.

Then the clusterProfiler package was apply to annotate the identified

DEGs. This may involve examining significantly enriched GO terms

or KEGG pathways, and identifying biological processes or molecular

functions that are overrepresented among the DEGs.
2.6 Single-sample gene set
enrichment analysis

The single-sample gene set enrichment analysis (ssGSEA) was

analyzed in our study by R package “GSVA” (36). In brief, the gene
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expression dataset was properly formatted and contains the

necessary information for data preparation. The Gene Ontology

(GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways were selected for collection. The ssGSEA algorithm was

applied from the GSVA package to each sample in the dataset.

Interpretation of results involved identifying significantly enriched

gene sets, assessing the variation of enrichment scores across

samples, and exploring the biological implications of these

findings. ssGSEA is a non-parametric, unsupervised method to

calculate variation of gene set enrichment through the samples from

an expression dataset.
2.7 Western blotting

The mice retinal tissues were subjected to milling and lysis using

RIPA reagent (Beyotime, Shanghai, China) supplemented with a

protease inhibitor, aiming to extract proteins. The isolated proteins

were concentrated via the BCA method and then subjected to boiling

at 95°C for 5 minutes. For vertical electrophoresis, 20 mg of protein

was introduced into each well and separated by 12% SDS-PAGE at

110V for 1 hour. Subsequently, the proteins were transferred onto a

PVDF membrane. The PVDF membrane was subsequently blocked

using blocking serum for 1 hour before being incubated with primary

antibodies, namely Anti-COL6A3 (1:1000; Abcam, Cambridge, MA,

USA) and Anti-IGFBP2 (1:1000; Abcam, Cambridge, MA, USA),

overnight at 4°C. The membrane was then exposed to a secondary

antibody (1:1000; Abcam, Cambridge, USA) at room temperature for

1 hour. Finally, enhanced chemiluminescence reagent was added for

protein band development, and the grayscale value of the protein

bands was scanned using QUANTITY ONE software.
2.8 Reverse transcription-quantitative
polymerase chain reaction (qRT-PCR)

Total RNA of mice retinal tissues was extracted using TRIzol

solution (Invitrogen, Carlsbad, CA, USA). Subsequently, the RNA

was reverse transcribed into cDNA using the Fast Quant RT Kit

(TaKaRa, Otsu, Shiga, Japan). Quantitative real-time PCR (qPCR)

was performed on an Applied Biosystems 7500 Real-Time PCR

System (Thermo Fisher Scientific, Inc., Waltham, MA, USA), with

SYBR Green Master Mix serving as the fluorogenic probe. The qPCR

reaction protocol involved an initial preheating step at 95°C for 5

minutes, followed by denaturation at 95°C for 30 seconds, annealing

at 60°C for 45 seconds for 40 cycles, and extension at 72°C for 30

minutes. For the amplification of COL6A3, the forward primer

sequence used was 5’-AACATCCTGGTCAGCTCTGC-3’, and the

reverse primer sequence was 5’-TCCGGGATGAAGGAGATGGT-3’.

Similarly, the forward primer for IGFBP2 was 5’-CCTCAAGTCAGG

CATGAAGGAG-3’, and the reverse primer was 5’-TGGTCCAA

CTCCTGCTGGCAAG-3’. Additionally, GAPDH was utilized as an

internal control with the forward primer sequence 5’-CATCACTG

CCACCCAGAAGACTG-3’ and the reverse primer sequence 5’-

ATGCCAGTGAGCTTCCCGTTCAG-3’. All experiments were
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conducted in triplicate for validation. The relative expression levels

