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A role of inflammaging in aortic
aneurysm: new insights from
bioinformatics analysis

Shilin Wang1†, Hao Liu1†, Peiwen Yang1†, Zhiwen Wang1,
Ping Ye2*‡, Jiahong Xia1*‡ and Shu Chen1*‡

1Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Department of Cardiology, The Central Hospital of
Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Introduction: Aortic aneurysms (AA) are prevalent worldwide with a notable

absence of drug therapies. Thus, identifying potential drug targets is of utmost

importance. AA often presents in the elderly, coupled with consistently raised

serum inflammatory markers. Given that ageing and inflammation are pivotal

processes linked to the evolution of AA, we have identified key genes involved in

the inflammaging process of AA development through various bioinformatics

methods, thereby providing potential molecular targets for further investigation.

Methods: The transcriptome data of AA was procured from the datasets

GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database,

whilst gene data of ageing and inflammation were obtained from the GeneCards

Database. To identify key genes, differentially expressed analysis using the

“Limma” package and WGCNA were implemented. Protein-protein intersection

(PPI) analysis and machine learning (ML) algorithms were employed for the

screening of potential biomarkers, followed by an assessment of the diagnostic

value. Following the acquisition of the hub inflammaging and AA-related

differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory

network was established. The CIBERSORT algorithm was utilized to investigate

immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating

immunocytes was also evaluated. Lastly, wet laboratory experiments were

carried out to confirm the expression of hub IADEGs.

Results: 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and

GSE7084 datasets were procured by intersecting the results of “Limma” and

WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms

pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them

demonstrated a high diagnostic value. Immune cell infiltration outcomes

unveiled immune dysregulation in AA. In the wet laboratory experiments, 3

hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an

expression trend in line with the bioinformatics analysis result.
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Discussion: Our research identified three genes - BLNK, HLA-DRA, and HLA-

DQB1- that play a significant role in promoting the development of AA through

inflammaging, providing novel insights into the future understanding and

therapeutic intervention of AA.
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1 Introduction

Aortic aneurysms (AA) have a high incidence globally, and only

surgical treatment is an option once AA occurs. Approximately 13%

of men and 6% of women aged over 65 have been diagnosed with

abdominal aortic aneurysm (AAA) in the United States, with

around 2 million new cases arising each year (1). The incidence

of thoracic aortic aneurysms (TAA) is lower than that of AAA, but

they are more challenging to manage (2). Nevertheless, the

pathogenesis of AA remains unclear, and there is a scarcity of

effective therapeutic strategies (3–5).

Ageing is a critical risk factor for the development of

cardiovascular diseases (CVD) (6), and age-related CVD is one of

the most significant issues worldwide (7). As an important type of

CVD, AA typically occurs in individuals over 65 years old (3, 4).

Moreover, persistent inflammation and immune cell infiltration are

widely acknowledged as key mechanisms of AA development,

which are observed in both plasma and local tissues of AA

patients (8–12). Neutrophils and monocytes are recruited to the

AAmicroenvironment as the initial step, followed by changes in cell

phenotypes and activation of adaptive immune responses (13). Both

ageing and inflammation play a crucial role in AA.

Interestingly, a growing body of evidence has shown that the

ageing process is linked to chronic inflammation, characterized by

elevated plasma inflammatory markers (14, 15), resulting in an

increased risk of chronic diseases, notably CVD (16).

Inflammaging, or age-related inflammation, plays a pivotal role in

the development of chronic diseases and mortality in older

individuals (10, 17, 18). Both ageing and inflammation are key

pathogeneses of AA, but the interplay between them, inflammaging,

has not yet been reported in previous studies on AA. Consequently,

further investigation is required.

Bioinformatics is considered an effective method for identifying

key molecules and investigating the potential molecular

mechanisms of diseases by comparing differences between

patients and healthy individuals using a variety of algorithms. In
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this context, we investigated the role of inflammaging-related genes

in the development of AA and sought potential key genes involved

in the related processes for further therapeutic targets.
2 Methods

2.1 Microarray data retrieval

Transcriptomic data files of AA were acquired from the public

repository National Centre for Biotechnology Information Gene

Expression Omnibus (NCBI GEO, http://www.ncbi.nlm.nih.gov/

geo) (19) using “aortic aneurysm” AND “Homo sapiens” as search

queries. The following filtering criteria were applied (1): all samples

were from AA patients and non-AA controls (2); the sequencing type

should be RNA-Seq (3); the sample size consisted of more than 15

samples (4); the test specimens were human aorta (5); data for the AA

group were obtained from samples of non-Marfan atherosclerotic

aortic aneurysms (6); there was no significant difference in age

between the AA group and the normal group (7); the data was

freely available for download and could be processed using all

methods employed in the subsequent study. Based on these criteria,

three datasets (GSE140947, GSE7084, and GSE47472) were obtained.

The GSE140947 dataset (GPL18573 platform) included 12 AA and 12

normal human aorta samples, the GSE7084 dataset (GPL2507

platform) comprised 7 AA and 8 normal aorta samples, and the

GSE47472 (GPL10558 platform), contained 14 AA and 8 normal

aorta samples. In the stage of machine learning (ML), the GSE140947

dataset and GSE7084 dataset were used as training sets, while the

GSE47472 dataset was used as the external validation dataset.

