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Effects of inflammation on
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potential mechanisms
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As the most common type of refractive error, myopia has become one of the

leading causes of visual impairment. With the increasing prevalence of myopia,

there is a growing need to better understand the factors involved in its

development. Inflammation, one of the most fundamental pathophysiological

processes in humans, is a rapid response triggered by harmful stimuli and

conditions. Although controlled inflammatory responses are necessary, over-

activated inflammation is the common soil for many diseases. The impact of

inflammation on myopia has received rising attention in recent years. Elevated

inflammation may contribute to myopia progression either directly or indirectly

by inducing scleral remodeling, and myopia development may also increase

ocular inflammation. This article provides a comprehensive review of the

interplay between inflammation and myopia and the potential biological

mechanisms, which may present new targets for understanding the pathology

of myopia and developing myopia therapies.
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1 Introduction

When ocular accommodation is relaxed, light entering the eye from the external

environment parallel to the optical axis is focused in front of the retina, which is called

myopia. During the past 30 years, the myopia population has increased rapidly worldwide,

especially in East and Southeast Asia (1, 2), with the prevalence of myopia among 16-18-

year-olds even reaching 84.8% in China (3). It has been projected that by 2050, half of the

total global population will be myopic (4).Uncorrected refractive error and pathological

myopia have become major causes of visual impairment and even blindness (5, 6).

Therefore, it is particularly important to prevent or delay myopia onset.

A series of signaling pathways, including dopamine (7), retinoic acid (8), Wnt/b-
catenin (9), transforming growth factor-b (TGF-b) (10), and hypoxia-inducible factor-1

alpha (HIF-1a) (11) signaling pathways, have been confirmed to be associated with the

development of myopia; however, the exact pathogenesis of myopia remains unclear since

myopia is regulated by both genetic and environmental factors (12).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260592/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260592/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260592/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1260592&domain=pdf&date_stamp=2023-10-02
mailto:zhangwenqiu2022@163.com
https://doi.org/10.3389/fimmu.2023.1260592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1260592
https://www.frontiersin.org/journals/immunology


Xu et al. 10.3389/fimmu.2023.1260592
Inflammation is an adaptive response of the body to harmful

stimuli and is beneficial under controlled conditions (13). As one of

the few organs in the body with immune privilege, the eye has

unique immunological properties. In general, the ocular

microenvironment is both immunosuppressive and anti-

inflammatory (14). Under physiological conditions, various

endothelial cells, immune cells (such as microglia, neutrophils,

monocytes, macrophages, natural killer cells, etc.) and retinal

neuronal cells inhibit the activity of effector T cells through the

release of immunosuppressive factors, promote the formation and

maintenance of ocular immune privilege and prevent ocular

excessive inflammation (15). Whereas when the eye is subjected

to sustained stimulation of damage-associated molecular patterns,

local chronic inflammation mediated by innate immune cells

develops (16), ultimately leading to destructive tissue remodeling

and loss of visual function through a series of cascade reactions. It

has been shown that a low-grade chronic inflammatory response in

the eye is associated with the decreased function of retinal

pigment epithelial (RPE), breach of the blood-retinal barrier,

neovascularization and choroidal macrophages recruitment (17).

Although inflammation has been identified in relation to many

ocular diseases, the association between it and myopia has not been

confirmed. Recently, researchers have turned their attention to this

area, offering new insights into the specific mechanisms of myopia.

Inflammatory cytokines activated by mitogen-activated protein

kinase (MAPK), nuclear factor kappa B (NF-kB) and other

signaling pathways transmit from the retina to the sclera (18),

then directly or indirectly promote myopia.

This article reviews the evidence and potential mechanisms

linking inflammation and myopia, and describes the specific

association between myopia and inflammatory or immune

diseases. In addition, it discusses the potential of anti-

inflammatory products in the treatment of myopia.
2 Clinical evidence linking
inflammation and myopia

Increasing clinical evidence has shown that the higher

inflammatory status in circulation system or within the eye

indicates the severity of myopia and that inflammation may

function in the pathogenesis of myopia.
2.1 Systemic inflammatory status
and myopia

Recent studies have found that the systemic immune system is

involved in myopia. Elevated certain systemic markers suggesting

inflammation and imbalances in circulating immune cells in

patients with high myopia or pathological myopia indicated that

myopic patients might have a systemic hypo-inflammatory status.

Data from a large cross-sectional study (19) in Korea showed

that higher white blood cell counts were significantly associated

with increased myopia prevalence. Meanwhile, elevated circulating

neutrophils as well as decreased monocytes, eosinophils, and
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lymphocytes were found during the progression of myopia (20).