were determined using the 2^(-DDCT) method, which allows for the

quantification of relative expression levels when compared to internal

control (GAPDH).
2.9 Animals

All animal procedures were conducted in strict accordance with

the current national and international regulations governing animal

care, housing, breeding, and experimentation. These protocols

adhered to the guidelines set forth by the Association for Research

in Vision and Ophthalmology (ARVO). The ethical committee

(2021MER-041) approved all procedures involving animals. Wild-

type male C57BL mice were housed in a temperature-controlled

room (23 ± 1°C) with a 12-hour light-dark cycle, and they had ad

libitum access to food and water. To induce diabetes, 3-week-old

male mice were fasted and subjected to chemical induction as

previously described (37–39). In brief, the animals received three

consecutive intraperitoneal injections of STZ at a dosage of 85 mg/

kg, dissolved in 0.01 M sodium citrate buffer (pH 4.5) during 3

successive days. Development of diabetes was weekly monitored via

blood glucose levels. The induction of diabetes was confirmed by

measuring blood glucose levels. Mice with blood glucose levels

exceeding 2 g/L were considered diabetic. Only animals with

consistent elevated blood glucose levels were considered diabetic

and used in the study. Age-matched non-diabetic control mice

received injections of 0.01 M sodium citrate buffer. The animals

were maintained for a period of 10 weeks after the onset of diabetes

for further experimentation. Mouse fundus tissue sections were

prepared using frozen sectioning. After three 5-minute washes in

PBS containing 0.3% Triton-X 100 (Solarbio, Beijing, China), the

sections were blocked in a solution comprising 5% goat serum, 1%

bovine serum albumin (Solarbio, Beijing, China), and 0.3% Triton-X

100 diluted in PBS (PBS-TX) for 1 hour at room temperature.

Following this, the sections were separately incubated overnight at

4°C with primary antibodies to Collagen six. After three 10-minute

washes in PBS-TX, the sections were then treated with Alexa Fluor

488-conjugated and Alexa Fluor 594-conjugated IgG (1:500, Abcam,

Cambridge, UK), Phalloidin, and DAPI (1:500, Solarbio, Beijing,

China) for 2 hours at room temperature, before undergoing three

sequential 15-minute washes in PBS-TX. Subsequently, the slices

were examined using laser scanning confocal microscopy (Zeiss

LSM800; Zeiss, Oberkochen, Germany).
2.10 Statistical analysis

The statistical analysis of all data was performed using SPSS

22.0 software (SPSS Inc., Chicago, IL, USA) and GraphPad Prism

5.0 (GraphPad Software, San Diego, CA, USA). The results were

presented as mean ± standard deviation (SD). A comparative

analysis between the two groups was carried out using the

student’s t-test. A significance level of p < 0.05 was considered

statistically significant.
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3 Results

3.1 Differential expression analysis and
clustering reveals distinct expression
patterns in diabetic retinopathy samples

To identify differentially expressed genes (DEGs) between DR

and normal samples, a differential expression analysis was

conducted on 20 normal samples and 39 DR samples from the

GSE160306 dataset using the R package ‘DESeq2’ (Figure 1). The

analysis revealed a total of 1253 DEGs, consisting of 690

upregulated genes and 563 downregulated genes (p < 0.05, |log

FC| > 0.05; Figure 2A). To further explore the distribution of DEGs

between the normal and DR groups, a heatmap displaying the

expression levels of the DEGs was generated (Figure 2B),

highlighting distinct expression patterns between the two groups.

Subsequently, the expression levels of the circadian rhythm

were quantified for each sample using the GSVA algorithm, based

on the circadian rhythm gene set. The samples were divided into

low and high groups according to the median value of the circadian

rhythm expression levels. Differential expression analysis was then

performed between these two groups using the R package ‘DESeq2’,

resulting in 935 DEGs. Among these DEGs, 167 were upregulated

genes and 768 were downregulated genes (p < 0.05, |log FC| > 0.05;

Figure 2C). To assess the distribution of DEGs between the low and

high groups, a heatmap displaying the expression levels of the DEGs

was generated (Figure 2D), revealing distinct expression patterns

between the two groups. Furthermore, a clustering analysis was

conducted on the 59 samples in the GSE160306 dataset to identify

potential outlier samples. The analysis did not reveal any outlier

samples within the sample dendrogram (Figure 2E).
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3.2 Deciphering the interplay between CR
and DR by weighting gene co-expression
network analysis

To elucidate the gene modules relevant to the circadian rhythm

(CR) trait, we conducted a weighted gene co-expression network

analysis (WGCNA) on a dataset comprising 59 samples. Firstly, we

determined the appropriate soft threshold to enhance gene

clustering. By assessing the y-intercept of the red line, we

identified 2 as the optimal soft threshold (Figure 3A).