Detailed information of the datasets used in the study is provided

in Supplementary Table S1.
2.2 Data processing and differential
gene screening

Significant differentially expressed genes (DEGs) from

GSE140947 and GSE7084 were obtained using the R package

“limma” respectively, with p-values < 0.05 and |log2 fold change

(FC)| ≥ 1, where log FC > 1 represented upregulated genes and log

FC < -1 represented downregulated genes. The heatmap and

volcano plot of DEGs were generated using the R packages

“pheatmap” and “ggplot2”.
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2.3 Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) was

utilized to identify modules of highly correlated genes and their

associations with disease phenotypes, in order to discover potential

candidate biomarkers or therapeutic targets (20). All subsequent

steps were based on R software (version: 4.2.2). We used WGCNA

to identify AA-related modules, constructed using the R package

“WGCNA” (20). After calculating the variance for each gene

expression value, genes with absolute deviations greater than 25%

from the median were extracted. Samples with outlier

characteristics were excluded using the “goodSampleGenes”

function (Supplementary Figure S1). The optimal soft threshold

was chosen using the “pickSoftThreshold” function (Supplementary

Figure S2), which was then used to construct a weighted adjacency

matrix that was transformed into a topological overlap matrix

(TOM). The soft threshold was 7 in both the GSE140947 and

GSE7084 datasets. Subsequently, similar genes were categorized

into co-expression modules using average linkage hierarchical

clustering, with a minimum of 100 genes per module. Similar

modules with a module eigengenes dissimilarity threshold

(MEDissThres) < 0.2 were merged. To obtain modules related to

clinical features, Pearson correlation analysis was employed. Finally,

the modules with the strongest relevance to AA were selected for

further analysis.

AA-related DEGs (ADEGs), identified by both WCGNA and

the “limma” package, were obtained using the Jvenn online tool

(https://jvenn.toulouse.inrae.fr/app/example.html) (21) by

intersecting the results of the two methods.
2.4 Function enrichment analysis

To investigate the mechanism of ADEGs in AA, Gene Set

Enrichment Analysis (GSEA) (22), Gene Ontology (GO) (23, 24),

and Kyoto Encyclopedia of Genes and Genomes (KEGG) (25)

pathway analyses were performed. The R package “org.Hs.eg.db”

was used to obtain the Entrez ID for each ADEG, and

“clusterProfiler” (26) was employed for biological function analyses.

GSEA utilized the reference gene set “c2.cp.kegg.v7.4.symbols.gmt”

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The results

were visualized using the R packages “ggplot2” (27), “GOplot” (28),

and “enrichplot”. In the three types of analysis, items with P < 0.05 in

the Benjamini-Hochberg test were considered statistically significant.

Physiological functions, including cellular component (CC),

molecular function (MF), and biological process (BP), were

incorporated in the GO analysis.
2.5 Identification of inflammaging and
AA-related DEGs

The Human Gene Database, GeneCards (https://www.genecards.org/),

was utilized to obtain inflammation and ageing-related genes by
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searching for the keywords “inflammation” and “ageing”. In order

to obtain a reasonable number of genes, those with relevance scores

above the median were selected. This resulted in 4416 genes

associated with inflammation and 4302 genes related to ageing

(Supplementary Tables S2, S3). By intersecting these gene sets, we

identified 1070 genes related to inflammaging (Supplementary

Figure S3; Supplementary Table S4). Inflammaging and AA-

related DEGs (IADEGs) were revealed for further study using

Jvenn, by intersecting the ADEGs from the two microarrays and

the 1070 inflammaging-related genes.
2.6 Screening hub genes by protein–
protein intersection network

To examine the interaction of proteins and their co-expression,

the STRING database (https://cn.string-db.org/) (29) was employed

to construct the protein-protein interaction (PPI) network. PPI

networks with a minimum interaction score > 0.4 were then

visualized using Cytoscape (version 3.9.1) (30). Cluster analysis

was carried out using the CytoHubba and MCODE plug-ins in

Cytoscape to identify significantly interacting genes. In the

MCODE algorithm, with the following filter criteria: degree cut-

off = 2, node score cut-off = 0.2, k-core = 2, max depth = 100, we

selected the modules with the highest correlation. By implementing

the MCC algorithm of the CytoHubba plug-in, 10 candidate hub

genes were chosen. The intersecting genes of the two algorithms

were used as the potential hub IADEGs for further wet

laboratory experiments.
2.7 Screening hub genes by ML

ML was employed as another method to screen the hub IADEGs.

Three ML algorithms – least absolute shrinkage and selection

operator (LASSO), support vector machine (SVM), and random

forest (RF) analysis – were adopted, and the overlapping genes

among them were treated as potential hub IADEGs for further

study. LASSO logistic regression analysis assigns a value of zero to

the coefficients of variables one by one in order to identify highly

important genes. SVM framework based on binary classification is a

supervised ML technique that identifies the optimal model by

maximizing the classification margin without overfitting and not

depending on the number of samples. RF analysis is a type of

ensemble learning based on decision trees, focusing on the score of

each variable. SVM and RF were the two best ML methods before the

invention of deep learning. The R package “glmnet” (31) was used for

LASSO regression, while “e1071” (32) and “caret” (33) were used for

SVM analysis, and “randomForest” (34) was used for SVM and RF

analysis. The optimal lambda for LASSO regression was obtained

through 100 resampling iterations of 10-fold cross-validation.

Additionally, the processes of SVM and RF were also evaluated

based on 10-fold cross-validations, and the same random number

was used by the three types of analysis. The intersecting genes of the

three ML methods were identified as potential hub IADEGs.
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2.8 Nomogram construction and receiver
operating characteristic evaluation

The clinical value of potential hub IADEGs was assessed using

the area under the curve (AUC) and 95% confidence interval (CI)

across three datasets, including two datasets for internal validation

(GSE140947 and GSE7084) and one dataset for external validation

(GSE47472). The R package “pROC” was employed to perform

receiver operating characteristic (ROC) analysis and generate the

AUC plots. A diagnostic value was considered when the AUC was

above 0.75. The R package “rma” was utilised for the creation of

a nomogram.
2.9 Prediction of a transcription factors
mRNAs-miRNAs network

To explore the regulators of hub IADEGs, related transcription

factors (TFs) and miRNAs were predicted. Three bioinformatics

databases – starBase (35), TargetScanHuman (https://

www.targetscan.org/vert_72/), and miRTarBase (36) – were

employed to predict regulatory miRNAs for hub genes. MiRNAs

identified by at least two databases were considered potential

regulatory miRNAs. Key TFs of hub IADEGs were predicted

using the Enrichr web server (37) with a p-value < 0.05. Finally,

the linear TF-mRNA-miRNA coregulation network was visualized

using Cytoscape.
2.10 Immune infiltration analysis

GSE7084 was utilized for immune infiltration analysis. The

CIBERSORT algorithm (38) was employed to estimate the

infiltration of immune cells in AA and normal aorta samples.