As indicators of systemic inflammatory properties (21), significantly

higher neutrophil-to-lymphocyte ratios and platelet-to-lymphocyte

ratios in the peripheral blood of patients with high myopia (22, 23)

also implied higher inflammation and dysregulation of serum

immune cells in high myopia population than in normal subjects.

Significant elevations in high-sensitivity C-reactive protein and the

complement profile in the peripheral blood of patients with

pathological myopia (24) suggested the presence of systemic

immune microinflammation in pathological myopia. In addition,

Dai et al (25) elaborated the relevance of oxidative stress,

inflammation and metabolic changes in high myopia in a study of

human serum metabolomics.

However, such studies have not demonstrated a correlation

between systemic inflammatory levels and the eye. Besides, they

might not exclude mixing effects of underlying systemic

inflammatory disease.
2.2 Inflammatory status in the ocular
microenvironment of myopia

Current studies tend to consider that the visual mechanisms

regulating refractive development are located primarily in the retina

(26). Hence, the formation of myopia is considered as a localized

stimulatory process, and the correlation between myopia and

inflammation of the ocular environment has received more

attention than systemic status.

Several studies (27–30) have shown that compared to non-

myopic eyes, myopic eyes have higher levels of inflammatory

cytokines in the aqueous humor or vitreous. The levels of

interleukin (IL)-6 and metalloproteinase-2 (MMP-2) in aqueous

humor were positively correlated with the ocular axial length (AL),

and they were also significantly higher in highly myopic eyes than in

control eyes (27). The expression of monocyte chemoattractant

protein-1 (MCP-1) in the aqueous humor was significantly higher

in highly myopic cataract patients than in age-related cataract

patients, whereas the expression of IL-1 receptor antagonists was

significantly lower (28). In addition, the expression of inflammatory

cytokines, such as interferon gamma (IFN-g), IL-6, interferon-
inducible protein 10, eotaxin, MCP-1, macrophage inflammatory

protein-1a (MIP-1a), and MIP-1b, was also elevated in the vitreous

of patients with high myopia (29) as well as in highly myopic eyes

with macular holes (MHs) (30). Raised MIP originating from

macrophages, dendritic cells and lymphocytes implies that

immune cells participate in myopia formation.

Studies of bioinformatics analysis likewise confirmed that

interactions of complement activation, immunity and

inflammation, and extracellular matrix remodeling may play a

role in the pathogenesis of myopia, especially pathologic myopia

(30–32). Differentially expressed miRNAs in vitreous revealed that

several signaling pathways, such as the MAPK, phosphatidylinositol

3-kinase (PI3K)/protein kinase B (AKT), T-cell receptor and

chemokine signaling pathways associated with inflammation,

were enriched in highly myopic MH eyes (30). Imbalance of the

MAPK signaling pathway may also be one of the key steps of lens
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alteration in highly myopic eyes (31). Analysis of gene expression

profiles in the cornea showed that immune-related pathways were

significantly enriched in myopia. Meanwhile, infiltrating immune

cell analysis of the myopic cornea revealed significant enrichment of

B cells, CD4+ memory T cells, CD8+ central memory T cells, T

helper 2 (Th2) cells, regulatory T cells (Tregs), etc. whereas CD8+ T

cells, CD4+ T central memory cells and T helper 1 (Th1) cells were

reduced (33).

The elevated inflammatory cytokines prove the presence of

higher-than-normal ocular inflammatory status in myopic eyes,

suggesting that the continuous subclinical inflammation within the

eye may lead to myopia progression. However, there was an

inconsistent report on the association between myopia and

inflammation. Zhu et al (34) showed no significant link between

AL and inflammatory cytokines (IL-1b, IL-6 and tumor necrosis

factor-alpha (TNF-a)) in aqueous humor in cataract patients

with AL ranging from 22.6-31.5 mm. The conflicting results

could be due to differences in sample size, testing instruments,

and inclusion criteria.

It should be noted that current clinical evidence cannot fully

elucidate the correlation between myopia and inflammation. First,

the results are not representative, because the aqueous humor and

vitreous samples involved in these studies could only be obtained

surgically. The level of inflammation in myopic patients who do not

require surgery is not known. Second, the characteristics of subjects

in myopia stabilization and the design of cross-sectional studies

limit the determination of the causal relationship between myopia

and inflammation. Besides, pathologic myopia itself has been shown

to be related to the autoimmune and inflammatory systems (35).