Subsequently, employing the determined soft threshold, we

partitioned the genes into 30 distinct modules utilizing the

dynamic tree cutting algorithm. We proceeded to analyze the

correlation between these modules and the traits of interest

(Figures 3B, C). Remarkably, we identified four modules strongly

associated with both the DR and CR traits, namely the green,

magenta, royalblue, and steelblue modules (Figures 3D–K). These

four modules were subsequently recognized as the key gene

modules underlying the complex interplay between DR and CR.

The identification of these key gene modules provides vital insights

into the molecular mechanisms governing the pathogenesis of

diabetic retinopathy and its relationship with the circadian rhythm.
3.3 Unraveling circadian rhythm-related
genes in diabetic retinopathy

To identify crucial circadian rhythm-related genes (CRRGs) in

DR, we performed an intersection analysis among the genes identified

in theWGCNA, the differentially expressed genes between the normal

and DR groups, as well as the DEGs between the low and high group.
FIGURE 1

The workflow of this study.
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This analysis yielded 11 overlapping genes, namely COL6A3, DAPL1,

GPC4, ID1, IGFBP2, IGHG4, KLHDC7A, SERTM2, LINC02679,

RPL26P30, and MYL6P4 (Figure 4A). Next, we conducted

functional enrichment analysis to investigate the biological

implications of these 11 genes. This analysis revealed enrichment for

several signaling pathways, including death domain binding, insulin-

like growth factor I binding, and proteasome binding (Figure 4B).

Furthermore, we explored the interaction between the 11

CRRGs and 20 related genes using the GeneMANIA database.

The resulting interaction network consisted of 23 nodes and 793

edges (Figure 4C). To further refine the selection of key genes

involved in the progression of DR, we employed LASSO regression

analysis on the 11 CRRGs. As a result, 10 genes were retained

(Figures 4D, E). Box plots were generated to visualize the expression
Frontiers in Immunology 06
levels of these 10 genes, revealing that six genes exhibited significant

differential expression between the normal and DR groups. Hence,

we identified COL6A3, IGFBP2, IGHG4, KLHDC7A, RPL26P30,

and MYL6P4 as the final key genes (Figure 4F). Subsequent Gene

Set Enrichment Analysis (GSEA) demonstrated that these six genes

were enriched in pathways related to allograft rejection, apoptosis,

coagulation, and hypoxia (Figure 4G). To validate our findings, we

collected tissue samples from healthy individuals and DR models to

examine the expression levels of COL6A3 and IGFB2. Remarkably,

compared to normal tissue, the expression levels of COL6A3 and

IGFB2 were significantly increased in DR tissue (Figures 5A–D).

Collectively, these findings offer compelling evidence, strengthening

the association between the development of DR and the aberrant

expression of COL6A3 and IGFB2.
A B

D

E

C

FIGURE 2

Differential genes expression analysis. (A) Volcano plot illustrating the differentially expressed genes (DEGs) between the DR and normal samples.
(B) Heatmap displaying the expression levels of the DEGs between the DR and normal samples. (C) Volcano plot illustrating the DEGs between the
low and high groups. (D) Heatmap displaying the expression levels of the DEGs between the low and high groups. (E) Sample dendrogram and trait
heatmap representing 59 samples.
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3.4 Investigation of the effect of key genes
in DR

To investigate the immune microenvironment of diabetic

retinopathy (DR), we conducted an analysis of immune cells in

DR samples. Initially, we employed the single-sample gene set

enrichment analysis (ssGSEA) algorithm to quantify the relative
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scores of 24 immune cell types in individual samples. Comparing