Spearman correlation analysis was conducted to explore the

relationship between various types of immune cells and potential

hub IADEGs. The R packages “ggpubr” (39), “vioplot” (40),

“corrplot” (40), and “ggplot2” (27) were used to visualize the

results. The barplot and boxplot display the proportion of 22 types

of immune cells in AA and normal aorta samples, while the violin

plot shows the comparison between the two groups. The heatmap

illustrates the association of immune cells. “Lollipop” plots were used

to depict the correlation between hub IADEGs and immune cells.
2.11 Human specimen collection

Full-thickness aortic wall tissue was collected from patients

undergoing aortic replacement operations due to AA (n=5) at

Wuhan Union Hospital, Wuhan, China. AA specimens were

gathered from the aneurysmal region of the aorta, whilst the

normal samples were procured from the aorta of the recipient

undergoing a heart transplant due to heart failure caused by
Frontiers in Immunology 04
ischemic cardiomyopathy or valvular disease. The clinical

characteristics of the patients are listed in Supplementary Table

S5. Specimens for qPCR and WB were snap-frozen in liquid

nitrogen and stored at -80°C immediately. The samples used for

immunohis tochemis t ry ( IHC) were soaked in a 4%

paraformaldehyde solution. The collection of human aorta tissues

and their use in our research were approved by the Review Board of

Union Hospital Affiliated to Tongji Medical College, Huazhong

University of Science and Technology, Wuhan, China. The research

was carried out in accordance with the principles outlined in the

Declaration of Helsinki. All enrolled patients provided written

informed consent for the use of their aortic tissue for research.
2.12 RNA extraction and quantitative
polymerase chain reaction

Total RNA was extracted from human aorta tissue using the

RNA-easy Isolation Reagent (Vazyme, Nanjing, China), followed by

quantitative polymerase chain reaction (qPCR) using HiScript III

RT SuperMix for qPCR (Vazyme, Nanjing, China). Primers used in

qPCR are listed in Supplementary Table S6, and synthesized by

Sangon Biotech Co. Ltd. (Shanghai, China). The qPCR analysis was

performed on StepOne Real-time PCR system (Applied Biosystems,

Singapore). Relative changes in target gene expression were

normalized to the expression levels of GAPDH, which were

calculated using the 2(-DDCt) method.
2.13 Western blotting analysis

Total protein was isolated from human aorta tissue using RIPA

lysis buffer and boiled in loading buffer for fifteen minutes. After

separation on a 10% SDS-PAGE gel, the proteins were transferred

to PVDF membranes and subsequently incubated with primary

antibodies overnight at 4°C. The primary antibodies used in the

study are listed in Supplementary Table S7. The membranes were

then incubated with the HRP-conjugated secondary antibody

(ABclonal Technology, Wuhan, China) for 1 hour at room

temperature. The proteins were detected using a ChemiDoc XRS+

imaging system (Bio-Rad Laboratories, Hercules, CA, USA).
2.14 IHC

The primary antibodies used for IHC were listed in

Supplementary Table S7. The tissue adhered on the slices were

procedurally dewaxed, hydrated, and subjected to antigen retrieval.

After incubation with 3% hydrogen peroxide solution for 25

minutes at room temperature, the slices were treated with 3%

BSA for 30 minutes. The primary antibodies were used for an

overnight incubation at 4°C, followed by culturing with secondary

antibodies for 1 hour at room temperature. A DAB Detection Kit
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(Dako, California, USA) was used to stain the slide, and the cell

nucleus was counterstained with haematoxylin.
2.15 Statistical analysis

Statistical analysis was carried out to analyze the results of wet

laboratory experiment and the differences in baseline data of the

included patients. All data included were presented as the

mean ± standard deviation (SD) of the independent experiments.

The differences were analyzed by Student’s T-test using SPSS 26.0.

The expression level of genes in qPCR was calculated by Student’s T

−test using GraphPad Prism 9.0. P<0.05 was considered to be

statistically significant.
2.16 Refinement of the language

In order to improve the overall quality and readability of the

article, we utilized a large language model, Chatbot Generative Pre -

trained Transformer (ChatGPT, version 4, https://openai.com/blog/

chatgpt), developed by OpenAI, to refine the language of our article

(41, 42).
Frontiers in Immunology 05
3 Results

3.1 Identification of DEGs by “Limma”

The flowchart of the research procedure is displayed in Figure 1.

Two GEO datasets related to AA were analyzed separately in this

step due to the different GPL platform, resulting in a reduced

number of genes after merging them. Using significance criteria, a

total of 872 DEGs were obtained from GSE140947 dataset,

comprising of 671 up-regulated genes and 201 down-regulated

genes. GSE7084 dataset generated 1475 DEGs, including 714 up-

regulated genes and 761 down-regulated genes. The DEGs obtained

from both datasets using the “Limma” package are presented in

Supplementary Tables S8, 9. The volcano plots and heatmaps of

DEGs are illustrated in Figures 2A–D.
3.2 WGCNA and critical
module identification

A scale-free co-expression network was created by WGCNA to

identify the most associated module. After merging modules with

high similarity (Figures 2E, F), the relationship between disease and
FIGURE 1

Flowchart of the study design and multi-step analysis strategy on bioinformatics data.
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genes in the finally generated module was assessed by Spearman

correlation coefficient, which was visualized by heatmap

(Figures 2G, H). The brown module in GSE140947 (1576 genes,

r=0.85, p=2e-06) and the turquoise module in GSE7084 (1639

genes, r=-0.95, p=7e-08) had the highest correlation and were

selected as key modules in the subsequent analysis. The genes

contained in these modules are presented in Supplementary Table

S10. Figures 2I, J demonstrate a significant correlation between

module membership and gene significance (correlation coefficient =

0.79, p<1e−200 in GSE140947 dataset; correlation coefficient = 0.9,

p<1e−200 in GSE7084 dataset), indicating that the selected modules

are closely associated with AA.
3.3 Selection and functional enrichment
analysis of ADEGs

The intersection of genes from Limma and module genes were

obtained as ADEGs, as depicted in Figures 2K, L. 342 genes from
Frontiers in Immunology 06
the GSE140947 dataset and 715 genes from the GSE7480 dataset

were acquired, and enrichment analysis for these genes was carried

out. We conducted the functional enrichment of these shared genes

from both datasets with GSEA, GO, and KEGG. The results of

enrichment analysis are displayed in Supplementary Tables S11–13.