Therefore, the basic experiments are needed to provide supporting

evidence for previous clinical contribution.
3 Inflammation in experimental
myopic model

Studies have shown that expression of ocular inflammatory

cytokines increases with the development of myopia in different

species of experimental myopia, including hamsters (18, 36–38),

tree shrews (39), mice (40), guinea pigs (41, 42), and chicks (43),

and that increased ocular inflammatory status promotes the

development of myopia.

The inflammatory cytokines were activated and transmitted

from retinal to scleral during myopia induction. The inflammation-

associated transcription factors c-Fos and NF-kB and the

inflammatory cytokines IL-6, TNF-a, IL-1b, TGF-b and MMP-2

were upregulated, while the anti-inflammatory cytokine IL-10 was

decreased in myopic eyes of Syrian hamsters induced by form-

deprivation myopia (FDM) (18), suggesting that pathways

associated with inflammation-induced myopia may include the

MAPK and NF-kB pathways. Meanwhile, the immunosuppressive

agent cyclosporine A applied to the eye delayed myopia

progression, while inflammatory stimulators peptidoglycan and

lipopolysaccharide promoted myopia progression (18). Several
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other studies (36, 37) likewise observed that inflammation-related

factors increased in the FDM eye of hamsters with myopia

progression and that the application of pro-inflammatory agents

could also promote the expression of these factors in RPE cells in

vitro. RPE cells play an important role in myopigenesis, which

can recognize key signaling molecules and influence ion and

fluid transport to transmit growth-regulating signals from retina

to choroid/sclera (44). Similar experimental results were

demonstrated in tree shrews undergoing 7/14-day FDM (39).

Since the main innate inflammatory cell population that has

been described in ocular inflammation is macrophages (16), the

investigators discussed the link between macrophages and myopia.

It was found that in addition to scleral fibroblasts, monocyte-

derived scleral macrophages induced by scleral C-C motif

chemokine ligand-2 (CCL2) were one of the sources of MMP-2 in

the eye (45). Secreted MMP-2 hydrolyzed collagen fibrils and

recollects monocytes and neutrophils (46). In cases of negative

lens-induced myopia, macrophage-like cells were observed to

directly phagocytose collagen fibrils as well as fibroblasts in sclera

(47). This indicates that macrophages contribute to the

development of myopia.

In addition, RNA sequencing results also demonstrated the

activation of inflammation-related signaling pathways in

experimental myopic eyes. Single-cell RNA sequencing showed

sustained expression of MAPK, and PI3K/AKT signaling

pathways in scleral fibroblasts from mice experiencing 4 weeks of

FDM (40). RNA-seq analysis of retinas from guinea pigs

undergoing 15 weeks of FDM (41) suggested that inflammatory

pathways such as inflammatory mediator regulation of Tryptophan

channels and IL-17 signaling pathway played crucial roles in of

myopia-induced retinal degeneration.

The complement system is an important component of innate

immunity (48). The level of C5b-9 was significantly elevated in the

posterior sclera of guinea pigs (42) with negative lens-induced

myopia (LIM), with increased C1q and C3 protein expression.

Transcription and activation of the complement system were

also present during the induction of myopia and hyperopia in

chicks (43).Activation of the complement system may trigger

inflammatory responses in some ocular diseases such as primary

angle closure glaucoma (49), and these inspire us that complement

may function in myopia through inflammation.

In contrast to previous studies (18), Jody et al (50) argued that

the recovery from FDM or myopic defocus affecting the expression

of those proinflammatory cytokine, despite affirming that IL-6 in

the choroid plays an important role in the retina-sclera signaling

cascade. They found that IL-6 expression was increased in the chick

choroid during recovery from FDM or during the application of a

+15D lens and was upregulated in myopic eyes treated with

atropine. However, unlike the previous experimental design, this

study focused on IL-6 in the choroid.

In conclusion, most studies agree that the development

of myopia is accompanied by increased levels of ocular

inflammation, and that increased inflammation in the eye

predisposes to myopia.
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4 Correlation between myopia and
inflammatory or immune diseases

Several studies have noted a link between inflammatory or

immune diseases and myopia, with patients who exist abnormal

inflammatory or immune status having a higher prevalence of

myopia than normal individuals. These diseases may be a risk

factor for myopia, although the correlation has not been

fully evaluated.
4.1 Ocular diseases

It has been reported that ocular inflammatory diseases,

including allergic conjunctivitis (AC) (51, 52), scleritis (53–55),

and uveitis (18, 56, 57), may trigger the progression of myopia by

elevating ocular inflammation.