these scores between the healthy and DR groups, we identified six

immune cell types that exhibited significant differences: CD8 T cells,

cytotoxic cells, T helper cells, Th1 cells, Th17 cells, and TReg cells

(Figure 6A). Furthermore, we examined the relationship between

these six hub genes and the aforementioned immune cell types. Our

analysis revealed that COL6A3 displayed a positive correlation with
A B

D E F G

IH J K

C

FIGURE 3

Weighted gene co-expression network analysis. (A) Determination of the optimal soft threshold utilized for gene clustering. (B) Analysis of the
relationships between modules and traits, including group and circadian rhythm (CR). (C) Dendrogram of all differentially expressed genes from the
dynamic tree cut. (D, E) Dot plots illustrating the distribution of genes within the green module. (F, G) Dot plots illustrating the distribution of genes
within the magenta module. (H, I) Dot plots illustrating the distribution of genes within the royalblue module. (J, K) Dot plots illustrating the
distribution of genes within the steelblue module.
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macrophages (cor=0.628296895, p=9.96E-08) and Th17 cells

(cor=0.665120835, p=9.14E-09). Conversely, IGFBP2 exhibited a

negative correlation with Tgd (cor=-0.459953045, p=0.000247284)

and Th2 cells (cor=-0.442269719, p=0.000452875), as showed

in Figure 6B.

To explore potential therapeutic agents related to the key genes,

we consulted the Comparative Toxicogenomics Database (CTD)

(http://ctdbase.org/) and extracted relevant drug or agent

information. Subsequently, we visualized the interaction network

among these molecules using Cytoscape. Figure 6C illustrates a

network comprising 228 nodes and 353 edges, consisting of 179

stimulatory relationships and 174 inhibitory relationships. Notably,

we identified four drugs that were associated with the targeted key

genes: Resveratrol, Vitamin E, Streptozocin, and Sulindac

(Figure 6D). Overall, these findings contribute to a better

understanding of the immune dysregulation in DR and provide

insights into potential therapeutic avenues for this condition.
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4 Discussion

In the present study, we sought to elucidate the presence of the

CR-related genes in DR. Notably, we have successfully identified six

pivotal CR-related genes that hold potential therapeutic value for

the treatment of DR, paving the way for innovative therapeutic

interventions. Our meticulous analysis has also brought to the fore

enriched signaling pathways linked to death domain binding,

insulin-like growth factor I binding, and proteasome binding.

Furthermore, we have unveiled an intriguing correlation between

CR-related genes and various immune cell populations within the

DR microenvironment. Collectively, these significant findings shed

light on the identification of novel pathogenic genes implicated in

DR, thereby laying the foundation for the development of precision

medicine approaches.

Multiple studies have provided evidence supporting the

regulatory role of retinal ganglion cells, which contain the
A B

D E

F G

C

FIGURE 4

Identification of key CRRGs. (A) 11 overlapping genes were obtained by intersecting the genes in WGCNA, DEGs between the normal and DR groups, as
well as that between the low and high group. (B) Functional enrichment analysis illuminating the signaling pathways associated with the identified 11
overlapping CRRGs. (C) Interaction network showcasing the connections between the 11 CRRGs and 20 related genes, as revealed by analysis using the
GeneMANIA database. (D, E) LASSO regression analysis for further refinement, leading to the retention of 10 key genes among the 11 CRRGs. (F) Box
plots visually representing the differential expression levels of the 10 genes identified through LASSO regression, thereby differentiating between the DR
and healthy groups. (G) GSEA highlighting the enriched pathways related to allograft rejection, apoptosis, coagulation, and hypoxia for the 10 genes
obtained through LASSO regression. n = 6. Data are presented as mean ± SD. ns, no statistical. *p < 0.05, **p < 0.01, and ***p < 0.001 between the
lined group.
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photopigment melanopsin, in modulating the circadian clock.

Additionally, retinal changes associated with blindness have been

shown to impact circadian rhythms (40–42). In line with these

previous findings, our study offers a novel contribution by

identifying CR-related genes with potential therapeutic applications

in the treatment of DR. The identified genes include COL6A3,

IGFBP2, IGHG4, KLHDC7A, and RPL26P30. Notably, previous

research has reported upregulation of COL6A3 and KLHDC7A in

DR, which is consistent with our findings (43, 44).. Although there is

currently no reported association between DR and IGFBP2, IGHG4,

RPL26P30, as well asMYL6P4, the novel nature of their identification

warrants further investigation. The delineation of these six pivotal

CR-related genes and their potential therapeutic implications in the

context of DR emphasizes the translational significance of our study.