GSEA analysis of the ADEGs revealed enrichment of pathways

linked to chemokine signaling pathway, cytokine-cytokine receptor

interaction, and cell adhesion (Figures 3A, B). GO terms were

categorized into Biological Process (BP), Cellular Component (CC),

and Molecular Function (MF) as illustrated in Figures 3C–F. For BP,

genes associated with “positive regulation of cell activation” and

“chemokine-mediated signaling pathway” were up-regulated, while

genes related to “regulation of hydrogen peroxide metabolic process”

and “transmembrane receptor protein serine” were down-regulated.

For CC, genes involved in “MHC protein complex” and “endocytic

vesicle membrane” exhibited increased expression, while genes

associated with “actin filament bundle” and “contractile fiber”

displayed reduced expression. For MF, genes acting on “chemokine

activity” and “peptide antigen binding” increased, while genes
B

C D

E F

G H

I J

K L

A

FIGURE 2

Identification of AA-related differentially expressed genes (ADEGs). (A, B) The volcano plots depict the significant differentially expressed genes
(DEGs) identified by the “Limma” package based on the condition that p-values<0.05 and |log2 fold change (FC)| ≥ 1 from GSE140947 and GSE7084
datasets. Identified significant DEGs are highlighted in red (up-regulated genes) and blue (down-regulated genes). (C, D) The heatmap of significant
DEGs identified from GSE140947 and GSE7084. (E, F) Gene co-expression modules represented by various colors under the gene tree. (G, H) The
heatmap of the correlation between module genes and AA. The heatmap indicated that there were five modules significantly correlated with AA in
the GSE140947 dataset and eight modules significantly correlated with AA in the GSE7084 dataset, under the condition of p-values<0.05. The brown
module in GSE140947 and the turquoise module in GSE7084 demonstrated the highest correlation. (I, J) The correlation plot between the most
significant module membership and gene significance of genes in the module indicated that the selected modules are closely associated with AA.
(K, L) Venn diagrams display intersected DEGs from Limma and module genes among two datasets, which were identified as ADEGs.
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involved in “heat shock protein binding” and “actin binding”

decreased. In KEGG analysis, the processes of “Cytokine-cytokine

receptor interaction” and “Chemokine signaling pathway” were active,

while “TNF signaling pathway” and “Focal adhesion” were suppressed

(Figure 3G–J). In summary, the upregulated genes were enriched in

pathways associated with inflammation and matrix remodeling,

similar to the two major conserved up-regulated pathways in
Frontiers in Immunology 07
senescence (43), leading to higher levels of serum inflammatory

markers (14, 15) and an increased risk of chronic diseases (16).

Inflammaging, which is age-associated inflammation, is a process

related to senescence and plays a crucial role in the development of

chronic diseases in seniors (10, 17, 18). As a pathological process of

chronic progression, AA is commonly observed in elderly people with

elevated serum inflammatory markers and persistent inflammatory
B

C D

E F

G H

I J

K

L

M

A

N

FIGURE 3

The functional enrichment analysis of ADEGs and the selection of inflammaging and AA-related DEGs (IADEGs). (A, B) GSEA analysis of the ADEGs
revealed enrichment of pathways linked to chemokine signaling pathway, cytokine-cytokine receptor interaction, and cell adhesion. (C-F) GO
enrichment of IADEGs in GSE140947 and GSE7084 datasets. (C, D) exhibited up-regulated expression pathways, whilst (E, F) displayed down-
regulated expression pathways. (BP biological process, CC cellular component, MF molecular function) (G–J) KEGG enrichment of IADEGs in
GSE140947 and GSE7084 datasets. (G, H) demonstrated up-regulated expression pathways, whilst (I, J) manifested down-regulated expression
pathways. (K, L) The overlapping genes between ADEGs selected from GSE140947 (K) and GSE7084 (L) dataset and inflammaging-related genes
were identified as IADEGs. (M, N) The heatmaps depict the differential expression of IADEGs in AA and normal tissue.
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response in local tissues (9–12). Therefore, the next study mainly

focused on the inflammaging process of AA.
3.4 Identification of IADEGs

To further explore whether and which genes could be associated

with AA through inflammaging process, the intersection genes of

ADEGs and inflammaging-related genes were identified as IADEGs

as shown in Figures 3K, L. 20 and 63 genes were respectively

identified as IADEGs from two datasets, displayed in Figures 3M, N

and Supplementary Table S14.
3.5 Screening potential hub IADEGs via the
PPI network

The PPI network was constructed using the String database and

visualized using Cytoscape software, as depicted in Figure 4A. A

module comprising 7 nodes and 21 edges was identified as the most

significant module, as shown in Figure 4B and Supplementary Table

S15. Utilizing the MCC algorithm of CytoHubba, the top 10

candidate node genes were selected from the PPI network, as

displayed in Figure 4C and Supplementary Table S15.
3.6 Identification of potential hub IADEGs
via ML

The LASSO, SVM, and RF algorithms were employed to identify

hub genes. Based on the optimal lambda in LASSO logistic regression

(Figures 4D–G), 4 genes in the GSE140947 dataset and 5 genes in the

GSE7084 dataset were recognized as candidate hub IADEGs genes

(Supplementary Table S16). To minimize the classification error in the

SVMmodel (Figures 4H–K), 5 genes in the GSE140947 dataset and 38

genes in the GSE7084 dataset were extracted from IADEGs

(Supplementary Table S16). Based on the optimal number of trees

with the lowest error rate (Figures 4L, M), the top 8 genes in the

GSE140947 dataset and 9 genes in the GSE7084 dataset were obtained

as potential hub IADEGs according to the importance in

MeanDecreaseGini result (Figures 4N, O; Supplementary Table S16).