A study by Mimura (51) showed that AC patients who were

positive for specific immunoglobulin E to indoor allergens exhibited

higher degree of myopia than healthy subjects, linking allergic

conjunctivitis to myopia for the first time. Subsequently, a case

−control and cohort study (52) showed a significantly higher risk

and incidence of myopia in patients with AC than in those with

nonallergic conjunctivitis, validating the causal relationship

between AC and myopia. Furthermore, they also demonstrated

again in Lewis rat model of AC that the presence of AC triggers

ocular surface inflammation, activates pro-inflammatory factors,

leading to scleral remodeling and eye axis growth (52).

The association between scleritis and myopia has mainly been

focused on case reports. Fan (53) and Ugurbas (54) reported that in

addition to common ocular pain, scleritis may occur as sudden

monocular myopia, followed by typical clinical and imaging

findings. During follow-up, 10-30% of patients with necrotizing

scleritis may have a visual acuity of 0.1 or worse at some point in

time (55). Although myopia is not a prevalent symptom of scleritis,

there seems to be an association between them.

Uveitis can cause acute, transient or persistent myopia in

different conditions (56). A retrospective cohort study (18) found

an increased risk and cumulative incidence of myopia in patients

with uveitis. Meanwhile, data from research (57) with a 15-year

follow-up of chorioretinal inflammatory diseases showed that

myopic refractive changes were present in some inflammatory

disease, including multifocal choroiditis and panuveitis (mean

-2.19 D), punctate inner choroidopathy (mean -3.67 D), diffuse

subretinal fibrosis syndrome (mean -1.25 D), and multiple

evanescent white dot syndrome (mean -1.25 D).

The high risk of myopia due to AC may be associated with

elevated ocular surface inflammation, whereas the cause of myopia in

patients with scleritis and uveitis is more often thought to be changes

in lens refractive power and the elongation of AL. Inflammation of

the sclera and uvea may present with uveal effusion, ciliary exudation,

swelling, or detachment, leading to relaxation of the suspensory

ligaments and zonular fibers, increasing the refractive power of the

lens and causing myopic shift (53). In addition, elevated
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inflammatory cytokines such as IL-1 and TNF-a in uveitis (58)

and scleritis (59) may lead to the dysregulation of MMPs and tissue

inhibitors of metalloproteinases (TIMPs), resulting in degradation of

scleral collagen, and the reduction in perfusion of ocular vasculature

caused by inflammation (60, 61) may likewise lead to scleral ischemia,

hypoxia and remodeling.
4.2 Systemic diseases

The relationship between myopia and systemic immune or

inflammatory diseases has gradually attracted researchers’

attention. Diseases such as Vogt−Koyanagi−Harada (VKH)

disease, juvenile idiopathic arthritis (JIA), systemic lupus

erythematosus (SLE), and Kawasaki disease (KD) were reported

to be associated with myopia.

VKH disease is a T-cell-mediated systemic autoimmune disease

that primarily targets melanocytes (62). A retrospective study (63)

about refractive changes in VKH patients found that 16% of eyes

showed significant myopic progression and that sunset glow fundus

was more frequent in these patients than in those without myopia

progression. Some patients with chronic VKH also experienced

myopia progression and growth of AL (64). JIA is an

autoinflammatory disease, which is a general term covering all

arthritis of unknown origin that develops under the age of 16 years

and lasts for more than 6 weeks (65). A previous study (66) reported

that the prevalence of myopia was increased in patients with

juvenile chronic arthritis compared to their peers and that

myopia occurred after the diagnosis of this disease. The results of

another research (67) also found 42% of 40 JIA patients had

myopia, but the number of myopic patients was not significantly

different between those with and without uveitis. Thus, the elevated

risk of myopia in patients with JIA may not completely be

associated with induced uveitis. The mechanism of their

induction of myopia is more likely to be through the increased

inflammatory status of the eye caused by the diseases themselves.

SLE is a chronic, autoimmune inflammatory connective tissue

disease affecting multiple organ systems. Although myopia is not a

common ocular manifestation of SLE, several cases have reported

that acute episodes of reversible myopia may be a feature of SLE

(68–70). A retrospective study (18) likewise showed that patients

with SLE had a higher risk of myopia and a higher cumulative

prevalence of myopia than healthy patients of the same age. Similar

to scleritis and uveitis, the pathogenesis of myopia due to SLE may

lie in uveal effusion and ciliary swelling due to choroidal vasculitis

(71), which subsequently cause lens-induced myopic shift. When

the inflammatory response subsides or is controlled, part of the

myopic shift may gradually disappear.