Furthermore, these findings not only enhance understanding of the

underlying molecular processes driving DR pathogenesis but also

present promising targets for therapeutic intervention. Future

experimental studies should focus on elucidating the precise

mechanisms through which these genes exert their effects (45).

Such investigations will provide additional insights into their

functional roles and aid in advancing our understanding of the

complex mechanisms underlying DR.

Another significant finding of our study was the identification

of several key biological processes implicated in diabetic retinopathy
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(DR) and its high-risk state. These processes include death domain

binding, insulin-like growth factor I binding, and proteasome

binding (46). Notably, death domain binding emerges as a crucial

factor in DR pathogenesis. Pyroptosis, recognized as a form of

programmed-inflammatory cell death, has recently been associated

with death domain binding and has shown promise in the treatment

of DR (47). Furthermore, the role of insulin-like growth factor I

binding as a pivotal factor in type 1 diabetic retinopathy has already

been acknowledged in previous studies (48–50). We successfully

revealed these important signaling pathways in DR, which would

add novel knowledge to the current understanding of DR. The

enrichment of specific signaling pathways, including death domain

binding, insulin-like growth factor I binding, and proteasome

binding, provides invaluable knowledge regarding the molecular

mechanisms underlying the progression of DR (51). These findings

not only advance our understanding of the disease but also open

potential avenues for the development of precision medicine

strategies targeting circadian regulation in the management and

treatment of diabetic retinopathy.

Through an intersection analysis of CRRGs identified through

WGCNA, DEGs between normal and DR groups, and DEGs between

low and high-risk groups, we successfully identified 11 overlapping

genes. Functional enrichment analysis unveiled the involvement of

these genes in diverse signaling pathways, shedding light on their
A

B

D

C

FIGURE 5

High expression of CR-related genes was associated with DR. (A) Relative expression of COL6A3 between health tissue and DR tissue from the
diabetes model. (B, C) Relative expression of COL6A3 and IGFBP2 between health tissue and DR tissue were analysised by qRT-PCR. (D) Images of
Immunofluorescence staining of retinal tissue for COL6A3 (red). Cell nuclei were counterstained with DAPI (blue) and actin filaments with Phalloidin
(green). Scale bar: 20 µm. n = 5 biologically independent animals. Data are presented as mean ± SD. ns: no statistical. **p < 0.01 between the
lined group.
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functional significance. Moreover, network analysis revealed potential

interactions between the CRRGs and related genes, enhancing our

understanding of the underlying molecular processes. To refine our

findings and identify key genes, we applied LASSO regression, which

led us to narrow down to 10 genes. Remarkably, six of these genes

exhibited significant differential expression between normal and DR

groups, reinforcing their potential role in DR pathogenesis. GSEA

further validated the functional relevance of these genes,

consolidating their importance. Furthermore, in our pursuit to

explore potential therapeutic agents associated with these key

genes, we uncovered Resveratrol, Vitamin E, Streptozocin, and

Sulindac as promising candidates.

Vascular endothelial growth factor (VEGF) plays a central role

in driving the process of vascular proliferation in proliferative

diabetic retinopathy. Anti-VEGF drugs targeting VEGF have been

extensively studied in diabetic macular edema and shown

promising clinical efficacy (52). encodes a binding protein for

insulin-like growth factor 1 (IGF1), which is known to interact

with VEGF signaling pathways. Numerous studies have

demonstrated the crucial role of IGFBP2 in promoting pathologic
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angiogenesis in various cancer types (53, 54). IGFBP2 is considered