Ultimately, the overlapping genes of two PPI methods

(Figure 4P) and three ML algorithms (Figures 4Q, R) were

selected respectively in two datasets as potential hub IADEGs

genes (Supplementary Table S16). The combination of these 12

hub genes was utilized for further assessment.
3.7 Diagnosis value evaluation of potential
hub IADEGs

To further evaluate the diagnostic potential of these genes, three

datasets, including the GSE140947 dataset, GSE7084 dataset, and

GSE47472 dataset, were utilized for internal and external validation.

As previously stated, a diagnostic value was considered significant

when the AUC was above 0.75.
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The internal validation demonstrated that 10 of these hub

IADEGs candidates had AUC values > 0.75 in GSE140947 dataset

or GSE7084 dataset, as illustrated in Figures 5A, B. HLA-B had an

AUC value of 0.743 across the GSE140947 dataset, and HLA-DQA1

had an AUC value of 0.714 across the GSE7084, which had been

excluded from hub IADEGs. Regarding the validation of the

external dataset (shown in Figure 5C), 4 excluded genes had an

AUC value below 0.75, including HLA-DPA1 (AUC=0.607),

ADAMTSL1 (AUC=0.527), LMOD1 (AUC=0.491), and HLA-

DPB1 (AUC=0.482). Therefore, BLNK, ALPL, JPH2, HLA-DMA,

HLA-DRA and HLA-DQB1 were considered to have certain

diagnostic value for AA and were identified as potential hub

IADEGs for next wet laboratory experiments. Subsequently, a

nomogram with the six hub IADEGs was constructed (Figure 5D).
3.8 TFs-mRNAs-miRNAs regulatory
network construction

To investigate the upstream regulation of the hub IADEGs, a

TFs-mRNAs-miRNAs regulatory network was established. Based

on the Enrichr web server, 53 corresponding TFs were obtained

with a p-value < 0.05 (shown in Supplementary Table S17). A

potential 113 miRNAs were predicted by at least two bioinformatics

databases, including starBase, TargetScanHuman, and miRTarBase

database, as illustrated in Supplementary Table S18. Figure 5E

presents the interaction between hub IADEGs and their

regulatory TFs and miRNAs.
3.9 Immune infiltration analysis in AA

Inflammatory response and immune regulation are

components of the pathogenesis of AA (9–12), and the impact of

immunity in AA can be better examined through immune

infiltration analysis. To evaluate the significance of various

immunocytes in the immune microenvironments of AA, the

GSE7084 dataset was employed to assess the degree of their

infiltration. The proportion of 22 types of immunocytes in AA

and normal aorta tissue is depicted in Figure 6A. The percentage of

immunocytes infiltrated in AA tissue is illustrated in Figure 6B,

indicating that M2 type macrophages were the most abundant

followed by monocytes and M0 type macrophages. The multiple

correlations between the infiltrating immunocytes in AA are

displayed in Figure 6C. For the markedly distinct cells, a robust

interaction was observed between anti-inflammatory M2 type or

proinflammatory M1 type macrophages and other immunocytes,

which have a pivotal role in the progression of inflammation from

tissue damage to tissue healing (8, 44). In Figure 6D, notable

differences (P < 0.05) were observed between AA and normal

groups in four types of immunocytes, specifically, naive B cells,

M2 type macrophages, resting and activated mast cells. Multiple

studies have indicated that the dysfunction of macrophage

phenotypic transformation might be a result of ageing and related

to a persistent elevated serum inflammatory response (45). In

summary, the findings of the correlations between the infiltrating
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FIGURE 4

Hub IADEGs selection by PPI network and machine learning (ML). (A) The PPI network of IADEGs. (B) The PPI network of module genes with the
highest score based on MCODE analysis. A key cluster with 7 genes was obtained. (C) Top 10 hub genes selected by MCC algorithm based on
Cytoscape plug-in CytoHubba. (D–G) With the change of lambda value, the change trend of the coefficient corresponding to each observation
value (D, F) and the selection of the best lambda value (E, G). In (E, G), the number of genes corresponding to the lowest point of the curve
represents the most suitable lambda, which was 4 in the GSE140947 dataset and 5 in the GSE7084 dataset. (H–K) The variation of the accuracy and
error of the SVM model with the number of features. The feature number with the highest accuracy, namely the lowest error, was selected for
inclusion. 5 genes from the GSE140947 dataset and 38 genes from the GSE7084 dataset was selected for subsequent analysis. (L–O) Based on the
minimum error shown in the plots of the error changing with the number of random trees, top 8 and 9 most important genes were selected from
the GSE140947 dataset and the GSE7084 dataset. (P) The 7 intersecting genes identified by the two PPI-based methods. (Q, R) The 5 overlapping
genes by three ML algorithms were selected respectively from two datasets as potential hub IADEGs for further assessment.
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immunocytes demonstrated the suppression of inflammation and

the repair of damaged tissue.
3.10 Relationship between hub IADEGs and
immune cells

The association of 6 hub IADEGs with infi ltrating

immunocytes was illustrated in Figure 6E. Each hub IADEG
Frontiers in Immunology 10
was linked to the infiltration status of immunocytes, apart from