KD is a systemic inflammatory disease of unknown etiology,

where one of its pathogenesis lies in dysregulation of the immune

system and abnormal T-cell function due to triggering of the

inflammatory cascade response (72). A prospective cohort study

(73) of KD and non-KD children aged 0-6 years in Taiwan found

that KD was an independent risk factor for myopia regardless of

age, sex, and urbanization. And the risk of myopia in KD patients
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increased with the growth of age as well as frequency of clinic visits.

The incidence of myopia was significantly lower in KD patients

treated with intravenous immunoglobulin (IVIG) than in those

treated with aspirin alone (74). Although both aspirin and

immunoglobulin have anti-inflammatory effects, the anti-

inflammatory effect of IVIG appears to be stronger than that of

aspirin, with patients receiving only aspirin or low IVIG + aspirin

having a significantly longer duration of fever and a significantly

higher incidence of coronary aneurysms than KD patients receiving

high IVIG + aspirin (75). Thus, the lower risk of myopia in patients

receiving IVIG could be explained from the perspective of reducing

the inflammatory response, and the association between myopia

and inflammatory diseases could also be supported.

In summary, the evidence described above implied that myopia

was related to the inflammatory features of certain diseases.

However, most of these studies were cross-sectional without

showing specific causal relationships, and studies correlating

refractive error or AL with the severity of inflammation are

lacking. It should be noted that due to restricted physical ability,

patients with chronic inflammatory diseases may spend less time

outdoors or expose to the natural light, and may also experience

more time in close proximity or using electronics, all of above are

risk factors for myopia. In addition, the refractive power of the eye

depends on the curvature of surface of cornea and lens, refractive

indices of refractive medium and AL (76), all of which are not

clearly related to inflammation. Therefore, there is still insufficient

evidence to determine whether inflammation is an independent risk

of myopia.
5 Potential biological mechanisms
between inflammation and myopia

Overall, the potential biological mechanisms by which

inflammation affects myopia may include the direct induction

of scleral remodeling by inflammatory signaling pathways,

including MAPK and NF-kB, and the indirect effects of the

influence of inflammation on retinal and choroidal blood

vasculature, interference with dopamine, modulation by

extracellular vesicles (EVs) and regulation of the refractive

index of the lens.
5.1 Direct contribution of inflammatory
signaling pathways MAPK and NF-kB to
scleral remodeling

From an anatomical and pathological point of view, the sclera, in

common with cartilage, tendons, bone, ligaments, dermis, and

perivascular muscle tissue, is of dual neural crest and mesodermal

tissue origin and maintains the potential to form cartilage throughout

evolution (77). Thus, similarly to articular cartilage, the sclera is often

a target of inflammatory cells in immunoinflammatory diseases (78).

From this perspective, a correlation between inflammation and

myopia is possible.
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In terms of molecular mechanisms and signaling pathways,

myopigenesis may initiate in the retina, pass through the choroid,

and finally reach the sclera, inducing scleral remodeling (79).

During this process, the retina-sclera signaling cascade promotes

the increase of MMP-2, the degradation of TGF-b, and scleral

myofibroblast transdifferentiation, resulting in abnormal

extracellular matrix (ECM) metabolism, reduction of collagen

type I and glycosaminoglycans (GAGs). Subsequently, the sclera

undergoes tissue remodeling and thinning of the posterior pole,

leading to the formation of axial myopia (80) (Figure 1).

Inflammation attracts cytokines, blood cells, growth factors and

so on to the site of infection or injury, then allows tissue remodeling

through protein hydrolytic activity and function or connective

tissue rebuilding (81). Therefore, given the inflammatory

susceptibility of the sclera and the pathophysiological

mechanisms promoted by inflammation, it can be assumed that

the direct contribution of inflammation to myopia onset may be

accomplished through a retina-sclera signaling cascade that induces

scleral remodeling.

TNF-a is a proinflammatory cytokine produced mainly by innate

immune cells or T cells that exerts multiple biological activities by

binding and activating two different receptors (82). Ligation of TNF-

awith TNF receptor 1 leads to the assembly of complex I, which then

activates NF-kB and MAPKs to promote inflammation and tissue

degeneration (83). Activation of TNF receptor 2 also results in the

assembly of complex I and activation of downstream signaling

pathways which mainly mediates homeostatic bioactivities (83).

Ocular TNF-a is mainly released by microglia and Müller cells,

causing apoptosis of retinal pigment epithelial cells and disrupting the

blood−retinal barrier through activation of the epidermal growth

factor receptor (EGFR)/p38/NF-kB/p62 pathway (84). Additionally,

it can positively stimulate glial proliferation and accelerate the release

of other proinflammatory factors of Müller cells (85).