an inducer of angiogenesis in melanoma. IGFBP2 is believed to

induce angiogenesis in melanoma by up-regulating the expression

of pro-angiogenic VEGF-A, and subsequently triggering

angiogenesis via interacting with integrin aVb3 and activating the

PI3K/AKT signaling cascade (55). Therefore, IGFBP2 may

influence neovascularization in diabetic retinopathy through

modulating VEGF activity mediated by IGF1. Additionally,

IGHG4 encodes an immunoglobulin protein involved in immune

cell trafficking and inflammation. Chronic inflammation has been

linked to angiogenesis, suggesting IGHG4 could contribute to

neovascularization in proliferative diabetic retinopathy through

inflammation (56). However, further investigation is warranted to

ascertain their efficacy and safety profiles specifically in the context

of DR treatment. Considering the sight-threatening nature of DR

treatment, many preventive and therapeutic modalities have been

proposed. Thus, future research directions should focus on

evaluating the efficacy of these agents in preclinical and clinical

settings, elucidating their underlying mechanisms of action, and

exploring potential combination therapies. These findings
A

B

DC

FIGURE 6

Investigation of the effect of key genes in immunomodulation and drug targets. (A) Comparison of immune cells between the DR and healthy group.
(B) The correlation analysis between key genes and immune cells. (C) the interaction network of the six key genes and the relative agents related to
the key genes. (D) Four drugs were obtained that were associated with key genes, including Resveratrol, Vitamin E, Streptozocin, and Sulindac. n = 6.
Data are presented as mean ± SD. ns, no statistical. *p < 0.05 and **p < 0.01 between the lined group.
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contribute to a better understanding of the immune dysregulation

in DR and provide insights into potential therapeutic avenues for

this condition.

The mechanisms underlying leukocyte activation in diabetes

remain incompletely defined. Recent studies have demonstrated

elevated levels of phosphorylated signal transducer and activator of

transcription 3 (pSTAT3), a key regulatory molecule in cell

signaling, in circulating myeloid (monocyte/macrophage) cells

from patients with diabetes and in STZ-induced diabetic mice

(57).. Additionally, patients with DR have shown increased levels

of various autoantibodies, including hexokinase 1. Interestingly, one

study found a higher prevalence of DR in the absence of

autoantibodies (58, 59).. Moreover, a prospective pilot study

revealed an increased number of circulating neutrophilic

leukocytes and a reduced number of T cells during the

development and progression of DR (60). One intriguing aspect

of our investigation is the observed association between the co-

expressed retina-related genes (CR-related genes) and different

immune cell populations within the microenvironment of DR.

Our analysis of the immune microenvironment in DR unveiled

significant alterations in immune cell populations compared to

healthy tissue. Specifically, CD8 T cells, cytotoxic cells, T helper

cells, Th1 cells, Th17 cells, and Treg cells exhibited marked

differences between DR and healthy samples. It is important to

note that further mechanistic studies are necessary to fully elucidate

the precise roles of these immune cell types and their interactions

with COL6A3 and IGFBP2 in the development and progression of

diabetic retinopathy. In addition, we identified a positive correlation

between the expression of COL6A3 and the presence of

macrophages and Th17 cells Conversely, IGFBP2 demonstrated a

negative correlation with Tgd and Th2 cells (61). Overall, our

findings provide a solid foundation for future research in the field

of diabetic retinopathy immunopathology and the development of

therapeutic interventions.

The current study presents certain limitations, highlighting the

need for further investigation. First, the pivotal genes and signaling

pathways in the present study were obtained by bioinformatics

approaches, and lab experiments are needed to investigate and

validate their specific roles. Also, the drugs were identified based on

the online database without drug response experiment, requiring

further pre-clinical investigation. Our analysis utilized the ssGSEA

algorithm to quantify immune cell scores. It is important to note

that alternative methods could be employed to validate and

complement these findings. For instance, Single-cell RNA

sequencing (scRNA-seq) approaches could provide a more

detailed and comprehensive understanding of the immune cell

landscape in DR, enabling the identification of additional cell

subsets and providing a more in-depth understanding of their

functional diversity.
5 Conclusion

In summary, our integrative analysis, combining differential

expression and co-expression analyses, has revealed six novel CR-
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related genes and their corresponding drugs as potential

therapeutic options for DR. This study provides a fresh

perspective on DR pathogenesis, complementing existing

knowledge and offering future directions for precision medicine

in this domain. The integration of these novel therapeutic targets

and the delineation of immune cell interactions hold promise for

the advancement of individualized treatment strategies to tackle

the complexities of DR.
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