ALPL. The up-regulated IADEGs, comprising HLA-DRA,

HLA-DQB1, HLA-DMA, and BLNK, were pos i t ive ly

correlated with monocytes, activated mast cells and follicular

helper T cells, whilst they demonstrated a negative correlation

with M1 and M2 type macrophages. JPH2, the down-regulated

IADEGs, were primarily associated with M0 type macrophages

and mast cells.
B

C

D E

A

FIGURE 5

The diagnostic value assessment of each potential hub IADEGs and the hub IADEGs- transcription factors (TFs)- miRNAs regulatory network. (A, B)
The receiver operating characteristic (ROC) curve of each potential hub IADEGs confirmed by internal validation sets including GSE140947 dataset
(A) and GSE7084 dataset (B). (C) The ROC curve of each candidate hub IADEGs validated in external dataset, GSE47472 dataset. (D) Nomogram for
diagnosing AA with hub IADEGs in GSE47472 dataset. (E) The hub IADEGs-TFs-miRNAs regulatory network. The pink ellipse represents hub IADEGs,
the blue diamond represents TF, and the purple rectangle represents miRNA.
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3.11 Experimental validations of hub
IADEGs expression in AA patients’ aorta

The clinical features of the sample utilized are presented in Table 1.

The expression of 6 hub IADEGs was validated in human aorta tissue

using qPCR (Figure 7A). In comparison with normal aorta tissue,

BLNK, HLA-DRA, and HLA-DQB1 exhibited significantly increased

expression in the AA group, whilst HLA-DMA displayed a notable

decrease. To further validate at protein level, western blotting (WB) and

IHC were employed (Figures 7B, C). The findings indicated that the
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protein expression of BLNK, HLA-DRA, and HLA-DQB1 were in line

with that of mRNA and the result of bioinformatics analysis. Taken

together, the up-regulated expression of BLNK, HLA-DRA, and HLA-

DQB1 in aorta tissues were strongly associated with AA.
4 Discussion

AA frequently occurs in the ageing population over 65 years old

(3, 4), accompanied by persistent elevated serum inflammatory
B

C

D

E

A

FIGURE 6

Immune cell infiltration analysis. (A) The proportion of 22 types of immunocytes between AA and normal groups visualized by the stacked histogram.
(B) The percentage of immunocytes infiltrated in AA tissue. (C) Heatmap showed the multiple correlations between the infiltrating immunocytes in
AA. (D) Violin plot showed the comparison of different kinds of immune cells between AA and control groups. Notable differences (P < 0.05) were
observed in four types of immunocytes. (E) Lollipop plots showed the association of 6 hub IADEGs with infiltrating immunocytes.
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markers (9, 10) and chronic inflammation of the aorta (11, 12),

resulting in tissue damage and fibrosis. Utilizing a variety of

bioinformatics techniques, ADEGs from two AA-related GEO

datasets have been identified, enriched in pathways linked to

inflammation and matrix remodeling, akin to the two major

conserved pathways in senescence (43). Our study investigated

the characterist ics of inflammaging in AA based on

bioinformatics analyses to pinpoint reliable biomarkers.

Several potential mechanisms contributing to ageing have been

elucidated, including attrition of telomeres (46), oxidative damage

(47), activation of the senescence-associated secretory phenotype

(SASP) (48), et al. Our study focused on a recent addition to these

mechanisms: inflammaging, namely, age-related inflammation.

Previous studies have demonstrated that advancing age may be

associated with higher-level basic systemic inflammation (14, 15),

and evaluated serum inflammatory markers may contribute to an
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increased risk of chronic diseases (16). Age-associated

inflammation, namely, inflammaging, plays a crucial role in

driving chronic diseases, represented by CVD and death in

elderly people (10, 17, 18). Based on the findings of existing

studies, our research focused on analyzing the roles of

inflammaging in the development of AA and exploring related

targets. Our findings may help us better understand the crosstalk

between AA and inflammaging, providing new insights into the

pathophysiological processes of AA.

There is no consensus on the genes associated with

inflammaging. We utilized GeneCards, the human gene database,

to acquire inflammaging-related genes, and then employed PPI

network and ML to obtain 6 hub IADEGs strongly correlated with

AA. Small portions of PPI networks with highly connected regions

possess a greater likelihood of being involved in biological

processes, whilst those with fewer connections may not play a
TABLE 1 The clinical characteristics of the sample.

Feature AA normal P value

Subjects (specimens) n=5 (10) n=5 (10) –

Age (years) 59.00 ( ± 11.66) 48.40 ( ± 8.69) 0.1418

Males (N; %) 4 (80.00%) 4 (80.00%) 1.0000

BMI (kg/m2) 23.90 ( ± 2.58) 24.25 ( ± 2.10) 0.8199

Smoking (%) 4 (80.00%) 3 (60.00%) 0.4902

Diabetes mellitus (N; %) 2 (40.00%) 2 (40.00%) 1.0000

Hypertension (N; %) 5 (100.00%) 1(20.00%) 0.0098

Hyperlipidemia (N; %) 5 (100.00%) 4 (80.00%) 0.2918
fro
The red value means P <0.05.
B

C

A

FIGURE 7

Confirmation of hub IADEGs expression in human aorta tissue. (A) Relative mRNA levels were detected by qPCR. (B) Representative western blot
(WB) analysis (left) and quantification (right) of 6 hub IADEGs protein level in the human aorta tissue. (C) Immunohistochemical staining of 6 hub
IADEGs in aorta sections of humans. (Scale bar, 100 mm). (ns: P > 0.05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001).
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crucial role in the overall network’s integrity. Based on the degree of

connectivity within the PPI network, the core genes identified and

assessed were considered part of hub genes. ML, a significant

branch of artificial intelligence, is capable of handling higher-

dimensional feature data and has been extensively employed to

acquire hub genes. In our study, the overlapping genes of three

complementary ML algorithms - LASSO, SVM, and RF - were

identified as another part of hub IADEGs, which may be more

reliable than utilizing just one. ROC and nomogram were utilized to

assess the diagnostic value of hub genes. Ultimately, 6 genes,

including JPH2, BLNK, ALPL, HLA-DQB1, HLA-DMA, and

HLA-DRA, were selected as hub genes after validation in two

internal datasets and an external dataset. Further analysis of these

6 hub IADEGs revealed that 3 genes had significant co-expression

tendencies, including BLNK, HLA-DRA, and HLA-DQB1,

suggesting that these genes may play a significant role in

promoting the development of AA through inflammaging process.