As a pleiotropic cytokine that promotes inflammation, IL-1b is

rarely present in cells of healthy individuals. Its transcription is

induced by TNF-a, IL-18, IL-1a or IL-1b itself through activation

of the NF-kB pathway (86). Mature IL-1b activates TGF-b-
activated kinase 1(TAK1) through a series of signaling pathways,

which then initiates the MAPK cascade response and NF-kB
transcription (87), promoting inflammatory mediator recruitment

such as IL-6, IL-8 and TNF-a and local/systemic inflammatory

responses. Increased ocular IL-1b is capable of triggering an

immediate inflammatory response in the retina, destroying retinal

capillary endothelial cells, inducing angiogenesis and causing

dysregulation of nitric oxide (NO) (88), the expression of which

was increased during FDM (89).

IL-6 is a cytokine with pro- and anti-inflammatory properties

that is activated by innate immune cells during inflammation. The

classical pathway of IL-6 bound to the IL-6 receptor exerts anti-

inflammatory properties, whereas trans-signaling of IL-6 bound to

the soluble IL-6 receptor acts as a pro-inflammatory mediator (90).

It activates MAPKs and NF-kB through activation of Janus kinase

(JAK) to mediate downstream responses (91). Trans-signaling of

IL-6 can lead to oxidative stress, endothelial cell dysfunction,

inflammation and neovascularization within the human retina
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(92). Dysregulated and persistent production of IL-6 has been

implicated in the development of various chronic inflammatory

diseases (93)including inflammatory ocular disease (94).

MMPs are key enzymes involved in ECM remodeling. MMP-2

expression preceding myopigenesis can be observed in FDM,

whereas its decline can also directly impede myopia progression

(95). The expression of MMPs is upregulated at the transcriptional

level by many inflammatory cytokines (96). Activated MMPs are

able to regulate the availability and activity of inflammatory

mediators such as TNF-a and IL-1b and induce the migration of

inflammatory cells to inflammatory sites by modifying chemotactic

agents (97).

MAPK, a kind of evolutionarily highly conserved serine/

threonine protein kinase, contains several members, including c-

Jun NH2-terminal kinase (JNK), p38MAPK, and extracellular signal-

regulated kinase (ERK) (98). Inflammatory cytokines or other stimuli

trigger signal transduction by sequentially activating MAP kinase

kinase kinase (MAPKKK), MAP kinase kinase (MAPKK), and

MAPK, and then activate downstream kinases or transcription

factors to mediate cell proliferation, differentiation, apoptosis, and

inflammatory responses (99). As a transcription factor, NF-kB is a

central mediator of proinflammatory gene induction and functions in

both innate and adaptive immune cells, which can induce the

production of downstream molecules such as inflammatory

cytokines, chemokines, and adhesion molecules, directly targeting

inflammation (100). In resting status, the majority of NF-kB
consisting of p50 and p65 heterodimers remains inactive by

bounding to the inhibitory proteins of NF-kB (IkB) in the

cytoplasm. Upon receipt of activation signals, the activated and
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phosphorylated IkB kinase (IKK) complex, including catalytic

subunit IKKa, IKKb and regulatory subunit IKKg (also known as

NF-kB essential modulator, NEMO), leads to the ubiquitination and

degradation of IkB. The degraded IkB thereby releases activated NF-

kB dimers into the nucleus and subsequently regulates gene

transcription (101). There are also interactions existing between the

MAPK and NF-kB signaling pathways. Phosphorylation of IkB can

be activated by activated protein kinases downstream of MAPK, and

similarly, NF-kB can mediate the activation of downstream targets of

MAPK on inflammatory cytokines (102). Both pathways function in

ocular surface inflammation, such as dry eye, keratitis, and allergic

conjunctivitis, and regulate apoptosis of retinal ganglion cells

(103, 104).

Given the considerable overlap in the target genes activated by

the MAPK and NF-kB signaling pathways, it is hypothesized that

both signaling pathways may be jointly involved in the pathological

process of myopia (Figure 2). Ocular inflammatory diseases or

abnormal visual stimulus in the retina stimulate the production of

inflammatory cytokines, such as TNF-a, IL-1b, and IL-6. These

increased cytokines then activate MAPKKK and IKK through a

series of signal transduction, and consequently trigger MAPK and

NF-kB signaling pathways, which initiate downstream signaling

and drive the production of numerous proinflammatory cytokines.