Some of the genetic determinants of ageing reside in

polymorphisms in genes that regulate immune responses. It has

been identified that ageing-related loci are associated with variants

in the major histocompatibility complex region of chromosome six,

coding human leukocyte antigen (HLA) proteins, based on a study

of 164,610 UK individuals aged 60 to 70 years (49). HLAs are cell-

surface proteins significant for the regulation of immune response

and function, and the variation in specific HLA types is associated

with several chronic diseases (50) and frailty (51) in elderly people.

HLA-DQB1 is localized to the cell membrane with four functionally

different variants associated with longevity (52). Cholesterol

metabolism in liver cells could be affected by HLA-DQB1 by

reducing the cytokines released by T cells, contributing to

changes in plasma lipid homeostasis, which may be the mediating

factor between HLA-DQB1 and longevity (52). The association

between HLA-DQB1 and human longevity has been demonstrated

by studies in Sardinia with a relatively isolated population,

Okinawa, renowned for longevity, and centenarians in the

Chinese population (52–54). Besides, HLA-DQB1 plays an

important role in ageing-related chronic diseases, including age-

related macular degeneration (55), ischemic stroke (56),

neurodegenerative diseases (57–59), chronic back pain, and

osteoporosis (60), as well as autoimmune diseases (61–63). HLA-

DRA is a known marker of T cell activation, representing the

activated state of the immune system, which up-regulates in organ

transplantation rejection (64) and down-regulates after multi-

trauma (65). The expression of HLA-DRA increases in the range

of 60-69 years old, while decreasing after 70 (66), which may suggest

changes in immune system function with age. HLA-DRA is also a

hub DEGs in the process of normal brain ageing (67),

frontotemporal dementia (68), and ageing periodontitis tissues

(69). The HLA-DMA gene codes for one of two chains of HLA-

DM, which is a non-classical MHC II protein and widely exists in

various antigen-presenting cells (70). As a membrane protein,

HLA-DM mediates antigen internalization of B cells and

dendritic cells (70) and plays an important role in peptide-

induced T cell activation (71). Genotyping of HLA-DMA may be
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associated with the susceptibility to systemic lupus erythematosus

(SLE) (72) and the disease severity of rheumatoid arthritis (73).

BLNK is required to promote B cell maturation and is a

necessary component of BCR signaling pathways (74). Mutations

of the BLNK gene may cause a block in the development of B cells

(74), leading to an accumulation of pre-B cells in the bone marrow

and pre-B-cell leukemia (75). As a potential tumor suppressor,

BLNK is widely studied and considered a biomarker in leukemia

(76, 77). Beyond the field of oncology, BLNK may also promote

chondrocyte injury, contributing to osteoarthritis (78), and be

associated with the microglia response to amyloid-b, a

pathological change of Alzheimer’s disease (79).

JPH2 is one of the four JPH isoforms expressed in excitable

cells, including muscle cells and neurons, and plays a crucial role in

cellular excitability by impacting ion channel function related to

calcium on the plasma membrane and sarcoplasmic reticulum (80).

Reduced expression of JPH2 in arterial smooth muscle cells may

cause arterial hypercontractility, contributing to arterial

dysfunction, such as hypertension (81). In cardiomyocytes, JPH2

promotes T-tubule development and T-tubule network maturation

(80). Inherited mutations of JPH2 may cause hypertrophic or

dilated cardiomyopathy (82–84), and loss of cardiac JPH2 levels

may lead to heart failure and atrial fibrillation (85, 86).

In our study, the interaction between inflammaging and AA was

explored through bioinformatics analysis. To the best of our

knowledge, we obtained key genes of AA related to inflammaging

processes and provided potential molecular targets for further study.

We conducted a rigorous bioinformatics analysis. Three GEO datasets

and two complementary methods of hub gene screening, PPI network

and ML, were utilized in our study to avoid sampling and

methodological bias. However, there are also several limitations.

First, the hub genes have only been validated in human tissue,

leading to a conclusion lacking the support of animal models and

studies without homologous genes. Second, further experiments were

not conducted to elucidate the molecular regulation mechanism of

these genes and their specific roles in AA development and rupture in

vivo and in vitro, which we will focus on in our subsequent studies.

Third, our research is grounded in GEO datasets with a rather small

sample size, which could impact the generalizability of ML models and

make it challenging to draw extrapolative conclusions. In tasks with a

small sample size and high dimensionality, the model trained using

limited samples is prone to overfitting and underfitting the target tasks.

Consequently, the performance gap between the actual trained model

and the optimal model trained using existing features and algorithms

cannot be effectively reduced through training and hyperparameter

adjustment, leading to subpar overall model performance. Tominimize

the impact of this limitation, we employed a simpler model, SVM

framework based on binary classification (87, 88), to prevent overfitting

of the model. Additionally, we utilized two databases as the training set

and chose the common genes from both databases as the IADEGs. We

are of the opinion that with future technological advancements, ML

techniques better suited for limited samples and high-dimensional data

will emerge, enhancing the generalization capability of bioinformatics

data models. Moreover, further bioinformatics analysis and
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experimental studies with larger sample sizes should be conducted to

obtain crucial genes of specific biological processes of AA and elucidate

its possible mechanisms and related pathways.
5 Conclusions

In summary, following an extensive bioinformatics analysis, 3

genes that play a crucial role in the pathological process of AA

through inflammaging were identified and validated, including

BLNK, HLA-DRA, and HLA-DQB1. Further research is required

to elucidate the mechanisms of these genes in the pathological

process of AA and to establish their clinical significance.
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Bernal-Bernal I, et al. The genetic architecture of parkinson disease in Spain:
characterizing population-specific risk, differential haplotype structures, and providing
etiologic insight. Mov Disord (2019) 34(12):1851–63. doi: 10.1002/mds.27864

58. Yu E, Ambati A, Andersen MS, Krohn L, Estiar MA, Saini P, et al. Fine mapping
of the HLA locus in Parkinson’s disease in Europeans. NPJ Parkinsons Dis (2021) 7
(1):84. doi: 10.1038/s41531-021-00231-5

59. He L, Loika Y, Kulminski AM. Allele-specific analysis reveals exon- and cell-
type-specific regulatory effects of Alzheimer’s disease-associated genetic variants.
Transl Psychiatry (2022) 12(1):163. doi: 10.1038/s41398-022-01913-1
frontiersin.org

https://doi.org/10.1038/nrcardio.2014.173
https://doi.org/10.3390/antiox10040602
https://doi.org/10.1161/01.Cir.0000097109.90783.Fc
https://doi.org/10.1161/01.Cir.0000097109.90783.Fc
https://doi.org/10.1038/nrcardio.2010.180
https://doi.org/10.1161/01.ATV.0000245819.32762.cb
https://doi.org/10.3389/fimmu.2022.989933
https://doi.org/10.3389/fimmu.2022.989933
https://doi.org/10.1111/j.1749-6632.2000.tb06651.x
https://doi.org/10.1016/j.ebiom.2015.07.029
https://doi.org/10.1038/s41591-019-0675-0
https://doi.org/10.1093/gerona/glt023
https://doi.org/10.1186/s12979-016-0076-x
https://doi.org/10.1186/s12979-016-0076-x
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/bioinformatics/btac409
https://doi.org/10.1093/bioinformatics/btv300
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.18637/jss.v033.i01
https://cran.r-project.org/web/packages/e1071/index.html
https://doi.org/10.18637/jss.v028.i05
https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkz896
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1038/nmeth.3337
https://rpkgs.datanovia.com/ggpubr/
https://doi.org/10.3390/mps3040064
https://doi.org/10.1186/s13054-023-04380-2
https://doi.org/10.1007/s10439-022-03121-w
https://doi.org/10.1038/s41586-022-05535-x
https://doi.org/10.1038/nrcardio.2017.52
https://doi.org/10.1111/acel.13856
https://doi.org/10.1054/bjoc.2000.1296
https://doi.org/10.1016/j.celrep.2012.06.005
https://doi.org/10.1146/annurev-pathol-121808-102144
https://doi.org/10.1111/acel.13459
https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1093/gerona/glz042
https://doi.org/10.18632/aging.101323
https://doi.org/10.1089/rej.2006.9.157
https://doi.org/10.3143/geriatrics.35.294
https://doi.org/10.1038/ejhg.2015.247
https://doi.org/10.18632/aging.102278
https://doi.org/10.1002/mds.27864
https://doi.org/10.1038/s41531-021-00231-5
https://doi.org/10.1038/s41398-022-01913-1
https://doi.org/10.3389/fimmu.2023.1260688
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1260688
60. Kasher M, Williams FMK, Freidin MB, Cherny SS, Malkin I, Livshits G. Insights
into the pleiotropic relationships between chronic back pain and inflammation-related
musculoskeletal conditions: rheumatoid arthritis and osteoporotic abnorMalities. Pain
(2023) 164(3):e122–34. doi: 10.1097/j.pain.0000000000002728

61. Horton V, Stratton I, Bottazzo GF, ShattockM,Mackay I, Zimmet P, et al. Genetic
heterogeneity of autoimmune diabetes: age of presentation in adults is influenced by
HLA DRB1 and DQB1 genotypes (UKPDS 43). UK Prospective Diabetes Study
(UKPDS) Group. Diabetologia (1999) 42(5):608–16. doi: 10.1007/s001250051202

62. Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, et al.
Dense genotyping of immune-related loci in idiopathic inflammatory myopathies
confirms HLA alleles as the strongest genetic risk factor and suggests different genetic
background for major clinical subgroups. Ann Rheum Dis (2016) 75(8):1558–66.
doi: 10.1136/annrheumdis-2015-208119

63. Ramgopal S, Rathika C, Padma Malini R, Murali V, Arun K, Balakrishnan K.
Critical amino acid variations in HLA-DQB1* molecules confers susceptibility to
Autoimmune Thyroid Disease in south India. Genes Immun (2019) 20(1):32–8.
doi: 10.1038/s41435-017-0008-6

64. Sabek O, Dorak MT, Kotb M, Gaber AO, Gaber L. Quantitative detection of T-
cell activation markers by real-time PCR in renal transplant rejection and correlation
with histopathologic evaluation. Transplantation (2002) 74(5):701–7. doi: 10.1097/
00007890-200209150-00019

65. Timmermans K, Kox M, Vaneker M, van den Berg M, John A, van Laarhoven A,
et al. Plasma levels of danger-associated molecular patterns are associated with immune
suppression in trauma patients. Intensive Care Med (2016) 42(4):551–61. doi: 10.1007/
s00134-015-4205-3

66. de Almeida Chuffa LG, Freire PP, Dos Santos Souza J, de Mello MC, de Oliveira
Neto M, Carvalho RF. Aging whole blood transcriptome reveals candidate genes for
SARS-CoV-2-related vascular and immune alterations. J Mol Med (Berl) (2022) 100
(2):285–301. doi: 10.1007/s00109-021-02161-4

67. Xu J, Zhou H, Xiang G. Identification of key biomarkers and pathways for
maintaining cognitively normal brain aging based on integrated bioinformatics
analysis. Front Aging Neurosci (2022) 14:833402. doi: 10.3389/fnagi.2022.833402

68. Ferrari R, Forabosco P, Vandrovcova J, Botıá JA, Guelfi S, Warren JD, et al.
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