These agents then activate MMP-2 expression in the retina,

followed by the sclera, leading to cleavage of collagen, causing

scleral remodeling as well as the onset of myopia. In this process,

activated TNF-a and IL-1b also promote the expression of other

proinflammatory factors, such as IL-6, IL-8, and MCP-1, while

acting again on MAPKKK as well as IkB (101) to regulate both
FIGURE 1

The mechanism of scleral remodeling during myopia. This figure illustrates the general mechanism of scleral remodeling in myopia. The retina
recognizes stimuli or visual signals associated with myopia and transmits them to the sclera via the choroid, resulting in elevated MMP-2, reduced
TGF-b, and transdifferentiation of scleral myofibroblasts, which leads to changes in the composition of the scleral stroma, elongation of the posterior
pole of the eye, and finally the development of myopia. Created by figdraw.com.
frontiersin.org
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pathways. Meanwhile, the progression of myopia produces more

MMP-2, promoting further release of inflammatory factors and

ultimately creating a malignant cycle.
5.2 Impact of inflammation on the retinal
and choroidal vasculature

Increased ocular inflammation may also affect myopia through

the ocular vasculature. Chronic inflammation activates endothelial

cells, and endothelial dysfunction leads to reduced vasodilator

function, leukocyte recruitment, decreased NO bioavailability, and

increased oxidative stress (105), triggering impaired ocular

microvascular circulation and oxygen supply. Since retinal and

choroidal vascular microcirculation provides oxygen and material

exchange directly to the retina and sclera (106), the impaired ocular

microvascular circulation and increased oxidative stress caused by

inflammation may directly lead to inadequate perfusion and

reduced supply of oxygen. The scleral hypoxia causes the

accumulation of HIF-1a, myofibroblast transdifferentiation, and

decreased collagen production, ultimately leading to scleral

remodeling and the development of myopia (107). This is

consistent with the reduced density and lower blood flow in the

choroidal and retinal microvasculature and reduced oxygen

saturation in small retinal arteries that occur in myopic eyes (108,

109). Additionally, with obstruction of blood flow, monocytes

within the choroidal vessels gradually migrate toward the sclera

due to increased vascular permeability and subsequently

differentiate into MMP-2 (45), again aggravating myopia.
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5.3 Inflammatory interference
with dopamine

As an important factor in myopic regulatory pathways, the

protective effect of dopamine on myopia has been well documented

(7). Available evidence also suggests that inflammatory cytokines

can potent ia l ly affect mult iple aspects of dopamine

neurotransmission, leading to decreased synthesis, impaired

packaging or release, and increased reuptake of dopamine,

ultimately resulting in reduced dopamine signaling in the basal

ganglia (110). Therefore, it can be speculated that increased

inflammatory cytokines in the eye may similarly reduce ocular

dopamine by interfering with dopamine synthesis and release in

retina to exacerbate myopia development.
5.4 Inflammatory modulation by
extracellular vesicles

In view of the important role of EVs in intercellular

communication and inflammatory regulation, they may serve as

an additional bridge between inflammation and myopia. EVs,

including microvesicles, exosomes, and apoptotic bodies (111),

are capable of carrying numerous cytokines, such as IL-6, TNF-a,
CCL2, and TGFb, protecting them from enzymatic degradation and

delivering them to distant cells (112). All types of immune cell

involved in inflammation can secrete EVs, while EVs are able to

influence the behavior of innate immune cells and cytokine

expression by transferring various mediators to modulate the level
FIGURE 2

Schematic representation of inflammatory signaling pathways inducing scleral remodeling. After recognizing inflammatory stimuli, increased
inflammatory cytokines such as TNF-a, IL-1b, and IL-6 in the retina activate IKK as well as MAPKKK, initiating NF-kB as well as MAPK signaling
pathways. Both two ultimately trigger the expression of TNF-a, IL-1b, and IL-6, which then activate MMP-2 and subsequently lead to scleral
remodeling and finally the onset of myopia. During this process, the increased MMP-2 produced by progressive myopia re-activates TNF-a, IL-1b,
and IL-6, whose increase act as inflammatory stimulus for the reactivation of both pathways. Created by figdraw.com.
frontiersin.org
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of inflammation (113). In pathological states, ocular exosomes

could mediate ECM remodeling, retinal inflammation, and blood-

retinal barrier dysfunction (114). Lately, researchers found that

exosomes in the aqueous humor of myopic patients contained more

total RNA compared to control group (115), and key exosomal

microRNAs, such as miR-143-3p, miR-145-5p and has-miR-518d-

3p associated with high myopia and pathological myopia were

successively identified (115–117), suggesting that exosomes also

contribute to the process of myopia. Due to the small particle size

and well traversed ability to the blood-retinal barrier (BRB) (118), it

is reasonable to speculate that in systemic inflammatory diseases,

elevated inflammatory cytokines in the peripheral blood may be

carried by EVs and enter the eye through the BRB, thereby affecting

myopia. Meanwhile, ocular exosomes may induce an exacerbation

of ocular inflammatory state through activation of immune cells in

the eye, hence participating in the development of myopia.
5.5 Regulation of the refractive index of
the lens by inflammation

In patients with certain inflammatory or immune diseases,

apart from the possible mechanisms described previously,

increased inflammation may also cause reversible or permanent

myopia through uveal effusion or ciliary swelling, which may relax

the suspensory ligament and ciliary muscle, increasing the distance

between the fovea and lens and subsequently increasing the

refractive index of the lens.
6 Potential of anti-inflammatory drug
to intervene myopia

The main measures considered to reduce the occurrence of

myopia and prevent its progression include public health

interventions, optical measures, and pharmacological treatments.

Among these, spending more time outdoors can significantly

reduce the prevalence of myopia (119); multifocal soft contact

lenses, peripheral plus spectacles, multifocal spectacles, and

orthokeratology have been shown to slow refractive change and

axial elongation (120). For pharmacological measures, the daily

application of low-dose atropine eye drops has been widely used as

medical prophylaxis for myopia progression (121). However,

atropine has side effects such as rebound after discontinuation,

hotophobia or glare, blurred vision (particularly for near vision)

and hypersensitivity reactions (120). Finding more drugs for the

treatment of myopia based on promising signaling pathways is one

of the current research hotspots.

The hypothesis that myopia may be suppressed by the anti-

inflammatory effects of drugs is supported by the association

between inflammation and myopia. Lactoferrin (122), diacerein

(36), and resveratrol (37) have been shown to reduce the

progression of experimental myopia in animals by inhibiting the

expression of inflammatory cytokines related to the MAPK or NF-

kB signaling pathways in the retina. The mechanism of atropine
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treatment of myopia also involves inhibition of muscarinic

acetylcholine receptor activation and consequent inhibition of

inflammation-related signaling pathways (18).

Besides, given that artificial exosomes have been shown to be

able to treat ocular inflammatory diseases by inhibiting the

infiltration of inflammatory cells (123), reducing the expression of

pro-inflammatory cytokines (124), and protecting the structure and

function of the retina and retinal ganglion cells (125), it is

reasonable to believe that artificial exosomes may also be a new

target for myopia treatment.

Therefore, anti-inflammatory drugs and artificial exosomes may

become a new option for the treatment of myopia after low-dose

atropine. However, as the relationship and exact mechanism

between inflammation and myopia are not yet defined, the

efficacy has only been confirmed in animal experiments, and the

safety, dose, mode of administration, and side effects of these drugs

are still unknown. Further verification is needed to determine

whether anti-inflammatory drugs can actually be used to treat

myopia in humans.
7 Summary and future

To our knowledge, this is the first review to comprehensively

interpret the association between myopia and inflammation. Low-

grade inflammation in the body can induce myopia progression,

and the prevalence of myopia has been found to be elevated in

patients with inflammatory or immune diseases. The association

between them has also been confirmed in experimental myopia. In

addition, anti-inflammatory drugs and artificial exosomes have

inhibitory effects on myopia. Specific mechanisms of

inflammation-induced myopia may include scleral remodeling

caused by dysregulation of the MAPK and NF-kB signaling

pathways and the effects of inflammation on the ocular

vasculature, dopamine, the inflammatory modulation by EVs and

the refractive index of the lens (Figure 3).

Considering the impact of inflammation on myopia, more

frequent ophthalmic screening, more outdoor activities and

education are needed to prevent myopia in younger patients with

inflammatory or immune diseases, while stronger interventions are

needed in those who are already myopic. Additionally, given the

effectiveness of anti-inflammatory drugs in animal studies, the

possibility of combining anti-inflammatory products with low

concentrations of atropine to better control myopic progression

could be considered. Furthermore, in adult patients with sudden

myopia progression, it is important to be alert for insidious onset of

endophthalmitis, such as uveitis, posterior pole scleritis,

and choroiditis.

In conclusion, although the association between inflammation

and myopia has not been fully assessed, inflammation may be a

potential new target for myopia. As potential regulators of

inflammation, macrophages, microglia, and endothelial cells in

the eye may be a promising area of research, especially with

regard to the precise regulation of immune cells, the timing of

activation, and cell-cell communication. Meanwhile, investigations
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on the exact causal relationship between inflammation and myopia,

the molecule signaling pathways in myopia, the therapeutic effects

of artificial exosomes and anti-inflammatory drugs should not

be neglected.
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